eeng 751: signal processing i

Post on 31-Jan-2016

69 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

EENG 751: Signal Processing I. Class # 9 Outline Signal Flow Graph Implementation Fundamentals System Function Graph Construction Graph Analysis Applications Complex Coefficient Systems. SFG Reference. IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993 - PowerPoint PPT Presentation

TRANSCRIPT

EENG 751 04/22/23 9-1

EENG 751: Signal Processing IEENG 751: Signal Processing IClass # 9 Outline

Signal Flow Graph Implementation Fundamentals System Function Graph Construction Graph Analysis Applications Complex Coefficient Systems

EENG 751 04/22/23 9-2

SFG ReferenceSFG Reference

IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993“Efficient Computation of the DFT with Only a Subset of Inputor Output Points” page 1184.

EENG 751 04/22/23 9-3

SFG ReferenceSFG Reference

IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993“Efficient Computation of the DFT with Only a Subset of Inputor Output Points” page 1188.

EENG 751 04/22/23 9-4

SFG FundamentalsSFG Fundamentals

tionImplementa sMathematic e. I.

. viaexecuted be

can that algorithman as viewedbecan LCCDE The LCCDE.

theandfunction system ebetween thduality a is e that therNote

][][][

LCCDE ingcorrespond theand

1)(

function system heRemember t

01

1

0

both or hardware software,

knxbknyany

za

zbzH

M

kk

N

kk

N

k

kk

M

k

kk

EENG 751 04/22/23 9-5

SFG Fundamentals (Cont)SFG Fundamentals (Cont)

Structure Lattice Subtract-Add

Subtract-Add-Multiply AccumulateMultiply

include primitives possibleOther

locationsmemory and additions ,multiplies 1

are theredistinct, are and all generalin where

][][][

LCCDEscalar generalour For

)(

are elementstion implementa )(primitive lfundamenta The

01

MNMNMN

ba

knxbknyany

memorydelay Unit

Multiplier

ractorAdder/Subt

kk

M

kk

N

kk

EENG 751 04/22/23 9-6

SFG Fundamentals (Cont)SFG Fundamentals (Cont)

ly.respective nodenetwork and

node,sink node, sourceth - theof values theare and , ,

nodes.sink nor sourceneither are

branches. enteringonly have

branches exitingonly have

: typesnode threeare There

nodes. theconnecting branches directed and nodes of consistsSFG A

:notation and sDefinition

mwyx

nodes Network

nodes Sink

nodes Source

mmm

1w

1y1x

2x

2w 3w

4w

EENG 751 04/22/23 9-7

SFG Fundamentals (Cont)SFG Fundamentals (Cont)

:branches entering all of ouputs thesums andadder an is nodeeach

delay timeArbitrary

delay e Unit tim2.

1by tion Multiplica

by tion Multiplica 1.

types twoof one toconfined be lbranch wil directedEach

a

][]1[][][ 321 nbxnxnaxny ][1 nx

][2 nx

1z

a

][3 nx

kz

a

b1z

EENG 751 04/22/23 9-8

SFG GenerationSFG Generation

says""equation what thedoingjust by SFG its draw lets and

]1[][][

toingcorrespond )(

system FIRorder first simpleour Consider

10

110

nxbnxbny

zbbzH

]1[][][ 10 nxbnxbny][nx0b

1z

1b]1[ nx ]1[1 nxb

.

only that branches hasfilter FIR simpleour for SFG that theNotice

forward feed

EENG 751 04/22/23 9-9

SFG Generation (Cont)SFG Generation (Cont)

says""equation what thedoingjust by SFG its draw letsagain and

][]1[][

toingcorrespond 1

1)(

system IIRorder first simplest our consider Now

1

11

nxnyany

zazH

][]1[][ 1 nxnyany ][nx

1z

1a]1[ ny]1[1 nya

.and

that branches hasfilter IIR simpleour for SFG that theNotice

backward forward feed

EENG 751 04/22/23 9-10

SFG Generation (Cont)SFG Generation (Cont)

:(why?) diagramblock with

]1[][][ and ][]1[][

form cascadein or ]1[][]1[][

toingcorrespond)()(1

11

)(

systemorder first simpleour Consider

101

101

2111

1101

1

110

nxbnxbnwnwnyany

nxbnxbnyany

zHzHza

zbbzazbb

zH

)(1 zH )(2 zH][nx][nw

][ny

][ny][nw1z

1a]1[ ny]1[1 nya

][nx 0b1z

1b

]1[ nx ]1[1 nxb

EENG 751 04/22/23 9-11

SFG Generation (Cont)SFG Generation (Cont)closely moreSFG combinedour Examine

][ny][nw1z

1a]1[ ny]1[1 nya

][nx 0b1z

1b

]1[ nx ]1[1 nxb

SFGour simplify can then we][]1[]1[][

as LCCDEour rewrite weIf

011 nxbnyanxbny

][ny1z

1a]1[ ny

][nx 0b1z

1b

]1[ nx]1[]1[ 11 nyanxbdelays! two theNotice

EENG 751 04/22/23 9-12

SFG Generation (Cont)SFG Generation (Cont)

