6.776 high speed communication circuits and systems ... · h.-s. lee & m.h. perrott mit ocw...

Post on 03-Sep-2019

16 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

6.776High Speed Communication Circuits and Systems

Lecture 5Generalized Reflection Coefficient, Smith Chart

Massachusetts Institute of TechnologyFebruary 15, 2005

Copyright © 2005 by Hae-Seung Lee and Michael H. Perrott

H.-S. Lee & M.H. Perrott MIT OCW

Reflection Coefficient

We defined, at the load

Load and characteristic impedances were related

Alternately

Can we find reflection coefficient at locations other than the load location?: Generalized reflection coefficient

H.-S. Lee & M.H. Perrott MIT OCW

Voltage and Current Waveforms

In Lecture 3, we found that in sinusoidal steady-state in a transmission line,

where the – sign is for the wave traveling in the +z direction,a nd the + sign is for the wave traveling in the –z direction.

Thus, the incident wave has the voltage

And the reflected wave

Similarly for currents:

H.-S. Lee & M.H. Perrott MIT OCW

Determine Voltage and Current At Different Positions

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

Incident and reflected waves must be added together

H.-S. Lee & M.H. Perrott MIT OCW

Determine Voltage and Current At Different Positions

x

z

Ex

Hyy

ZL

ExHy

ZL

Incident Wave

Reflected Wave

0Lz

V+ejwtejkz

I+ejwtejkz

V-ejwte-jkz

I-ejwte-jkz

H.-S. Lee & M.H. Perrott MIT OCW

Define Generalized Reflection Coefficient

Recall:

Define Generalized Reflection Coefficient:

Since

H.-S. Lee & M.H. Perrott MIT OCW

Generalized Reflection Coefficient Cont’d

Similarly:

H.-S. Lee & M.H. Perrott MIT OCW

A Closer Look at Γ(z)

Recall ΓL is

We can view Γ(z) as a complex number that rotates clockwise as z (distance from the load) increases

Note: |ΓL|

|ΓL| Re{Γ(z)}

Im{Γ(z)}

ΓL

∆ = 2kzΓL

Γ(z)

0

H.-S. Lee & M.H. Perrott MIT OCW

Calculate |Vmax| and |Vmin| Across The Transmission Line

We found that

So that the max and min of V(z,t) are calculated as

We can calculate this geometrically!

H.-S. Lee & M.H. Perrott MIT OCW

A Geometric View of |1 + Γ(z)|

|ΓL|

Re{1+Γ(z)}

Im{1+Γ(z)}

Γ(z)

10

|1+Γ(z)|

H.-S. Lee & M.H. Perrott MIT OCW

Reflections Cause Amplitude to Vary Across Line

Equation:Graphical representation:

directionof travel

z

tV+ejwtejkz

z

|1 + Γ(z)|

max|1+Γ(z)|

λ

0

min|1+Γ(z)|

|1+Γ(0)|

H.-S. Lee & M.H. Perrott MIT OCW

Voltage Standing Wave Ratio (VSWR)

Definition

For passive load (and line)

We can infer the magnitude of the reflection coefficient based on VSWR

H.-S. Lee & M.H. Perrott MIT OCW

Reflections Influence Impedance Across The Line

From Slide 7

- Note: not a function of time! (only of distance from load)

Alternatively

- From Lecture 3:

H.-S. Lee & M.H. Perrott MIT OCW

Impedance as a Function of Location

Also

We can now express Z(z) as

Note: Z(z) and Γ(z) are periodic in z with a period of λ/2

H.-S. Lee & M.H. Perrott MIT OCW

Example: Z(λ/4) with Shorted Load

x

z

y

ZL

Calculate reflection coefficient

Calculate generalized reflection coefficient

Calculate impedance

0Lz

λ/4

Z(λ/4)

H.-S. Lee & M.H. Perrott MIT OCW

Generalize Relationship Between Z(λ/4) and Z(0)

General formulation

At load (z=0)

At quarter wavelength away (z = λ/4)

- Impedance is inverted (Zo is real)Shorts turn into opensCapacitors turn into inductors

H.-S. Lee & M.H. Perrott MIT OCW

Now Look At Z(∆) (Impedance Close to Load)

Impedance formula (∆ very small)

- A useful approximation:

- Recall from Lecture 2:

Overall approximation:

H.-S. Lee & M.H. Perrott MIT OCW

Example: Look At Z(∆) With Load Shorted

x

z

y

ZL

0∆z

Z(∆)

Reflection coefficient:

Resulting impedance looks inductive!

H.-S. Lee & M.H. Perrott MIT OCW

Example: Look At Z(∆) With Load Open

Reflection coefficient:

Resulting impedance looks capacitive!

x

z

ZL

y

0∆z

Z(∆)

H.-S. Lee & M.H. Perrott MIT OCW

Compare to an Ideal LC Tank Circuit

Calculate input impedance about resonance

L CZin

= 0 negligible

H.-S. Lee & M.H. Perrott MIT OCW

Transmission Line Version: Z(λ0 /4) with Shorted Load

As previously calculated

Impedance calculation

Relate λ to frequency

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

H.-S. Lee & M.H. Perrott MIT OCW

Calculate Z(∆ f) – Step 1

Wavelength as a function of ∆ f

Generalized reflection coefficient

x

z

y

ZL

0Lz

λ0/4

Z(λ0/4)

H.-S. Lee & M.H. Perrott MIT OCW

Calculate Z(∆ f) – Step 2

x

z

y

ZLλ0/4

Impedance calculation

Recall

0Lz

Z(λ0/4)

- Looks like LC tank circuit (but more than one mode)!

