p9 - ergo - manual material handling.pdf

Post on 07-Dec-2015

240 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Manual Material

Handling

Fact about MSDs

(Case study : British worker)

Fact about Manual Handling

(Case study : British worker)

Manual Material Handling (MMH)

Accident Cost &

Workday Lost

Injuries / Illness

Unsafe MH

Manual Material Handling SystemIn

div

idual

(W

ork

er)

• Physical

• Sensory

• Personality

• Experience

• Health

• Activity

Mat

erial • Load

• Dimension

• Distribution

of load

• Handles

• Stability of

load

Work

pla

ce

• Workplace

geometry

• Environment

• Frequency

Com

pan

y (Indus

try) • Teamwork

• Safety policy

• HSE people

• Shifting

• Insurance

support

• Personal

protective

equipment

Types of Manual Handling Task

Pulling/pushing Holding Carrying Lifting

The Revised NIOSH Lifting EquationLifting Task, defined as the act of manually grasping an object of definable size and mass with two hands, and vertically moving the object without mechanical assistance.

NIOSH : National Institute of Occupational Safety and Health

Persamaan NIOSH berlaku pada keadaan :

• Beban yang diberikan adalah beban statis, tidak ada penambahan ataupun pengurangan beban di tengah-tengah pekerjaan.

• Beban diangkat dengan kedua tangan

• Pengangkatan atau penurunan benda dilakukan dalam waktu maksimal 8 jam.

• Pengangkatan atau penurunan beban tidak boleh dilakukan saat duduk atau berlutut

• Tempat kerja tidak sempit.

Lifting Task Indicator

RWL (Recommended Weight Limit) adalah rekomendasibatas beban yang dapat

diangkat oleh manusia tanpamenimbulkan ciderameskipun pekerjaan

tersebut dilakukan secararepetitive dan dalam jangka

waktu tertentu.

LI (Lifting Index)digunakanuntuk mengetahui index pengangkatan apakahproses pengangkatan

menimbulkan resiko cideratulang belakang atau tidak.

Advantages of The Revised NIOSH Lifting Equation

Help identify potentially hazardous lifting jobs.

Help in design/

modification process.

Help prioritize evaluation of lifting tasks

Recommended Weight Limit (RWL)

LC : (Lifting Constanta) konstanta pembebanan

HM : (Horizontal Multiplier) faktor pengali horisontal

VM : (Vertical Multiplier) faktor pengali vertikal

DM : (Distance Multiplier) faktor pengali perpindahan

AM : (Asymmetric Multiplier) faktor pengali asimentrik

FM : (Frequency Multiplier) faktor pengali frekuensi

CM : (Coupling Multiplier) faktor pengali kopling (handle)

RWL = LC x HM x VM x DM x AM x FM x CM

1. LC (Load Constanta)

L (load weight) : weight of the object to be lifted (in pounds or kilograms), including the container.

LC 23 kg (230N) or 51 lbs

(acceptable to 75% of female population)

2. HM (Horizontal Multiplier)

H distance of the hands away

from the mid-point between ankles.

Measure at the origin & destination of lift.

HM (cm) = 25 / HHM (inch) = 10/ H

3. VM (Vertical Multiplier)

V distance of the hands above

the floor.

Measure at the origin & destination of lift.

VM (cm) = 1-0,003|V-75|VM (inch) = 1-0,0075|V-30|

VM = 1 – 0.00326 | V – 69 |

4. DM (Distance Multiplier)

D absolute value of the difference

between vertical heights at the destination and origin of the lift.

DM (cm)= (0,82 + (4,5/D)) DM (inch)= (0,82 + (1,8/D))

5. AM (Asymmetric Multiplier)

A (asymmetry angle) the location

of the load relative to the worker’s mid-sagittal plane, as defined by the neutral body position.

Measure at the origin & destination of lift.

AM = (1 - (0,0032 A))

6. FM (Frequency Multiplier)

F average number of lifts per

minute over a 15 minute period.

Duration is classified as :Short (1 hour)Moderate (1-2 hours)Long (2-8 hours)

See FM Table

7. CM (Coupling Multiplier)

C classification of the quality of

the hand-to-object coupling (e.g., handle, cut-out, or grip).

