contratto energia, una narrazione

Post on 25-May-2015

654 Views

Category:

Education

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

EnergiaRinnovabilitàDemocrazia

UNA “NARRAZIONE” PER IL CONTRATTO MONDIALE

ENERGIA Aprile 2007

2

EMPEDOCLE: I 4 ELEMENTI

Empedocle descrive il mondo attraverso l’interazione di quattro elementi :

Aria, acqua, terra e fuoco,

Il fuoco – l’energia – viene oggi alimentato dissennatamente dall’uomo,

consumando in particolare i fossili, compromettendo gli equilibri della biosfera,

dando luogo ad un inarrestabile degrado dell’aria, dell’acqua, della terra.

3

L’energia è potenza, velocità, calore

L’energia serve all’uomo per alimentare le sue “protesi artificiali”.

L’energia è sviluppo, crescita, consumo e “motore” del mercato.

COS’E’ nel senso comune L’ENERGIA?

4

L’energia è una risorsa finita e degradabile.L’energia è equilibrio per la biosfera.L’energia è diritto alla vita e, quindi, un

bene comune.

COS’E’ davvero L’ENERGIA?

5

6

7

Tempo

Ord

ine

e C

resc

ita

RifiutiMateria Ordinata

Disordine

Energia Nobile Energia Termica

8

9

H2OFossiliFondi

Biosfera

Homo Tecnologicus Pia

net

a In

Pre

stit

o

?

Flussi

10

COSA C’E’ DIETRO LA SPINA?

11

Il pianeta di notte

12

Infrastrutture energetiche 1Infrastrutture energetiche 1

Riserve di energia solare (annuali) > 2130 TWh entro il 2020

Africa> 450 TWh

Asia – Oceania > 270 TWh

Latin America > 270 TWh

Middle East > 200 TWh

India: > 180 TWh

Australia – Japan - NZ > 130 TWh

Europe > 90 TWh

North America > 180 TWh

China > 220 TWh

East Europe – Ex URSS > 130 TWh

Based on data from B. Dessus & UNESCO ’s Summer School of rural electrification

Yearly kWh by m²

1200

1700

1950

2450

850

600

Riserve di energia eolica (annuali)Riserve di energia eolica (annuali)> 660 TWh entro 2020

Africa > 20 TWh

Asia – Oceania > 45 TWhLatin America

> 50 TWh

China > 45 TWh

Middle East > 3 TWh

North America > 150 TWh

India > 35 TWh

Australia – Japan - NZ > 90 TWh

East Europe – Ex URSS > 65 TWh

Europe > 130 TWh

Based on data from B. Dessus & UNESCO ’s Summer School of rural electrification

kWh by kW installed 100

1700

2700

4000

Potenziale di biomasse > 6700 TWh entro 2020

Calculations based on data from B. Dessus & UNESCO ’s Summer School on Solar Electricity

Africa> 1200 TWh Asia – Oceania

> 1000 TWh

Latin America> 1400 TWh

China > 660 TWh

North America> 680 TWh

India > 680 TWh

Australia – Japan - NZ > 120 TWh

East Europe – Ex URSS > 430 TWh

Europe> 550 TWh

Middle East> 70 TWh

16

Consumi totali di energia in tep/anno.persona al 2002

Foss. Totale • Africa 0,4 0,4

• Medio Oriente 2,1 2,6• Europa Orientale e Russia 2,9 3,3• Europa Occidentale 3,2 3,7• America centrale e meridionale 1,2 1,2• America settentrionale 5,8 7,0• Asia e Oceania 0,8 0,8 • Media mondiale 1,4 1,6

17

PRIMA COMBUSTIBILI FOSSILI DOPO

ASPO

18

RISORSE ENERGETICHE TERRARISORSE ENERGETICHE TERRA

EJ=Exa EJ=Exa Joule=10Joule=1018 18 J J 1 Tep= 4,8x101 Tep= 4,8x1010 10 J J

19

SOLARE O FOSSILE….

Passato Presente Futuro...