givesorder reverse in the

SFG thengimplementi so)()(1

1)(

have also wesystems LTIfor

)()(1

11

)(

Since

121

1011

2111

1101

1

110

zHzHzbbza

zH

zHzHza

zbbzazbb

zH

][ny

1z

1a]1[ nw]1[1 nwa

][nw

][nx

0b1z

1b]1[ nw

]1[1 nwb

EENG 751 04/22/23 9-13

SFG Generation (Cont)SFG Generation (Cont)

).(canonicalbranch delay oneonly SFG with a yields This

equal. also are functionsbranch theand equal are nodes end twothe

since combined becan branches twomiddle that theNotice

][ny

1a

]1[ nw

]1[1 nwa

][nx

0b1z

1b

]1[1 nwb

][nw

]1[][]1[][or )(1

)(

gives)( geliminatin and Transforms Using

].1[][][ and ][]1[][ now Where

10111

110

101

nxbnxbnyanyzXzazbb

zY

zWz

nwbnwbnynxnwanw

EENG 751 04/22/23 9-14

SFG Generation (Cont)SFG Generation (Cont)

N

k

kk

M

k

kk

N

k

kk

M

k

kkN

k

kk

M

k

kk

zazH

zbzH

zHzHza

zbza

zbzH

1

2

01

21

1

0

1

0

1

1)(

)(

where

)()(1

1

1)(

again function system heRemember t

EENG 751 04/22/23 9-15

SFG Generation (Cont)SFG Generation (Cont)

][][][ and ][][

where][][][

are LCCDEs ingcorrespond theand

10

01

nwknyanyknxbnw

knxbknyany

N

kk

M

kk

M

kk

N

kk

][ny][nw 1z1a]1[ ny

]2[ ny

][nx

0b

1z 1b]1[ nx

]2[ nx1z 2b

1z 1Mb

1z Mb]1[ Mnx

][ Mnx

2a 1z

1z1Na

Na 1z

]1[ Nny

][ Nny

EENG 751 04/22/23 9-16

SFG Generation (Cont)SFG Generation (Cont)

delays. SFG with standard

get the weorder,different ain SFG theof middle theaddingBy

NMIform direct

][nw

][nx

0b

1z 1b]1[ nx

]2[ nx1z 2b

1z 1Mb

1z Mb]1[ Mnx

][ Mnx

][ny1z1a

]1[ ny

]2[ ny2a 1z

1z1Na

Na 1z

]1[ Nny

][ Nny

EENG 751 04/22/23 9-17

SFG Generation (Cont)SFG Generation (Cont)gives (z) and (z) inginterchang delays, have weSince 21 HHM N

][ny1z1a

2a 1z

1z1Na

Na 1z

][nw][nx0b

1z 1b]1[ nw

]2[ nw1z 2b

1z 1Mb

1z Mb][ Mnw

EENG 751 04/22/23 9-18

SFG Generation (Cont)SFG Generation (Cont)

.or II thecall is This ).,max( thecount to

delay thereduce and ladders two thecombinecan welevel, same

at the equal aresection middle in the valuesnode theall Since

form canonicalform directNM

1z1Na

Na 1z

][ny1z1a

2a 1z

][nw

][nx

0b

1b

2b

1Mb

Mb

EENG 751 04/22/23 9-19

SFG Application ReferenceSFG Application Reference

IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993“Efficient Computation of the DFT with Only a Subset of Inputor Output Points” page 1188.

EENG 751 04/22/23 9-20

SFG Application ReferenceSFG Application Reference

IEEE Transactions on Signal; Processing, vol 41 No. 3 March 1993“Efficient Computation of the DFT with Only a Subset of Inputor Output Points” page 1189.

EENG 751 04/22/23 9-21

SFG Application ExampleSFG Application Example

LCCDE.order first a iswhich

]1[]1[][

]1[][][

]1[][][

exercises, theof one similar to that Note . and

][, where][][

as drepresente becan ][

(26)equation

2

0

2

2

0

1

11

1

1

0

1

1

0

1

1

nxnayny

nxamxany

nxamxny

aW

mxkXnjamxny

WkXjy

n

m

mn

n

m

mn

mnmjkN

pmQ

n

m

mn

j

m

mjkNpmQk

EENG 751 04/22/23 9-22

SFG Application ExampleSFG Application Example

isSFG II formdirect the,1 and 0 with 1

)(

LCCDEorder first general the to thiscomparing and1

)(

can write we]1[]1[][

withStarting

1011

`110

1

1

1

bbzazbb

zH

azz

zH

nxnayny

][ny

1a

][nx

00 b1z

11 b

EENG 751 04/22/23 9-23

SFG Application ExampleSFG Application Example

paper. in the 5 figure as same theisSFG which II formdirect thehas1

)(

or]1[]1[][

So

1

1

azz

zH

nxnayny

][nya

][nx

1z

EENG 751 04/22/23 9-24

SFG Application ExampleSFG Application Example

22

11

22

110

21

21

2

/2

221

11

1

1

1

1

1

1

1)(

biquad general the to thisComparing

/2cos21)(

??

