the course web site is: ...trueman/elec273files/elec273_10...ย ยท trueman ... numbers. final exam:...

Post on 22-May-2018

218 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Homework on complex numbers.

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

What is AC Circuit Analysis?

โ€ข AC circuit analysis uses complex numbers to find the forced response to a sinusoidal generator.

โ€ข AC circuit analysis is very similar to DC circuit analysis that we studied earlier in the course. DC Circuit Analysis AC Circuit Analysis

Constant voltage V and current I Sinusoidal voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒSinusoidal current ๐‘–๐‘–(๐‘ก๐‘ก) = ๐ต๐ต cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œ™๐œ™

Real numbers for V and I Complex numbers called phasors๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ and ๐ผ๐ผ = ๐ต๐ต๐‘’๐‘’๐‘—๐‘—๐œ™๐œ™

Real number resistances R Complex number impedances๐‘๐‘๐‘…๐‘… = ๐‘…๐‘…, ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”, and ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

Real number node matrix or mesh matrix Complex number node matrix or mesh matrix

Given: โ€ข the frequency ๐‘“๐‘“ Hz, hence ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ rad/secโ€ข The amplitude of the source, 10 voltsFind:โ€ข The amplitude ๐ด๐ด and the phase ๐œƒ๐œƒ of the output

voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก at โ€œsteady stateโ€ after the transients have died out.

From Alexander and Sadiku.

10 cos๐œ”๐œ”๐‘ก๐‘ก+๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ)โˆ’

๐‘…๐‘…1๐‘…๐‘…2๐ถ๐ถ

๐œ”๐œ”

PhasorGiven an AC voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ , define the phasor representing voltage ๐‘ฃ๐‘ฃ(๐‘ก๐‘ก) as the complex number๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

where ๐‘—๐‘— = โˆ’1and ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ is the frequency in radians per second. The magnitude of the phasor ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ is the amplitude of the cosine ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ .The angle of the phasor, ๐œƒ๐œƒ, is the phase angle of the cosine ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ .

It is sometimes convenient to visualize the phasor by drawing it on the complex plane.

The phasor ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ is an arrow of length A making an angle of ๐œƒ๐œƒto the real axis.

It can be quite useful to draw phasors on the complex plane!

We can use angle notation:๐‘‰๐‘‰ = ๐ด๐ดโˆ ๐œƒ๐œƒOr exponential notation๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

Imaginary

Real

๐‘‰๐‘‰๐ด๐ด

๐œƒ๐œƒ

๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

Rotating PhasorThe phasor representing AC voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ is the complex number ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ .

It is sometimes convenient to visualize the relationship between two phasors by defining a rotating phasor as

๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”

Hence๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—(๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ)

The AC voltage we started with is the real part of the rotating phasor.๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = Re ๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก = Re ๐ด๐ด๐‘’๐‘’๐‘—๐‘— ๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ = Re ๐ด๐ดcos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ + j๐ด๐ดsin ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ = ๐ด๐ดcos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ)

Draw the rotating phasor on the complex plane at t=0.

At ๐‘ก๐‘ก = 0, ๐‘ฃ๐‘ฃ๐‘๐‘ 0 = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐‘ฅ๐‘ฅ๐‘ฅ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

where the โ€œcโ€ subscript on ๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก denotes a complex version of voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก .

Imaginary

Real

๐ด๐ด

๐œƒ๐œƒ

๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒAt ๐‘ก๐‘ก = 0๐‘ฃ๐‘ฃ๐‘๐‘ 0 = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

Draw the rotating phasor on the complex plane as time advances:

๐ด๐ด๐‘’๐‘’๐‘—๐‘—(๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ)

Draw the rotating phasor at time ๐‘ก๐‘ก > 0

๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—(๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ)

This amounts to adding angle ๐œ”๐œ”๐‘ก๐‘ก to the angle of phasor ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ.

As time increases, ๐œ”๐œ”๐‘ก๐‘ก increases. We add a full 2๐œ‹๐œ‹radians of angle in one AC period ๐‘‡๐‘‡ = 1

๐‘“๐‘“.

The phasor rotates by one full rotation for each T seconds of time.