PRIMA COMBUSTIBILI FOSSILI DOPO

20

Dal Don Chisciotte di Miguel Cervantes

• “ O perpetuo scopritore degli antipodi, face del mondo, occhio del cielo. Tu che sempre ascendi e, a dispetto delle apparenze non ti corichi mai. Dico a te, sole, con il cui aiuto l’uomo genera l’uomo! Illumina le tenebre del mio ingegno, che senza te mi sento freddo, sfinito, incerto”

21

L'aumento di prezzi avrà quattro effetti

• Diminuzione della qualità di vita – bisognerà

fare di più per ottenere di meno ed essere infelici;

• Rendimento energetico aumentato - “fate lo stesso, ma usando meno energia”;

• Disponibilità di energia alternativa “fate lo stesso, ma con i sostituti dei fossili”;

• Aspirazioni culturali cambiate – “scegliete di fare qualche cosa di diverso ed essere felici”.

22

Riflessione: quanto è costata la guerra in Iraq? 1

• Solo l’energia bruciata dalla guerra, diretta e indiretta, è enormemente superiore al contenuto energetico del greggio estratto durante il conflitto.

• La quantità di CO2 immessa per le azioni di guerra è superiore a quella dovuta all’attività USA di 2 mesi e a quella di 2 anni dell’intera Africa.

23

Riflessione: quanto è costata la guerra in Iraq? 2

• I 200 miliardi di dollari spesi al 2005 nella guerra sarebbero stati sufficienti a rendere competitiva l’energia fotovoltaica (passando dagli attuali 20 agli 8 cents per kilowatt-ora).

• Gli stessi 200 miliardi sarebbero stati sufficienti a coprire il 5% del fabbisogno energetico italiano per 50 anni, se impiegati per la costruzione di centrali eoliche off-shore.

• Le basi USA in Europa costano 1000 mlrd $/a.

24

Cambiamenti climatici

INQUINAMENTO

EXILLES- Alta Valle di Susa- Lago e ghiacciaio

25

AUMENTO TEMPERATURA

26

Aumento della

temperatura superficiale

del mare1910-19601961-2005

1961 - 2005

27

PERDITE ECONOMICHE

28

Effetti positivi del riscaldamento globale

29

L’emergenza climatica

• Negli ultimi 150 anni la concentrazione di CO2 in atmosfera: da 280 a 379 ppm.

• Ogni anno vengono rilasciati 26.4 Gton di CO2 = 7.2 Gton di C.

• La temperatura del globo si è innalzata di 0,6 °C nel ‘900.

• L’aumento inevitabile tra 20 anni sarà di 0.6 °C

• La crescita di CO2 al 2020 è previsto del 50%.

30

IMPATTI DI AUMENTO T

Stern Review 2006Stern Review 2006

31

EFFETTI SULLA VITA!

• Pochi gradi T ± °C cambiano tutto!

± 2°C

32

CI SON VOLUTI 13 MILIARDI DI ANNI…

33

…PER LA SPECIE E LA CIVILTA’ UMANA

34

SCENARI FUTURI

35

RISCALDAMENTO GLOBALE

0 = 1999

°C

36

INQUINAMENTO GLOBALE

37

INQUINAMENTO AREA PADANA

38

MILANO PM10 2005

MI-Juvara

0

50

100

150

200

250

01/0

1/20

05

01/0

2/20

05

01/0

3/20

05

01/0

4/20

05

01/0

5/20

05

01/0

6/20

05

01/0

7/20

05

01/0

8/20

05

01/0

9/20

05

01/1

0/20

05

01/1

1/20

05

01/1

2/20

05

01/0

1/20

06

Figura 2 Concentrazioni medie giornaliere di PM10 (µg/m3 ) misurate nella postazione di Milano, via Juvara, nel 2005. Elaborazione degli autori su dati ARPA Lombardia

39

CONTIAMO IL TEMPO A RITROSO!

40

L’EMERGENZA CLIMATICA: SEQUESTRO DI CO2?

• Per immettere nel sottosuolo 1G ton di CO2 (4% emissione annua) occorre movimentare 5 milioni di m3 di gas al giorno;

• Il sequestro di CO2 incide per 3-4 centesimi di euro per Kw/ora sul costo totale (7-10 centesimi di euro);

• Generare elettricità da carbone e sequestrare la CO2 costa oggi il 14% rispetto all’elettricità da fotovoltaico.

41

NO AL NUCLEARE

• Il nucleare costa, non è sostenibile e presenta altissimi rischi ambientali.

• Le fonti di uranio sono limitate, i costi di produzione da nucleare sono alti e non possono beneficiare di un’economia di scala.

• Le emissioni di CO2 non sono trascurabili

L’uscita dal petrolio attraverso il rilancio del nucleare è assolutamente impraticabile.