so but

1

1)(

11

11)(

back to Going

zazazbzbb

zH

zzNkzaz

zH

aaa

eWa

zazaa

zazzH

zaza

azz

azz

zH

NjkkN

EENG 751 04/22/23 9-25

SFG Application Example (Cont)SFG Application Example (Cont):is biquad general for theSFG canonical theWhere

][ny1z1a

2a 1z

][nx

0b

1b

2b

paper. in the 6 figure as same eexactly th is

SFG which following theyieldswhich 1,/2cos2

,,1,0 then problemour For

21

210

aNka

Wabbb kN

][ny1z Nk /2cos2

1 1z

][nx

a

EENG 751 04/22/23 9-26

Alternate Canonic FormsAlternate Canonic Forms

tion.implementa theand equations theof

entsrearrangembetween encecorrespond thesillustrate example This text.

theofedition 1985 theof 151 pageon appearsSFG following The

][ny][nx

0b

2a 1z 110 bab

1z1Na

Na 1z

1Mb

Mb

2a 1z 110 bab

EENG 751 04/22/23 9-27

Alternate Canonic Forms (Cont)Alternate Canonic Forms (Cont)

NML

za

zbabbzH

zP

zBzPbb

zP

zBzPbzPbbzH

zazPzbzB

zP

zBb

za

zbzH

N

k

kk

L

k

kkk

N

k

kk

M

k

kk

N

k

kk

M

k

kk

,max here w1

)(

)(1

)()(

)(1

)()()()(

)( and )(

where)(1

)(

1)(

:follows asit rewrite andagain function system heRemember t

1

10

0

00

000

11

0

1

0

EENG 751 04/22/23 9-28

Alternate Canonic Forms (Cont)Alternate Canonic Forms (Cont)

N

k

kk

L

k

kkk

za

zbabzHzHbzH

1

10

110

1)()()(

:situation following thehave weSo

)(zY][nx0b

)(1 zH 1z1Na

Na 1z

][ny1z1a

2a 1z

][nx110 bab

220 bab

MM bab 0

EENG 751 04/22/23 9-29

Alternate Canonic Forms (Cont)Alternate Canonic Forms (Cont)

get todiagramblock in the (z)for Substitute 1H

1z1Na

Na 1z

][ny

1z1a

2a 1z

][nx

110 bab

220 bab

MM bab 0

0b

EENG 751 04/22/23 9-30

Alternate Canonic Forms (Cont)Alternate Canonic Forms (Cont)

:flowgraph final thecreate Finally to

1z1Na

Na 1z

)(zY

1z1a

2a 1z

)(zX

110 bab

220 bab

MM bab 0

0b

EENG 751 04/22/23 9-31

Cascade FormCascade Form

difficult. very bemay ion factorizat thiswhere

1)(

1)(

:function system theof form cascasde thegives )( Factoring

12

21

1

22

110

1

1

0

P

k kk

kkkP

kkN

k

kk

M

k

kk

zzzz

zHza

zbzH

zH

][nx)(1 zH ][ny)(2 zH )(zH P

EENG 751 04/22/23 9-32

Optionan is Pipelining

Costs Hardware Reduced

Slow ation,Standardiz

1)( 2

21

1

22

110

:Form Cascade the of Properties

zzzz

zHkk

kkkk

Cascade FormCascade Form

1zk1

1zk2

k1

k0

k0

)(zH k

EENG 751 04/22/23 9-33

Parallel FormParallel Form

Nkzz

z

MkNzc

zH

zzz

zczH

zHza

zbzH

zH

kk

kk

kk

k

N

k kk

kkM

k

kk

L

kkN

k

kk

M

k

kk

1for 1

for

)(

where

1)(

)(1

)(

:function system

theof form parallel thegives )(on fractions partial Using

22

11

110

2/1

12

21

1

110

0

1

1

0

EENG 751 04/22/23 9-34

Hardware of Lots

Fast

ation,Standardiz

1

)(2

21

1

110

:Form Parallel the of Properties

zzz

zc

zH

kk

kk

kk

k

Parallel Form (Cont)Parallel Form (Cont)