Imaginary

Real

๐ด๐ด

๐œƒ๐œƒ

For ๐‘ก๐‘ก > 0๐‘ฃ๐‘ฃ๐‘๐‘ ๐‘ก๐‘ก = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—(๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ)

๐œ”๐œ”๐‘ก๐‘ก

๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ

Phasorโ€ข The phasor representing sinusoidal voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ is the complex number ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

โ€ข The amplitude A of the cosine is the magnitude of the phasor: ๐ด๐ด = ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

โ€ข The phase angle ๐œƒ๐œƒ of the cosine is the angle of the complex number โ€œphasorโ€.

โ€ข We can โ€œrecoverโ€ the cosine from the phasor by multiplying the phasor by ๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” and then using Eulerโ€™s Identity: ๐‘’๐‘’๐‘—๐‘—๐œ™๐œ™ = cos๐œ™๐œ™ + ๐‘—๐‘— sin๐œ™๐œ™

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = Re ๐‘‰๐‘‰๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = Re ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐‘’๐‘’๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = Re ๐ด๐ด๐‘’๐‘’๐‘—๐‘—(๐œ”๐œ”๐œ”๐œ”+๐œƒ๐œƒ)

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = Re ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ + ๐‘—๐‘— sin ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = Re ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ + ๐‘—๐‘— ๐ด๐ดsin ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ

โ€ข To recover the cosine from the phasor:โ€ข The amplitude A of the cosine is the magnitude of the phasor V โ€ข The phase angle ๐œƒ๐œƒ of the cosine is the angle of the complex number

Examples of Phasors1.Find the phasor for ๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œ‹๐œ‹

4Answer: ๐‘‰๐‘‰1 = 10๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹4

2.Find the cosine represented by phasor ๐‘‰๐‘‰2 = 5๐‘’๐‘’โˆ’๐‘—๐‘—๐œ‹๐œ‹6

Answer: ๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 5 cos ๐œ”๐œ”๐‘ก๐‘ก โˆ’ ๐œ‹๐œ‹6

3.Find the sum: ๐‘ฃ๐‘ฃ3 ๐‘ก๐‘ก = ๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก + ๐‘ฃ๐‘ฃ2 ๐‘ก๐‘กUsing trig identities is the hard way: ๐‘ฃ๐‘ฃ3 ๐‘ก๐‘ก = 10 cos ๐œ”๐œ”๐‘ก๐‘ก +

๐œ‹๐œ‹4

+ 5 cos ๐œ”๐œ”๐‘ก๐‘ก โˆ’๐œ‹๐œ‹6

Try it!The easy way: ๐‘‰๐‘‰3 = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2 = 10๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹4 + 5๐‘’๐‘’โˆ’๐‘—๐‘—

๐œ‹๐œ‹6 (see the next slide)

Evaluate the sum ๐‘‰๐‘‰3 = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2๐‘‰๐‘‰3 = 10๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹4 + 5๐‘’๐‘’โˆ’๐‘—๐‘—

๐œ‹๐œ‹6

Showing ALL the steps:๐‘‰๐‘‰3 = 10 cos

๐œ‹๐œ‹4

+ ๐‘—๐‘—๐‘—๐‘— sin๐œ‹๐œ‹4

+ 5 cosโˆ’๐œ‹๐œ‹6

+ ๐‘—๐‘—๐‘— sinโˆ’๐œ‹๐œ‹6

๐‘‰๐‘‰3 = 7.071 + ๐‘—๐‘—๐‘—.071 + 4.330 โˆ’ ๐‘—๐‘—2.5๐‘‰๐‘‰3 = 11.401 + ๐‘—๐‘—4.571Magnitude 11.4012 + 4.5712 = 12.283Angle tan๐œƒ๐œƒ = 4.571

11.4๐‘ฅ1= 0.4049 so ๐œƒ๐œƒ = 21.85 deg or 0.3814 rad

The phasor is๐‘‰๐‘‰3 = 12.283๐‘’๐‘’๐‘—๐‘—๐‘ฅ.3814

so the time function is๐‘ฃ๐‘ฃ3 ๐‘ก๐‘ก = 12.283 cos ๐œ”๐œ”๐‘ก๐‘ก + 0.3814

Check the result by sketching the phasors on the complex plane:

๐‘‰๐‘‰1 = 10๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹4 = 10 angle 45 degrees = 7.071+j7.071

๐‘‰๐‘‰2 = 5๐‘’๐‘’โˆ’๐‘—๐‘—๐œ‹๐œ‹6= 5 angle -30 degrees=4.330-j2.500

๐‘‰๐‘‰3 = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2

๐‘‰๐‘‰3 = 12.283๐‘’๐‘’๐‘—๐‘—21.85ยฐ= 12.283 angle 21.85 degrees

Drawing the phasors tip to tail in the complex plane shows that 12.283 angle 21.85 degrees is a reasonable answer.