42

CENTRALI NUCLEARI MONDO

• 439 centrali nucleari nel mondo

• 300.000 MW di potenza installata

• 27 nuovi impianti annunciati nel mondo

• 18 nuovi impianti annunciati in Asia

• Per 56 delle 102 centrali USA protratto il funzionamento da 40 a 60 anni

43

Anni necessari per ottenere energia netta dal nucleare.

• 4 anni per la costruzione di una centrale. • 40 anni di durata di funzionamento. • 10 anni per il pareggio di energia.• Un impianto fornisce energia netta dal 9°

anno. • Sistema che sviluppa 1 impianto/anno dà

energia netta positiva al 13°anno. • Un sistema che costruisce ogni anno +10%

nuovi impianti dà energia netta positiva durante il 15° anno.

• Non va più in perdita un sistema che costruisce ogni anno + 20% nuovi impianti.

44

EFFETTI FORESTALI

Assorbimento netto di carbonio da parte di un ecosistema forestale (Parco del Ticino)

Fondazione Lombardia per l’Ambiente

45

PROBLEMI, SFIDE, SCELTE

• La crescita “via” fossili comporta un prezzo in effetti climatici e catastrofici maggiore dei benefici economici

• I costi militari sono vieppiù insostenibili• Se la democrazia è in pericolo, si può

farne a meno?• E’ aperto il conflitto tra sole e atomo:

cosa scegliere e perché?

46

IL PUNTO•Stiamo vivendo l’apogeo dell’era dell’energia fossile.•L’energia di alta qualità sta diventando una risorsa scarsa – la disponibilità diminuisce.• L’energia potenzia il lavoro e la creatività, e attiva i capitali.• L’economosfera funziona ormai in modo simile alla bio-geosfera e vi è contenuta.• Accadranno grossi cambiamenti economici-sociali.• È ugente e necessario un nuovo pensiero economico.

47

IL BUCO ENERGETICO

• L'uso globale di energia attuale è 13 TW, si prevede che per il 2050 arrivi a 30.

• il deficit previsto sarebbe 17 - 20 TW.• Costruendo 1 centrale nucleare da 1000

Mw al giorno per 50 anni si otterrebbero 10 TW.

• Il vento offre in prospettiva 2-4 TW.• L’energia solare 20 TW.• La biomassa dà un massimo teorico di 7-

10 TW.

48

DETERMINANTE E’ RIDURRE

• Il pianeta non può smaltire il carico energetico a cui viene sottoposto

• L’aumento dei consumi individuali peggiora salute e benessere

• Aumenta l’ingiustizia sociale

49

Una proposta: l’impronta ecologica 1

• “L’ecological footprint” è un indicatore – ideato da William Rees e Mathis Wackernagel – che mette a confronto lo stile di vita ed i consumi di una popolazione con la “quantità di natura” - espressa in ettari pro-capite di territorio – necessaria a sostenerli a tempo indeterminato.

50

Una proposta: l’impronta ecologica 2

• L’impronta ecologica rappresenta quindi il peso (espresso in ettari di natura bio-produttiva) con cui ogni popolazione grava sul pianeta.

• Considerando che la biocapacità della terra è 1,8 ha/cap e l’impronta attuale è 2,2 ha/cap, stiamo già consumando più di quanto la terra è in grado di rigenerare.

51

Metodo dell’impronta per l’elettricità’

• Se applichiamo il metodo dell’impronta al comparto della produzione di energia scopriamo che:– Centrali a vapore (carbone) 161 ha/GWh

– Elettricità da petrolio 150 ha/GWh

– Elettricità da gas naturali 94 ha/GWh

– Elettricità da eolico 6 ha/GWh

– Elettricità da fotovoltaico 24 ha/GWh

– Elettricità da biomassa 27-46 ha/GWh

Con il fotovoltaico (con le tecnologie attuali) sarebbe sufficiente lo 0,07% delle terre emerse per soddisfare il

fabbisogno globale. (in Italia basterebbe lo 0,6%)

52

OVERSHOOT DAY (OVDAY)

• Dal 1 Gen 2006 al 9 Ott l’umanità ha consumato le risorse rinnovabili del pianeta.

• Nel 1987 OvDay era 19 Dic; nel 1995 era il 21 Nov; nel 2004 era il 21 Ott.

• Il nostro stile di vita esaurisce il capitale naturale terrestre, con consumi> 30% biocapacità del pianeta.