][nx)(2 zH ][ny

1zk1

1zk2

k1

k0

)(zH k

)(zH L

)(1 zH

)(zH k

EENG 751 04/22/23 9-35

nodes.sink and source of roles thereversing

and same) theances transmitt the(leaving branchesnetwork all of

direction thereversingby generated isSFG a of transposeThe :Definition

same.the

function systemthe leaves also output and inputthe reversing SFGs,

output-inputsingle For

The Transposition TheoremThe Transposition Theorem

1z

a][nx

1z

b c

1z

a][ny

][nx

1z

b c

1z ][ny][nx 1zbc

21

21

)(

)()()()(

czbzazH

zXczzXbzzaXzY

21

11

)(

)()()()(

czbzazH

zaXzzbXzXczzY

described be

need structures network

the half Only :Note

][ny

a

EENG 751 04/22/23 9-36

The Transposition Theorem (Cont)The Transposition Theorem (Cont)

1992October 10, No 39 vol

II Systems and Circuitson nsTransactio IEEE :examples Transpose

EENG 751 04/22/23 9-37

The Transposition Theorem (Cont)The Transposition Theorem (Cont)

1992October 10, No 39 vol

II Systems and Circuitson nsTransactio IEEE :examples Transpose

EENG 751 04/22/23 9-38

FIR Filter Equations

y n h k x n k

y h x

y h x h x

y h x h x h x

y M h x M h x M h M x h M x

y M h x M

k

M

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [

0

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

0 1 1 1 1 0

1 0 1 1 1 2 1

2 0 2 1 1 1 3 2

3 0 3 1 2 1 4 3

4 0 4

] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

h x M h M x h M x

y M h x M h x M h M x h M x

y M h x M h x M h M x h M x

y M h x M h x M h M x h M x[ ] [ ] [ ] [5] [ ] [ ]1 3 1 4

EENG 751 04/22/23 9-39

]3[]0[]2[]1[]1[]2[][]3[]3[

]2[]0[]1[]1[][]2[]2[

]1[]0[][]1[]1[][]1[

][]0[]1[]1[]0[][][

]2[]0[]1[]1[]0[]2[]2[

]1[]0[]0[]1[]1[

]0[]0[]0[

0][][][

MxhMxhMxhMxhMy

MxhMxhMxhMy

MxhMxhxMhMy

MxhxMhxMhMy

xhxhxhy

xhxhy

xhy

M

kknxkhny

Transpose FIR Filter Equations

EENG 751 04/22/23 9-40

The Transposition Theorem (Cont)The Transposition Theorem (Cont)

FiltersNotch Digitalon Paper Classic :examples Transpose

EENG 751 04/22/23 9-41

FIR SFGsFIR SFGs

toreduce II and I formdirect Then the

otherwise 0

0for ][

Define

][][][][

system Average) (Moving FIR general heConsider t

00

Mnbnh

knxkhknxbny

n

M

k

M

kk

1z

]0[h][nx ]1[h

1z

]2[h

1z

][Mh]1[ Mh

][ny

EENG 751 04/22/23 9-42

FIR SFGs (Cont)FIR SFGs (Cont)

:istion implementa

filter FIR general theof transpose that theNote filters. ltransversa

or linedelay tappeda as toreferred sometimes are systems These

1z

]0[h

][nx

]1[h

1z

]2[ Mh

1z

][Mh ]1[ Mh

][ny

EENG 751 04/22/23 9-43

FIR SFGs (Cont)FIR SFGs (Cont)

:likelook would41

21

41

function systemwith canceller pulse-3 normalizedA

21 zzzH

1z

41][nx

21

1z

41 ][ny

1z

41

][nx21

1z

41 ][ny

:form sedin transpoOr

EENG 751 04/22/23 9-44

FIR SFGs (Cont)FIR SFGs (Cont)

zero. be will

tscoefficien theof one then odd is If .2/1 where

][)(

from derived becan and

form general theof case special a is filters FIRfor form cascade The

2

1

22

11

0

k

s

M

kkkok

M

n

n

b

MMM

zbzbbznhzHs

1z

1z

][nx11b

01b

21b

1z

1z

sMb1

sMb0

sMb2

1z

1z

12b

02b

22b

EENG 751 04/22/23 9-45

FIR SFGs (Cont)FIR SFGs (Cont)

system. theof zeros theare 7,...,1,0for where

1)(

as factored becan which

1)(

asy immediatelfunction system

the write toable be should everyone where

]7[][][

filter comb heConsider t

7/2

7

1

121

721

21

21

kez

zzzH

zzH

nxnxny

jk

k

k

k

EENG 751 04/22/23 9-46

FIR SFGs (Cont)FIR SFGs (Cont)