ImIm

Re

Re

๐‘‰๐‘‰1 = 10๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹4

๐‘‰๐‘‰2 = 5๐‘’๐‘’โˆ’๐‘—๐‘—๐œ‹๐œ‹6

45ยฐ

30ยฐ

10

5

๐‘‰๐‘‰1 = 10๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹4

๐‘‰๐‘‰2 = 5๐‘’๐‘’โˆ’๐‘—๐‘—๐œ‹๐œ‹6

๐‘‰๐‘‰3 = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2

Impedance: the ratio of voltage phasor to current phasor.

โ€ข Consider a component in a circuit driven by a sinusoidal generator cos๐œ”๐œ”๐‘ก๐‘ก

โ€ข The voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ is represented by phasor ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

โ€ข The current ๐‘–๐‘– ๐‘ก๐‘ก = ๐ต๐ต cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œ™๐œ™ is represented by phasor ๐ผ๐ผ = ๐ต๐ต๐‘’๐‘’๐‘—๐‘—๐œ™๐œ™

โ€ข The impedance is defined as

๐‘๐‘ = ๐‘‰๐‘‰๐ผ๐ผ

ohms

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)+๐‘‰๐‘‰โˆ’

๐ผ๐ผ

The Impedance is a Complex Number

โ€ข ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

โ€ข ๐ผ๐ผ = ๐ต๐ต๐‘’๐‘’๐‘—๐‘—๐œ™๐œ™

โ€ข The impedance is a complex number:

๐‘๐‘ =๐‘‰๐‘‰๐ผ๐ผ =

๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

๐ต๐ต๐‘’๐‘’๐‘—๐‘—๐œ™๐œ™=๐ด๐ด๐ต๐ต ๐‘’๐‘’

๐‘—๐‘—(๐œƒ๐œƒโˆ’๐œ™๐œ™) =๐ด๐ด๐ต๐ต cos ๐œƒ๐œƒ โˆ’ ๐œ™๐œ™ + ๐‘—๐‘—

๐ด๐ด๐ต๐ต sin ๐œƒ๐œƒ โˆ’ ๐œ™๐œ™ = ๐‘…๐‘… + ๐‘—๐‘—๐‘—๐‘—

๐‘๐‘ = ๐‘…๐‘… + ๐‘—๐‘—๐‘—๐‘—

R=the resistance is the real part of the impedanceX=the reactance is the imaginary part of the impedance.

+๐‘‰๐‘‰โˆ’

๐ผ๐ผ

Admittance: the reciprocal of the impedanceThe admittance is the ratio of the current phasor to the voltage phasor:๐‘Œ๐‘Œ = ๐ผ๐ผ

๐‘‰๐‘‰Siemens

Note that๐‘Œ๐‘Œ = 1

๐‘๐‘

The admittance is a complex number:๐‘Œ๐‘Œ = ๐บ๐บ + ๐‘—๐‘—๐ต๐ต

G=the conductance is the real part of the admittanceB=the susceptance is the imaginary part of the admittance.

What is the impedance of a resistor?

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘…๐‘…๐‘–๐‘– ๐‘ก๐‘ก๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ volts then the current is

๐‘–๐‘– ๐‘ก๐‘ก =๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)๐‘…๐‘… =

๐ด๐ด๐‘…๐‘… cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ

with amplitude ๐ด๐ด๐‘…๐‘…

and phase ๐œƒ๐œƒThe voltage phasor is ๐‘‰๐‘‰ = ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

The current phasor is ๐ผ๐ผ = ๐ด๐ด๐‘…๐‘…๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ; magnitude ๐ด๐ด

๐‘…๐‘…and angle ๐œƒ๐œƒ

The impedance is ๐‘๐‘ = ๐‘‰๐‘‰๐ผ๐ผ

= ๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ๐ด๐ด๐‘…๐‘…๐‘’๐‘’

๐‘—๐‘—๐œƒ๐œƒ= ๐‘…๐‘… ohms.

