introduction to dynamics analysis of robots (part 5)

Post on 24-Dec-2015

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

INTRODUCTION TO

DYNAMICS ANALYSIS

OF ROBOTS(Part 5)

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

After this lecture, the student should be able to:•Solve problems of robot instantaneous motion using joint variable interpolation•Calculate the Jacobian of a given robot•Investigate robot singularity and its relation to Jacobian

Introduction to Dynamics Analysis of Robots (5)

Summary of previous lecture

n

T

n

n

n

n

z

y

x

P J

vvv

vvv

vvv

v

v

v

v

2

1

)(2

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

Jacobian for translational velocities

n

T

n

T

z

y

x

P

n

T

z

y

x

P JJ

a

a

a

aJ

v

v

v

v

2

1

)(2

1

)(0/

2

1

)(0/

Instantaneous motion of robots

So far, we have gone through the following exercises:

Given the robot parameters, the joint angles and their rates of rotation, we can find the following:

1. The linear (translation) velocities w.r.t. base frame of a point located at the end of the robot arm

2. The angular velocities w.r.t. base frame of a point located at the end of the robot arm

3. The linear (translation) acceleration w.r.t. base frame of a point located at the end of the robot arm

4. The angular acceleration w.r.t. base frame of a point located at the end of the robot arm

We will now use another approach to solve the angular velocities problem.

Jacobian for Angular Velocities

100034333231

24232221

14131211

112

01

0

vvvv

vvvv

vvvv

TTTTT nP

nnP

In general, the position and orientation of a point at the end of the arm can be specified using

333231

232221

131211

332313

322212

312111

333231

232221

131211

)()(,)(

vvv

vvv

vvv

tR

vvv

vvv

vvv

tR

vvv

vvv

vvv

tR T

3

133

3

123

3

113

3

132

3

122

3

112

3

131

3

121

3

111

333231

232221

131211

332313

322212

312111

333231

232221

131211

333231

232221

131211

)()(

iii

iii

iii

iii

iii

iii

iii

iii

iii

T

vvvvvv

vvvvvv

vvvvvv

vvv

vvv

vvv

vvv

vvv

vvv

tRRt

132312221121

331332123111

233322322131

3

112

3

131

3

123

21

13

32

3

2

1

)(

vvvvvv

vvvvvv

vvvvvv

vv

vv

vv

t

iii

iii

iii

3

133

3

123

3

113

3

132

3

122

3

112

3

131

3

121

3

111

333231

232221

131211

iii

iii

iii

iii

iii

iii

iii

iii

iii

vvvvvv

vvvvvv

vvvvvv

Jacobian for Angular Velocities

nn

ijijijijij

n

n

ijijijijijnij

vvv

dt

dvv

dt

dv

dt

dv

dt

dv

dt

dvvfv

22

11

2

2

1

121 ),,,(

Jacobian for Angular Velocities

nnnn

nn

nn

nn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvv

vvvv

vvvv

vvvvvv

2333

2232

2131

2232

3322

2

3221

2

31123

1

3322

1

3221

1

311

2333

22

331

1

33

2232

22

321

1

3221

312

2

311

1

311

2333223221311

nnnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvvvv

3313

3212

3111

2332

1332

2

1231

2

11133

1

1332

1

1231

1

112

3313321231112

Similarly:

Jacobian for Angular Velocities

nnnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vvvvvv

1323

1222

1121

2132

2312

2

2211

2

21113

1

2312

1

2211

1

213

1323122211213Similarly:

n

nnn

nnn

nnn

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

t

2

1

1323

1222

1121

13

2

2312

2

2211

2

2113

1

2312

1

2211

1

21

3313

3212

3111

33

2

1332

2

1231

2

1133

1

1332

1

1231

1

11

2333

2232

2131

23

2

3322

2

3221

2

3123

1

3322

1

3221

1

31

3

2

1

)(

Jacobian for angular velocities

)(0/

AP J

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is the Jacobian for angular velocities of point “P”?