53

UN NUOVO SISTEMA DI RELAZIONI

RETI CORTE

RETI CORTE

RETI CORTE

RETI CORTE = RINNOVABILI

RETI LUNGHE = RISPARMIO E COLLETTIVO

54

Un nuovo paradigma energetico 1

La sola via percorribile alternativa alla guerra è la riconversione ecologica di produzione e consumi

• Attraverso il risparmio energetico per abbattere gli sprechi, accrescere l’efficienza dei sistemi, ridurre i consumi, contenere l’inquinamento e liberare risorse;

55

Un nuovo paradigma energetico 2

• Attraverso il ricorso alle energie rinnovabili in quanto soluzione necessaria per evitare l’esaurimento delle risorse disponibili ;

• Attraverso una giusta distribuzione delle risorse per evitare i conflitti e combattere la povertà;

• Attraverso il rallentamento progressivo della crescita economica e una decrescita delle economie più dissipative.

In armonia con i tempi biologici e con le risorse energetiche presenti

nel territorio, occorre superare le grandi centrali e passare alla produzione localizzata di energia da fonti rinnovabili.

56

Il Potenziale Rinnovabile

Ogni anno sulla Terra sarebbe teoricamente possibile produrre, senza un significativo impatto ambientale:

• 14 mila TWh da idroelettrico;• 70-120 mila TWh da biomassa;• 180 mila TWh da eolico;• 1400000 TWh da geotermico;• > 440 mila TWh da solare.

Quanto di questo enorme potenziale può essere utilizzato prima che i cambiamenti climatici diventino irreversibili e prima che la crisi energetica porti al collasso del sistema?

57

SOSTITUZIONE FOSSILI CON RINNOVABILI

Sostituire elettrico mondiale = 15,5 GKW

• 2.5 milioni generatori eolici (2.5 MW)• 210.000 Kmquadr. pannelli fotovoltaici• 155.000 Kmquadr. solare termico

N.B.Lombardia = 23.861 Kmquadr. superficie

1 mquadr pannelli fotovoltaici = 75 KWora

1 ettaro pannelli termici = 10 MKWora

58

Proposta: internalizzazione dei costi

• Un sistema efficiente dal punto di vista economico non è necessariamente il sistema migliore.

• La società paga oggi i costi “esterni”.• E’ necessario che la società possa controllare e

decidere democraticamente le politiche tariffarie.

Costo di Generazione [€c/Kwh] Costi Esterni [€c/Kwh]

Petrolio 6 7 5 11Gas 4 6 2 4Carbone 6 9 4 15Idroelettrico (conv./mini) 2 15 0 1Nucleare 10 15 3 ?

Biomasse 2 15 0.2 3Geotermico 6 9 n.d.Eolico 4 8 0.1 0.2Solare Termico Conc. 10 25 n.d.Solare Fotovoltaico 15 40 0.6

59

ENERGIA - ACQUA

Consumo Energia – Cambiamento climatico - Disponibilità acqua

• 75% consumo acqua Germania= centrali

• 50% consumo acqua USA = centrali

• 37% consumo acqua Italia = centrali

60

SOLARE-ACQUA

61

Contratto mondiale sull’energia

L’energia è un bene comune

Conservare le risorse energetiche e

Ridurre i consumi

Tecnologie per lo sfruttamento locale

Autoproduzione da fonti rinnovabili

Controllo pubblico della produzione e

distribuzione

Nuovi vettori energetici a basso impatto

e trasporto collettivo

62

L’ENERGIA E’ UN BENE COMUNE

• La riceviamo in prestito dalla natura.• È indispensabile alla vita.• L’accesso, non la proprietà è un diritto.• È anche un patrimonio sociale.• È un bene territoriale e comunitario.• È qualitativamente determinante per gli

ecosistemi e per il potere rigenerativo della natura (il genere femminile!).

• E’ intrinseca all’abitare e alla mobilità.

63

INCENTIVARE LE RINNOVABILIEsempio di convenienza: il Fotovoltaico

0

5

10

15

20

25

30

35

40

45

50

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Co

sto

[€¢

/kW

h]

0

100

200

300

400

500

600

700

800

900

Cap

acit

à d

i gen

eraz

ion

e to

tale

inst

alla

ta [

GW

p]

Bruxelles

Milano

Tripoli

Palermo

Costo Generazione di Potenza

Costo Elettricità per l'Utenza finale

Roma

Agostinelli, G.; Acciarri M.; Ferrazza, F. Le scienze, maggio 2005

64

UNA MOBILITA’ SOSTENIBILE• Il concetto di mobilità come fabbisogno costituisce il punto di

riferimento sia per l’innovazione di prodotto sia per la riorganizzazione della circolazione di persone e merci.