The admittance is ๐‘Œ๐‘Œ = 1๐‘๐‘

= 1๐‘…๐‘…

= ๐บ๐บ Siemens

Time domain Frequency Domain also called the โ€œphasor domainโ€

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก) +๐‘‰๐‘‰โˆ’

๐ผ๐ผ

๐‘๐‘ = ๐‘…๐‘…๐‘…๐‘…

What is the impedance of an inductor?๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐œ”๐œ”

๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก๐‘–๐‘– ๐‘ก๐‘ก

If ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ volts then we can find the current using๐‘‘๐‘‘๐‘–๐‘–๐‘‘๐‘‘๐œ”๐œ”

= 1๐ฟ๐ฟ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก so ๐‘‘๐‘‘๐‘–๐‘– = 1

๐ฟ๐ฟ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก and by integrating both sides

๐‘–๐‘– =1๐œ”๐œ”๏ฟฝ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก =

1๐œ”๐œ”๏ฟฝ๐ด๐ด cos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ)๐‘‘๐‘‘๐‘ก๐‘ก =

๐ด๐ด๐œ”๐œ”๐œ”๐œ”

sin(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ)

To write the phasor we need to change sine to cosine.Use the trig identity:sin๐›ผ๐›ผ = co๐‘ ๐‘  ๐›ผ๐›ผ โˆ’

๐œ‹๐œ‹2

With ฮฑ = ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ, we have

๐‘–๐‘– =๐ด๐ด๐œ”๐œ”๐œ”๐œ” sin(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ) =

๐ด๐ด๐œ”๐œ”๐œ”๐œ” cos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ โˆ’

๐œ‹๐œ‹2)

Which has amplitude ๐ด๐ด๐œ”๐œ”๐ฟ๐ฟ

and phase ๐œƒ๐œƒ โˆ’ ๐œ‹๐œ‹2

, so the current phasor is

๐ผ๐ผ =๐ด๐ด๐œ”๐œ”๐œ”๐œ” ๐‘’๐‘’

๐‘—๐‘— ๐œƒ๐œƒโˆ’๐œ‹๐œ‹2

The impedance is

๐‘๐‘ =๐‘‰๐‘‰๐ผ๐ผ =

๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

๐ด๐ด๐œ”๐œ”๐œ”๐œ” ๐‘’๐‘’

๐‘—๐‘—(๐œƒ๐œƒโˆ’๐œ‹๐œ‹2)= ๐œ”๐œ”๐œ”๐œ”๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹2

Time domain

Frequency domain

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

+๐‘‰๐‘‰โˆ’

๐ผ๐ผ

๐‘๐‘ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”

๐œ”๐œ”

Impedance of an inductor, continued;๐‘๐‘ = ๐œ”๐œ”๐œ”๐œ”๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹2

We can see from the Argand diagram that ๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹2 = ๐‘—๐‘—.

Another way to prove this is with Eulerโ€™s Identity:๐‘’๐‘’๐‘—๐‘—

๐œ‹๐œ‹2 = cos

๐œ‹๐œ‹2

+ ๐‘—๐‘— sin๐œ‹๐œ‹2

= 0 + ๐‘—๐‘—๐‘— = ๐‘—๐‘—

Hence the impedance of an inductor is

๐‘๐‘ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” ohms

The admittance of an inductor is

๐‘Œ๐‘Œ = 1๐‘๐‘

= 1๐‘—๐‘—๐œ”๐œ”๐ฟ๐ฟ

SiemensArgand diagram

Re

Im

1 ๐œ‹๐œ‹2

๐‘—๐‘— = 1๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹2

Time domain

Frequency domain

+๐‘‰๐‘‰โˆ’

๐ผ๐ผ

๐‘๐‘ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

๐œ”๐œ”

What is the impedance of a capacitor?๐‘–๐‘–(๐‘ก๐‘ก) = ๐ถ๐ถ

๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก๐‘ฃ๐‘ฃ ๐‘ก๐‘ก

If ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐ด๐ด cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ volts then we can calculate the current as

๐‘–๐‘– = ๐ถ๐ถ๐‘‘๐‘‘๐‘‘๐‘‘๐‘ก๐‘ก๐ด๐ด cos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ) = โˆ’ฯ‰๐ถ๐ถ๐ด๐ด sin(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ)

To write the phasor we need to change sine to cosine using the trig identity:sin๐›ผ๐›ผ = โˆ’co๐‘ ๐‘  ๐›ผ๐›ผ + ๐œ‹๐œ‹