)()()()(7/6cos21

7/4cos217/2cos211)(

gives

1 and 7/2cos2

where

111

termsconjugatecomplex combining

4321

21

2121121

2

22111

zHzHzHzHzz

zzzzzzH

zkzz

zzzzzzzzz

kkk

kkkkk

1z

][nx 1 1z

7/2cos2

1z21

)(3 zH

EENG 751 04/22/23 9-47

Linear Phase FIR SFGsLinear Phase FIR SFGs

equation.last in this required are multiplies 12/only that Note

]2/[]2/[][][][][

)]([][]2/[]2/[][][][

thensum, second in the Let ][][

]2/[]2/[][][][][][

have wesymmetry,even andeven for

e.g. since, tionsmultiplica save toused becan symmetry thisand

)()( i.e. phase,linear have will

system then the][][or ][][ If

12/

0

0

12/

12/

0

12/

12/

00

M

MnxMhkMnxknxkhny

mMnxnMhMnxMhknxkhny

kMmknxnh

MnxMhknxnhknxnhny

M

eAeeH

nMhnhnMhnh

M

k

Mk

M

k

M

Mk

M

k

M

k

jbajj

EENG 751 04/22/23 9-48

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

x n[ ]

y n[ ]

z 1z 1 z 1

z 1z 1z 1

h[ ]0 h[ ]1 h[ ]2

1

2M

h

2M

h

. degree,even offilter

FIRsymmetry even an of structure formDirect 6.34 Figure

M

EENG 751 04/22/23 9-49

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

IVcOdd][][

IIIcEven][][

IIc Odd][][

IcEven][][

IVOdd][][

IIIEven][][

II Odd][][

IEven][][

Type Symmetry

nMhnh

nMhnh

nMhnh

nMhnh

nMhnh

nMhnh

nMhnh

nMhnh

M

EENG 751 04/22/23 9-50

Causal Linear Phase SystemsCausal Linear Phase Systems

][][ Example.

cos2

2]0[

theninteger,evenan ][][

:systems I Type

.for 0][ then ,1

islength filter theIf .0for 0][ implies Causal

5

2/

1

2/

nRnh

kkM

hheeH

MnMhnh

MnnhM

nnh

M

k

Mjj

0

symmetry ofCenter

22M 4M

1

EENG 751 04/22/23 9-51

Causal Linear Phase Systems (Cont)Causal Linear Phase Systems (Cont)

2

1

0

2

1

0

0

2

1

2

1

0

2

1

2

1

00

givessumation oforder thereversing and ][][

conditionsymmetry theusing andk index back to Switching

then,or let sum, second In the

theninteger,oddan ],[][

:systems II Type

M

k

kMj

M

k

kjj

Mm

mMj

M

k

kjj

M

Mk

kj

M

k

kjM

k

kjj

ekhekheH

nMhnh

emMhekheH

mMkM-km

ekhekhekheH

MnMhnh

EENG 751 04/22/23 9-52

Causal Linear Phase Systems (Cont)Causal Linear Phase Systems (Cont)

5.151a eq 21

cos2

12

so ,21

2,1

21

21

0 then ,2

1let solution, text get the To

2cos2

2cos2 ,identitiesour fromBut

sums two theCombining :(Cont) systems II Type

2

1

1

2/

2

1

0

2/

2/

2

1

0

kkM

heeH

kkM

kM

k

Mkkk

Mk

kM

kheeH

kM

eee

eekheH

M

k

Mjj

M

k

Mjj

MjkMjkj

M

k

kMjkjj

EENG 751 04/22/23 9-53

Causal Linear Phase Systems (Cont)Causal Linear Phase Systems (Cont)

21

cos32

or

25

cos2

5],[][ :(Cont) systems II Type

3

1

2/5

2

0

2/5

6

kkheeH

kkheeH

MnRnh

k

jj

k

jj

0

symmetry ofCenter 25

2M

5M

1

EENG 751 04/22/23 9-54

Causal Linear Phase Systems (Cont)Causal Linear Phase Systems (Cont)

]2[][][ :example

sin2

2

integereven an ],[][ : systems III Type2/

1

2/

nnnh

kkM

hjeeH

MnMhnhM

k

jMj

0

symmetry ofCenter

12M

2M

1

1

EENG 751 04/22/23 9-55

Causal Linear Phase Systems (Cont)Causal Linear Phase Systems (Cont)

]3[][][ :example

21

sin2

12

integer oddan ],[][ : IVsystems Type2/1

1

2/

nnnh

kkM

hjeeH

MnMhnhM

k

jMj

0

symmetry ofCenter 23

2M

3M

1

1

EENG 751 04/22/23 9-56

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

0

2/1

2/1

0

2/1

2/1

0

0

)]([][][][][

thensum, second in the Let

][][][][][

][][][

Then integer. oddan is wherecase heConsider t

Mk

M

k

M

Mk

M

k

M

k

mMnxmMhknxkhny

kMm

knxnhknxnhny

knxnhny

M

EENG 751 04/22/23 9-57

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

2/1

0

2/1

0

2/1

0

][][][][

][][ :IV Type

][][][][

][][ :II Type

then

][][][][][

With

M

k

M

k

M

k

kMnxknxkhny

nMhnh

kMnxknxkhny

nMhnh

kMnxkMhknxkhny

EENG 751 04/22/23 9-58

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

z 1

x n[ ]

y n[ ]

z 1z 1 z 1

z 1z 1z 1

h[ ]0 h[ ]1 h[ ]2 hM

[ ] 3

2h

M[ ]