Example: Jacobian for Angular Velocities

Given:

1000

)sin()sin(1)cos()sin(

)sin())cos()cos(()cos()sin()sin()cos()sin(

)cos())cos()cos(()sin()sin()cos()cos()cos(

3223232

13221321321

13221321321

CB

CBA

CBA

TnP

133

2312

3

2211

3

2113

2

2312

2

2211

2

2113

1

2312

1

2211

1

21

333

1332

3

1231

3

1133

2

1332

2

1231

2

1133

1

1332

1

1231

1

11

233

3322

3

3221

3

3123

2

3322

2

3221

2

3123

1

3322

1

3221

1

31

)(

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

vv

J A

Example: Jacobian for Angular Velocities

3

3132

2

31

1

31

3231

)cos(

0

)sin(

vv

v

v

3

3232

2

32

1

32

3232

)sin(

0

)cos(

vv

v

v

0

1

3

33

2

33

1

33

33

vvv

v

Example: Jacobian for Angular Velocities

3

11321

2

11

3211

11

32111

)sin()cos(

)cos()sin(

)cos()cos(

vv

v

v

3

12321

2

12

3211

12

32112

)cos()cos(

)sin()sin(

)sin()cos(

vv

v

v

3

13

2

13

11

13

113

0

)cos(

)sin(

vv

v

v

3

21321

2

21

3211

21

32121

)sin()sin(

)cos()cos(

)cos()sin(

vv

v

v

3

22321

2

22

3211

22

32122

)cos()sin(

)sin()cos(

)sin()sin(

vv

v

v

3

23

2

23

11

23

123

0

)sin(

)cos(

vv

v

v

Example: Jacobian for Angular Velocities

0)1,1( 231

3322

1

3221

1

31)(

vv

vv

vv

J A

)sin()2,1(

0)sin()sin()sin()cos()sin()cos(

)2,1(

1)(

3213232132

232

3322

2

3221

2

31)(

A

A

J

vv

vv

vv

J

)sin()3,1(

0)sin()sin()sin()cos()sin()cos(

)3,1(

1)(

3213232132

233

3322

3

3221

3

31)(

A

A

J

vv

vv

vv

J

00)cos()sin()sin()sin()cos()sin(

)1,2(

3232132321

331

1332

1

1231

1

11)(

v

vv

vv

vJ A

)cos(0)cos()cos()cos()sin()sin()cos(

)2,2(

13232132321

332

1332

2

1231

2

11)(

vv

vv

vv

J A

)cos(0)cos()cos()cos()sin()sin()cos(

)3,2(

13232132321

333

1332

3

1231

3

11)(

vv

vv

vv

J A

Example: Jacobian for Angular Velocities

1)1,3(

)sin()sin()sin()cos()sin()cos()cos()cos()cos()cos(

)1,3(

)(

11321321321321

131

2312

1

2211

1

21)(

A

A

J

vv

vv

vv

J

00)sin()cos()cos()sin()cos()cos()sin()sin(

)2,3(

321321321321

132

2312

2

2211

2

21)(

v

vv

vv

vJ A

00)sin()cos()cos()sin()cos()cos()sin()sin(

)3,3(

321321321321

133

2312

3

2211

3

21)(

v

vv

vv

vJ A

Example: Jacobian for Angular Velocities

Example: Jacobian for Angular Velocities

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

What is after 1 second if all the joints are rotating at

3,2,1,6

it

i

0/3

5236.0

9069.0

5236.0

5236.0

5236.0

5236.0

001

866.0866.00

5.05.00

001

866.0866.00

5.05.00

001

)cos()cos(0

)sin()sin(0

)(0/0/3

11

11)(

A

P

A

J

J

The answer is similar to that obtained previously using another approach! (refer to the example on relative angular velocity)

Clarification

Why 0/0/3 P

Note: every point on the link will rotate at the same angular velocity! However, the linear velocities at different points on the link are not the same!