See CM Table

L i f t i n g I n d e x ( L I )

• Jika LI ≤ 1 tidak mengandung resiko cidera tulang belakang

• Jika LI > 1 mengandung resiko cidera tulang belakang.

LI = Load Weight / RWL

Let’s Try...!!!

Loading Punch Press Stock

O R I G I NLC = 51 lbs

HM = 10 / H = 10 / 23 = 0,43 inches

VM = 1 - (0,0075|V-30|) = 1 - (0,0075|15-30|) = 0,8875

DM= 0,82 + (1,8/D) = 0,82 + (1,8/(|15-63|)) = 0,8575

AM = 1 - (0,0032A) = 1 - (0,0032*0) = 1

FM = 1 (F<0,2 lifts/min; V<30 inches)

CM = 0,95 (Fair; V<30 inches)

RWL = 15,85 lbs

LI = L / RWL = 44/15,85 = 2,77

D E S T I N A T I O NLC = 51 lbs

HM = 10 / H = 10 / 23 = 0,43 inches

VM = 1 - (0,0075|V-30|) = 1 - (0,0075|63-30|) = 0,7525

DM = 0,82 + (1,8/D) = 0,82 + (1,8/(|15-63|) = 0,8575

AM = 1 - (0,0032A) = 1 - (0,0032*0) = 1

FM = 1 (F<0,2 lifts/min; V<30 inches)

CM = 1 (Good; V<30 inches)

RWL = 14,15 lbs

LI = L/RWL = 44/14,15 = 3,1

LIMITATIONS (1)

The equation does not apply in the following situations:

• Lifting/lowering with one hand

• Lifting/lowering for over 8 hours

• Lifting/lowering while seated or kneeling

• Lifting/lowering in a restricted work space

• Lifting/lowering unstable objects

• Lifting/lowering while carrying, pushing or pulling

• Lifting/lowering with wheelbarrows or shovels

• Lifting/lowering with high speed motion (faster than about 30

inches/second)

• Lifting/lowering with unreasonable foot/floor coupling

• Lifting/lowering in an unfavorable environment

LIMITATIONS (2)

Designing to avoid back pain

More importantly, NIOSH equation gives ways to reduce injury :

reduce horizontal distance

keep load at waist height

reduce distance to be travelled

reduce twisting

add handles

reduce frequency of lifts

LIFTING VARIABLES

LiftingTask

HHorizontalLocation

(10 – 25”)

VVerticalLocation(0 - 70”)

DTravel

Distance(10 – 70”)

AAngle of

Asymmetry(0 - 135˚)

CCoupling(1=good,

2=fair, 3=poor)

FFrequency(0.2 – 15 lifts/min.)

LAve. Load

Lifted(lbs.)

LMax. Load

Lifted(lbs.)

Work Dur.Duration

(1,2,8 hrs)

Origin 15 38 6 0 1 6 24 24 8

Destination 20 32 6 30 1 6 24 24 8

Calculate RWL, LI !!

This job task consists of a

worker lifting compact

containers full of copper

component parts from the

bottom shelf of storage rack

with both hands directly in front

of the body, and then placing on

a cart for transport to the

assembly line. For this analysis,

assume that significant control

of the object is required at the

destination. The containers are

of optimal design with

handholds. 2 lifts/minute over a

duration of 1–2 hours per day

Load weight = 12,5 lbs

LIFTING VARIABLES

LiftingTask

HHorizontalLocation

(10 – 25”)

VVerticalLocation(0 - 70”)

DTravel

Distance(10 – 70”)

AAngle of

Asymmetry(0 - 135˚)

CCoupling(1=good,

2=fair, 3=poor)

FFrequency(0.2 – 15 lifts/min.)

LAve. Load

Lifted(lbs.)

LMax. Load

Lifted(lbs.)

Work Dur.Duration

(1,2,8 hrs)

Origin 15 11 29 10 1 2 12,5 24 2

Destination 12 40 29 0 1 2 12,5 24 2

Calculate RWL, LI !!

Have an enjoy study and see you next week…

top related