12

odd for ][][ :System II Type MnMhnh

EENG 751 04/22/23 9-59

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

32415

5432151

1051)(

and 10]3[]2[,5]4[]1[ ,1]5[]0[

5Mfor ][][

51010511)( :System II Type

zzzzzzH

hhhhhh

nMhnh

zzzzzzzH

z 1

x n[ ]

y n[ ]

z 1z 1

z 1z 1

1]0[ h 5]1[ h 10]2[ h

EENG 751 04/22/23 9-60

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

z 1

x n[ ]

y n[ ]

z 1z 1 z 1

z 1z 1z 1

h[ ]0 h[ ]1 h[ ]2 hM

[ ] 3

2h

M[ ]

12

odd for ][][ :System IV Type MnMhnh

1 1 11 1

EENG 751 04/22/23 9-61

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

!1

is so root, a is If

011

][)(

then,][][ If

1][)(

][][][)(

then,0)(z and ][(z) :Suppose

0

0

0

00 0

00

0 0

00

000

000

000

00

zz

zHz

zkhzzH

nMhnh

zkMhzzH

zkMhzzkhzzkhzH

HzkhH

MM

k

k

M

M

k

k

M

M

k

kMM

k

kMMM

k

k

M

k

k

EENG 751 04/22/23 9-62

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

2

11

11

43211

1

1111

11

12,

1Re2

where1)(

is )(say ),( offactor a and )( of zeros all are

1,

1, then circle,unit on thenot zerocomplex a is If (1)

:situations following thehavecan weThus

0 then,0)(

if i.e. pairs, conjugate

complex in occur zeros then real, is ][ if Similarly,

zzd

zzc

zczdzczzH

zHzHzH

zzzz

zHzH

nh

EENG 751 04/22/23 9-63

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

43112

111

2

1

2

11112

1

2

1

1

11111

1

1

1

1

11

111

111

111

111)(

givesout is th gMultiplyin

11

1111)(

Consider values?get these wedo How

zzzzzzz

z

zzz

zzz

z

zzz

zzzH

zz

zz

zzzzzH

EENG 751 04/22/23 9-64

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

2

1

1

1

1

1

1

11

112

1

2

1

1

1

11

11

1

12

112

gives termscollecting and

numberscomplex of properties theusing out, thisgMultiplyin

111

1Re2

11

so equal are of powers like of tscoefficien theNow

zz

zz

zzd

zzzz

zzd

zz

zzzzc

z

EENG 751 04/22/23 9-65

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

14

44

321

3

3

33

22

212

2

222

1)( is

)(say ),( offactor ingcorrespond thezero a is 1 If (4)

Re2 where1)(

is )(say ),( offactor ingcorrespond theand

zero a also is then circle,unit on the zerocomplex a is If (3)

1 where1)(

is )(say ),( offactor ingcorrespond

theand zero a also is 1

then 1 zero, real a is If (2)

listour with Continuing

zzH

zHzHz

zbzbzzH

zHzH

zz

zzazazzH

zHzH

zzz

EENG 751 04/22/23 9-66

Linear Phase FIR SFGs (Cont)Linear Phase FIR SFGs (Cont)

H z h z az z bz z

cz dz cz z

a zz

b z c zz

d zz

( ) [ ]( )( )( )

( )

, Re{ }, Re , .

0 1 1 1

1

12 2

12

1

1 1 2 1 2

1 2 3 4

22

3 11

11

2

1z

1z

1

1z

1

1z

2z 2

1z

3z

3z

4z

EENG 751 04/22/23 9-67

All Pass FiltersAll Pass Filters

(Why?) filter. pass allan is filters pass all of cascadeA :Note

111

11

1

1

1 :Zero, :Pole

]1[][]1[][1

)( 1

1

j

j

j

jj

j

jj

j

jj

aeae

aeae

eae

aeeH

aeae

eH

azaz

nxnxanaynyaz

azzH

EENG 751 04/22/23 9-68

All Pass Filters (Cont)All Pass Filters (Cont)

:locationmemory one and multiplies 2

requires and belowshown istion implementa II formdirect The

being. timefor theparameter real a is where1

)(Let 1

1

aaz

azzH

1za

a][nx ][ny

EENG 751 04/22/23 9-69

All Pass Filters (Cont)All Pass Filters (Cont)

locations.memory 2 andmultiply one

requires which ]1[][]1[][tion multiplica

single aget torearrange and ]1[][]1[][

i.e. ),( toingcorrespond LCCDE heConsider t

nxnxnyany

nxnaxnayny

zH

1z

a 1z

][nx ][ny

1

EENG 751 04/22/23 9-70

All Pass Filters (Cont)All Pass Filters (Cont)