• Gli interventi riguardano: riorganizzazione e limitazione del traffico, veicoli innovativi, combustibili alternativi, riprogettazione dell’ambiente relazionale e comunicativo sotto il profilo della raggiungibilità (muscoli e mente, non solo macchine).

• Per il traffico indispensabile è necessaria una politica di transizione per raggiungere il traguardo rappresentato da veicoli dotati di propulsori elettrici con celle a combustibile alimentate a idrogeno ottenuto da fonti energetiche rinnovabili. (Adozione di soluzioni intermedie industrialmente fattibili; creazione di nicchie di mercato incentivato dall’intervento pubblico, per attivare una rete di produzione e distribuzione di combustibili alternativi; sviluppo, prototipizzazione e sperimentazione di nuove soluzioni attraverso la ricerca avanzata).

65

IL VETTORE IDROGENO

• Costituisce il 90% degli atomi dell’universo (atomi legati da forti energie di legame).

• E’ un vettore energetico e l’energia necessaria a produrlo entra a far parte dei bilanci energetici e ambientali.

• Non è conveniente in termini sia economici che ambientali la produzione da fossili.

• la generazione diffusa di piccola taglia da fonti rinnovabili è di estremo interesse (facile trasportare, alto rendimento energetico nelle celle a combustibile).

66

AGRICOLTURA A BASSA INTENSITA’ENERGETICA

• I sistemi più tradizionali di coltivazione sono oggi anche quelli più efficienti dal punto di vista energetico (Vietnam 1:10). In seguito alla rivoluzione verde iniziata negli anni ’60, con l’impiego di fertilizzanti, sistemi d’irrigazione, imballaggio dei prodotti, oggi l’energia impiegata è maggiore di quella che se ne ricava dal raccolto ( Stati Uniti 10:1). Questo sistema produce più CO2 di quanta ne possa assorbire.

67

• Maggiore efficienza energetica e uso di fertilizzanti organici (agricoltura biologica)

• Fonti energetiche rinnovabili e filiera corta (riduzione della distanza dalla produzione al consumo).

• Produzione di biomasse ad uso energetico.• Ovviamente i consumi alimentari delle

popolazioni più ricche devono diventare compatibili con il mantenimento dei processi naturali (es. dieta mediterranea con riduzione dei consumi di carne).

EVOLUZIONE DEL SISTEMA AGRICOLO

68

I BIOCOMBUSTIBILI

• In forma liquida (etanolo, biodiesel) e in forma gassosa (idrogeno e biogas) possono rappresentare una valida soluzione per contribuire alla riduzione delle emissioni di CO2, anche se usati in miscele con i combustibili fossili.

• L’ipotesi di una sostituzione totale dei combustibili fossili da parte dei biocombustibili presenta diverse riserve, prima fra tutte la priorità alimentare dei raccolti per combattere la fame nel mondo. L’eccessivo sfruttamento delle terre potrebbe rompere gli equilibri dell’ecosistema e infine degradare l’ambiente perfino più di quanto non facciano le fonti fossili.

69

6) CONCLUSIONI

70

RIPRENDIAMOCI L’ENERGIA!

• La questione energetica è una questione di democrazia.

• Il superamento dei fossili passa dal rilancio del governo dei beni comuni e dalla responsabilizzazione politica dei cittadini.

• L’energia rinnovabile può essere prodotta su scala locale in impianti di piccola e media taglia e distribuita alla rete locale, con un governo diretto delle comunità, pubblico e partecipato.

71

GLI OBIETTIVIE LA BELLEZZA DEI NUMERI (1)

• 1 Tep /pro capite consumo energia.

• 1,5 Ton/anno pro capite emissione CO2.

• Inversione overshoot day a 31/12 al 2030.

• impronta ecologica a 1,8 ha/cap al 2030

• 100 g CO2/Km max da auto al 2010.

72

GLI OBIETTIVIE LA BELLEZZA DEI NUMERI (2)

• >30% risparmio al 2020.

• >210 GKWora/anno risparmio al 2020

• >75 MTon/anno riduzione CO2

• >100000 posti lavoro anno

• >50% riduzione spese militari

top related