11 rv

r121 rv

r2

Getting the Angular Acceleration

n

A

n

A

z

y

x

P

n

AP JJJ

2

1

)(2

1

)(0/

2

1

)(

3

2

1

0/

If the joint angular acceleration for 1, 2, …, n are 0s then

n

A

z

y

x

P J

2

1

)(0/

Example: Getting the Angular Acceleration

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is after 1 second if all the joints are rotating at

3,2,1,6

it

i

0/3

Getting the Angular Acceleration

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

000

)sin()sin(0

)cos()cos(0

1111

1111)(

AJ

All the joints angular acceleration for 1, 2, …, n are 0s:

0

2742.0

4749.0

5236.0

5236.0

5236.0

000

2618.02618.00

4534.04534.00

0/

z

y

x

P

The answer is similar to that obtained previously using another approach! (refer to the example on relative angular acceleration)

Transformation between Joint variables and the general motion of the last link

We can combine the Jacobians for the linear and angular velocities to get:

n

A

T

n

z

y

x

P

P

A

T

J

JJ

v

v

v

v

J

JJ

2

1

)(

)(2

1

3

2

10/

0/

)(

)(

Example: Transformation between Joint variables and the general motion of the last link

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

What is the Jacobian for the 3 DOF RRR robot?

Example: Transformation between Joint variables and the general motion of the last link

001

)cos()cos(0

)sin()sin(0

11

11)(

AJ

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

32322

32113221322

32113221322)(

CCB

CCBCBA

CCBCBA

J T

001

)cos()cos(0

)sin()sin(0

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

11

11

32322

32113221322

32113221322

)(

)(

CCB

CCBCBA

CCBCBA

J

JJ

A

T

Jacobian and Singularities

n

T

n

n

n

n

z

y

x

P J

vvv

vvv

vvv

v

v

v

v

2

1

)(2

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

We know that

z

y

x

n

n

n

PT

n

v

v

v

vvv

vvv

vvv

vJ

1

34

2

34

1

34

24

2

24

1

24

14

2

14

1

14

0/

1)(2

1

The above is true only if the Jacobian is invertible. From algebra, we now that a matrix cannot be inverted if its determinant is zero (i.e. the matrix is singular)

Example: Jacobian and Singularities

Example: The 3 DOF RRR Robot:

Y0, Y1

X0, X1

Z0, Z1

Z2

X2

Y2

Z3

X3

Y3

A=3 B=2 C=1

P

Investigate the singularities of the 3 DOF RRR robot

Example: Jacobian and Singularities

)cos()cos()cos(0

)sin()sin()sin())sin()sin(()cos())cos()cos((

)sin()cos()cos())sin()sin(()sin())cos()cos((

32322

32113221322

32113221322)(

CCB

CCBCBA

CCBCBA

J T

23232

231231211232

23232

231231211232

)(

)()(

)()()det(

CcCcBc

sCcsCcsBccCcBcA

CcCcBc

sCssCssBssCcBcAJ T

}{)(

}{)()det(

232312

2321232312

23211232

232312

2321232312

23211232)(

cscCscBCccscCcsBCccCcBcA

cssCscBCscssCCcsBssCcBcAJ T

}{)(

}{)()det(

232123211232

232123211232)(

scBCccsBCccCcBcA

scBCsCcsBssCcBcAJ T

Example: Jacobian and Singularities

}{)(

}{)()det(

232123211232

232123211232)(

scBCccsBCccCcBcA

scBCsCcsBssCcBcAJ T

}){()det( 23221232

21232

21232

21232

)( scBCccsBCcscBCsCcsBsCcBcAJ T

)()()det(

}){()det(

3232)(

232232232)(

sBCCcBcAJ

cBCssBCcCcBcAJT

T

0)det(0

0)det(0)()(

3

)(232

T

T

Js

JCcBcA

Under these two conditions, we cannot determine the joint angular velocities using the Jacobian

This lecture continues the discussion on the analysis of the instantaneous motion of a rigid body, i.e. the velocities and accelerations associated with a rigid body as it moves from one configuration to another.

The following were covered:•Robot instantaneous motion using joint variable interpolation•The Jacobian of a given robot•Robot singularity and its relation to Jacobian

Summary

top related