:is system cascaded thisoftion implementa II formdirect The

.parameters real are b and where1

1)(Let 1

1

1

1

abz

bzaz

azzH

1z

a 1z

][nx ][ny

1

1z

b 1z1

1z

b 1z1 b

1z1

1z

][ny

EENG 751 04/22/23 9-71

All Pass Filters (Cont)All Pass Filters (Cont)

:is system cascaded thisoftion implementa II formdirect The

.parameters real are b and where1

1)(Let 1

1

1

1

abz

bzaz

azzH

1z

a 1z

][nx ][ny

1

1z

b 1z1

1z

b 1z1 b

1z1

1z

][ny

EENG 751 04/22/23 9-72

All Pass Filters (Cont)All Pass Filters (Cont)Consider the second SFG

1z

b 1z1

Flip it over I.e.

1z

b1z

1

][ny

][ny

Pull down I.e.

1z b

1z1][ny

EENG 751 04/22/23 9-73

All Pass Filters (Cont)All Pass Filters (Cont)filter pass all second for the form alternate theSubstitute

1z

a 1z

][nx

1 b

1z1

1z

][ny

1z

a 1z

][nx

1 b

1z1 ][ny

filter. pass allorder second for theSFG sharingdelay theis This

branches. middle two theCombine

EENG 751 04/22/23 9-74

All Pass Filters (Cont)All Pass Filters (Cont)

:locationmemory one and multiplies 2 requires

and belowshown istion implementa )(canonical II formdirect The

parameter. real a is where1

)(Let 1

1

aaz

azzH

1za

a][nx ][ny

SFG.. canonicalnon locationsmemory 2ith multiply w single The

1z

a 1z

][nx ][ny

1

tion?implementamultiply single canonical a thereIs

EENG 751 04/22/23 9-75

Signal Flow Graph ExampleSignal Flow Graph Example

z 1z 1

x n[ ]

y n[ ]

a2

1

a1

input. one than more having nodes the

only Label nodes.network 8 are thereNote ).( Calculate zH

EENG 751 04/22/23 9-76

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

][][][][

][]1[][

][]2[][

][][][

324

22113

12

31

nwnwnynw

nwanwanw

nxnwnw

nxnwnw

x n[ ]z 1z 1

y n[ ]

a2

1

a1

w n1[ ]w n2[ ]

w n3[ ]

w n4[ ]

EENG 751 04/22/23 9-77

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

)()()()(

)()()()(

)()()(

)()()(

324

2211

13

12

2

31

zWzWzYzW

zWzazWzazW

zXzWzzW

zXzWzW

X z( )z 1z 1

Y z( )

a2

1

a1

W z1( )W z2 ( )

W z3( )

W z4 ( )

EENG 751 04/22/23 9-78

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

)( and),(),(),( unknownsfour in equationsFour

0

0

1

1

gives grearrangin and )(by equation

each dividing So system. theof )()()(

)()(

)(

,)(

)()(,

)(

)()(,

)(

)()(Let

4321

432

32211

1

212

31

44

33

22

11

zHzHzHzH

HHH

HHaHza

HHz

HH

zX

zHzXzY

zXzW

zH

zX

zWzH

zX

zWzH

zX

zWzH

EENG 751 04/22/23 9-79

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

)!( is need weall case in this

But . offunction a be could where)()(

for solve and )(calculate could onein theory Then

0

0

1

1

1110

01

001

0101

system. thedescribing equationslinear ofset

theof tscoefficien ofmatrix theis )( where)()(

as formmatrix in equations of system this writecould One

4

11

1

4

3

2

1

21

1

2

zH

zzCzH

zC

H

H

H

H

aza

z

zCzHzC

EENG 751 04/22/23 9-80

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

22

11

21

1

2

2

21

1

2

21

1

2

21

1

2

4

11

1

01)(

1

01

101

1110

01

001

0101

)(

.)( oft determinan theis )( where

)(

0110

01

101

1101

)(

gives which Method) s(Cramer' methodsimpler a Use

zazaaza

z

az

aza

zaza

zz

zCz

z

aza

z

zH

EENG 751 04/22/23 9-81

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

(Why?)column second thecolumn to third theaddingby

100

11

121

110

1

111

)(

(Why?) row second the torowfirst theaddingby

0110

01

0111

1101

0110

01

101

1101

)(

let numerator, thecalculate To

21

1

2

21

1

2

21

1

2

21

1

2

aza

z

aza

z

zN

aza

z

aza

zzN

EENG 751 04/22/23 9-82

Signal Flow Graph Example (Cont)Signal Flow Graph Example (Cont)

filter. edunnormaliz

an is that thisminutes few ain see willWhich we

21121

)()(

121 )(

2111

21)(

giveslet numerator, thecalculate toContinuing

22

11

22

112

4

22

112

112

2

21

1

2

Notch

zazazazaa

zHzH

zazaazN

zaazaza

zzN

EENG 751 04/22/23 9-83

Exercise (To be Handed In)Exercise (To be Handed In)