H.-S. Lee & M.H. Perrott MIT OCW

Smith Chart

Define normalized load impedance

Relation between Zn and ΓL

- Consider working in coordinate system based on ΓKey relationship between Zn and Γ

- Equate real and imaginary parts to get Smith Chart

H.-S. Lee & M.H. Perrott MIT OCW

Real Impedance in Γ Coordinates (Equate Real Parts)

0.2 0.5 1 2 5

ΓL=0

Im{ΓL}

Re{ΓL}

ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=0.5

H.-S. Lee & M.H. Perrott MIT OCW

Imag. Impedance in Γ Coordinates (Equate Imag. Parts)

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Zn=j0.5

Zn=-j0.5

H.-S. Lee & M.H. Perrott MIT OCW

What Happens When We Invert the Impedance?

Fundamental formulas

Impact of inverting the impedance

- Derivation:

We can invert complex impedances in Γ plane by simply changing the sign of Γ !

How can we best exploit this?

H.-S. Lee & M.H. Perrott MIT OCW

The Smith Chart as a Calculator for Matching Networks

Consider constructing both impedance and admittance curves on Smith chart

- Conductance curves derived from resistance curves- Susceptance curves derived from reactance curves

For series circuits, work with impedance- Impedances add for series circuits

For parallel circuits, work with admittance- Admittances add for parallel circuits

H.-S. Lee & M.H. Perrott MIT OCW

Resistance and Conductance on the Smith Chart

0.2 0.5 1 2 5

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=2

Yn=0.5 Zn=0.5

Zn=2

H.-S. Lee & M.H. Perrott MIT OCW

Reactance and Susceptance on the Smith Chart

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

Im{ΓL}

Re{ΓL}

ΓL=0 ΓL=1ΓL=-1

ΓL=j

ΓL=-j

Yn=-j2

Yn=j2

Zn=j2

Zn=-j2

H.-S. Lee & M.H. Perrott MIT OCW

Overall Smith Chart

0.2 0.5 1 2 5

j0.2

j0.2

0

j0.5

j0.5

0

j1

j1

0

j2

j2

0

j5

j 5

0

H.-S. Lee & M.H. Perrott MIT OCW

Smith Chart element Paths

INCREASING SERIES L DECREASING SERIES C

DECREASING SHUNT L INCREASING SHUNT C

Figure by MIT OCW. Adapted fromhttp://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

H.-S. Lee & M.H. Perrott MIT OCW

L-Match Circuits (Matching Load to Source)

π or L match networksremove forbidden regions

Figure by MIT OCW. Adapted fromhttp://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

H.-S. Lee & M.H. Perrott MIT OCW

Example – Match RC Network to 50 Ohms at 2.5 GHz

Circuit

Step 1: Calculate ZLn

Step 2: Plot ZLn on Smith Chart (use admittance, YLn)

Zin Rp=200Cp=1pFMatchingNetwork ZL

H.-S. Lee & M.H. Perrott MIT OCW

Plot Starting Impedance (Admittance) on Smith Chart

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

YLn=0.25+j0.7854

(Note: ZLn=0.37-j1.16)

H.-S. Lee & M.H. Perrott MIT OCW

Develop Matching “Game Plan” Based on Smith Chart

By inspection, we see that the following matching network can bring us to Zin = 50 Ohms (center of Smith chart)-need to step up impedance

Use the Smith chart to come up with component values- Inductance Lm shifts impedance up along reactance

curve- Capacitance Cm shifts impedance down along susceptance curve

Zin Rp=200Cp=1pFZL

Lm

Cm

Matching Network

H.-S. Lee & M.H. Perrott MIT OCW

Add Reactance of Inductor Lm

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

normalizedinductor

reactance= j1.64

H.-S. Lee & M.H. Perrott MIT OCW

Inductor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized inductor reactance is

Required inductor value is therefore

H.-S. Lee & M.H. Perrott MIT OCW

Add Susceptance of Capacitor Cm (Achieves Match!)

0.2 0.5 1 2 5

j0.2

-j0.2

0

j0.5

-j0.5

0

j1

-j1

0

j2

-j2

0

j5

-j5

0

ZLn=0.37-j1.16

Z2n=0.37+j0.48

1.0+j0.0

normalizedcapacitor

susceptance= j1.31

(note: Y2n=1.00-j1.31)

H.-S. Lee & M.H. Perrott MIT OCW

Capacitor Value Calculation Using Smith Chart

From Smith chart, we found that the desired normalized capacitor susceptance is

Required capacitor value is therefore

H.-S. Lee & M.H. Perrott MIT OCW

Useful Web Resource

Play the “matching game” at

- Allows you to graphically tune several matching networks

- Note: it is set up to match source impedance to load impedance rather than match the load to the source impedance

Same results, just different viewpoint

http://contact.tm.agilent.com/Agilent/tmo/an-95-1/classes/imatch.html

top related