11/09/07ok

delays. 6 and mulipliers with twofor SFG a Draw (d)

.41

4

system heconsider t Now

.multiplier one uses that ofSFG a Draw (c)

. ofSFG II formdirect a Draw (b)

Why?system. heIdentify t

system. theof zeros and poles theDetermine (a)4

14

function system with system LTI causal heConsider t 9.1

2

2

2

12

1

1

2

2

1

zH

z

zzHzH

zH

zH

z

zzH

EENG 751 04/22/23 9-84

Complex Filter ExampleComplex Filter Example

Consider the simple complex FIR filter given by the

system function:

) where , so

) = ), and

is determined from the which occurs when

, i.e.

H z A az a re

H e A re e A re

H e A r r

A H e

K

H e A r r A r

Ar

j

j j j j

j

j

j

( ) (

( ) ( (

( ) cos( )

max ( )

( )

max ( ) ( )

( )

1

1 1

1 2

2 1

1 2 1 1

11

1

2

2

EENG 751 04/22/23 9-85

Complex Filter Example(Cont)Complex Filter Example(Cont)

Note that

) where , and

) ,

and

If , i.e. , then

Since multiplying by shifts the frequency response by

and if is linear phase, i.e

H z G a re

G z A z g n A R n A A

h n a g n

a e r

h n e g n

H e G e

e

G e

G e e

za

j

n

n

j

j n

j j

j n

j

j j

( ) (

( ) ( [ ] ( ) [ ] ,

[ ] [ ].

[ ] [ ] and

( ) ( ).

( ) .

( )

( )

1 1

1

12

( )

( ( ) ) ( )

( ) ( )

( ) ( )

A e A e

H e e A e

j j

j j j

where is real, then

is also linear phase.

EENG 751 04/22/23 9-86

Complex System Signal Flow GraphsComplex System Signal Flow Graphs

z 1

y n[ ]

ar1

x n[ ]

11 r

z 1

y n[ ]

b1

x n[ ]b0

The system function for this simple FIR filter is:

where

and

H z b b z

b hr

b ha

rre

r

j

( )

[ ] [ ]

0 1

1

0 101

11

1 1

EENG 751 04/22/23 9-87

Complex System SFG(Cont)Complex System SFG(Cont)

Since the LCCDE corresponding to the system function

is

it can be broken up into the real and imaginary parts

yielding two coupled LCCDEs, i.e.

H zr

re z

y nr

x n re x n

y nr

x n r x n r x n

y nr

x n r x n r x n

j

j

R R R I

I I I R

( )

[ ] [ ] [ ]

[ ] [ ] cos [ ] sin [ ]

[ ] [ ] cos [ ] sin [ ]

11

1

11

1

11

1 1

11

1 1

1

EENG 751 04/22/23 9-88

Complex System Signal Flow GraphsComplex System Signal Flow Graphs

z 1

Re( [ ])y n

r sin

r cosz 1

Re( [ ])x n

Im( [ ])y nIm( [ ])x n

r sin

r cos

EENG 751 04/22/23 9-89

Application from IEEE Transactions on Application from IEEE Transactions on Signal Processing, Vol 46, No.2 Feb 98 Signal Processing, Vol 46, No.2 Feb 98

Page 364Page 364

EENG 751 04/22/23 9-90

Application from IEEE Transactions on Application from IEEE Transactions on Signal Processing, Vol 46, No.2 Feb 98 Signal Processing, Vol 46, No.2 Feb 98

Page 368Page 368

EENG 751 04/22/23 9-91

Application Example (Continued)Application Example (Continued)x n[ ] y n[ ]

z 1

z 1

H zz

z z( )

cos ( ) ( )cos ( )

1 0 0 1 0 11

01

0 1 0 12

2 1 11 2

EENG 751 04/22/23 9-92

Application Example (Continued)Application Example (Continued)

y k[ ] y k k[ | ]1

z 1

z 1

H zz

z z( )

cos ( ) ( )cos ( )

1 0 0 1 0 11

01

0 1 0 12

2 1 11 2

2 1 0( ) cos

( )( )1 11 0

2 0 cos

( ) 0 1 0 1

EENG 751 04/22/23 9-93

Application Example (Continued)Application Example (Continued)

z 1

z 1

z 11

0

2cos

1 0 1 1

1

W1

W2

W3

H zz

z z( )

cos ( ) ( )cos ( )

1 0 0 1 0 11

01

0 1 0 12

2 1 11 2

y k k[ | ]1

y k[ ]

top related