2With ฮฑ = ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ, we have๐‘–๐‘– = โˆ’ฯ‰๐ถ๐ถ๐ด๐ด sin(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ) = ฯ‰๐ถ๐ถAcos(๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ +

๐œ‹๐œ‹2)

which has amplitude ฯ‰๐ถ๐ถ๐ด๐ด and phase ๐œƒ๐œƒ + ๐œ‹๐œ‹2

, so the current phasor is

๐ผ๐ผ = ฯ‰๐ถ๐ถ๐ด๐ด๐‘’๐‘’๐‘—๐‘— ๐œƒ๐œƒ+๐œ‹๐œ‹2

The impedance is

๐‘๐‘ =๐‘‰๐‘‰๐ผ๐ผ =

๐ด๐ด๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

ฯ‰๐ถ๐ถ๐ด๐ด๐‘’๐‘’๐‘—๐‘— ๐œƒ๐œƒ+๐œ‹๐œ‹2=

1

ฯ‰๐ถ๐ถ๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹2

Since ๐‘’๐‘’๐‘—๐‘—๐œ‹๐œ‹2 = ๐‘—๐‘— we can write the impedance of a capacitor as

๐‘๐‘ = 1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

ohms.

The admittance of a capacitor is ๐‘Œ๐‘Œ = 1๐‘๐‘

= ๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ Siemens

Frequency domain

+๐‘‰๐‘‰โˆ’

๐ผ๐ผ

๐‘๐‘ =1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

Time domain

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

๐ถ๐ถ

Component Time Domain Frequency Domain

Resistor

Inductor

Capacitor

Impedance

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

๐‘…๐‘…

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

๐ถ๐ถ

+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

๐‘–๐‘–(๐‘ก๐‘ก)

๐œ”๐œ”

๐‘ฃ๐‘ฃ = ๐‘…๐‘…๐‘–๐‘–

๐‘ฃ๐‘ฃ = ๐œ”๐œ”๐‘‘๐‘‘๐‘–๐‘–๐‘‘๐‘‘๐‘ก๐‘ก

๐‘–๐‘– = ๐ถ๐ถ๐‘‘๐‘‘๐‘ฃ๐‘ฃ๐‘‘๐‘‘๐‘ก๐‘ก

๐‘‰๐‘‰ = ๐‘…๐‘…๐ผ๐ผ

๐‘‰๐‘‰ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”๐ผ๐ผ

๐‘‰๐‘‰ =1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

๐ผ๐ผ

Combining ImpedancesImpedances in series:

๐‘‰๐‘‰ = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2 = ๐‘๐‘1๐ผ๐ผ + ๐‘๐‘2๐ผ๐ผ=(๐‘๐‘1+๐‘๐‘2)๐ผ๐ผSo the equivalent impedance is

๐‘๐‘ =๐‘‰๐‘‰๐ผ๐ผ

=(๐‘๐‘1+๐‘๐‘2)๐ผ๐ผ

๐ผ๐ผ= ๐‘๐‘1 + ๐‘๐‘2

Series impedances add.

Impedances in parallel:

๐ผ๐ผ = ๐ผ๐ผ1 + ๐ผ๐ผ2 =๐‘‰๐‘‰๐‘๐‘1

+๐‘‰๐‘‰๐‘๐‘2

=1๐‘๐‘1

+1๐‘๐‘2

๐‘‰๐‘‰

The equivalent impedance is

๐‘๐‘ =๐‘‰๐‘‰๐ผ๐ผ =

๐‘‰๐‘‰1๐‘๐‘1

+ 1๐‘๐‘2

๐‘‰๐‘‰=

๐‘๐‘1๐‘๐‘2๐‘๐‘1 + ๐‘๐‘2

Parallel impedances combine using product over sum.

+

๐‘‰๐‘‰

โˆ’

+๐‘‰๐‘‰2โˆ’

๐ผ๐ผ

+๐‘‰๐‘‰1โˆ’

๐ผ๐ผ2๐ผ๐ผ1

+

๐‘‰๐‘‰

โˆ’

๐ผ๐ผ

๐‘๐‘2๐‘๐‘1

๐‘๐‘2

๐‘๐‘1

Combining Admittances: ๐ผ๐ผ = ๐‘Œ๐‘Œ๐‘‰๐‘‰ so ๐‘‰๐‘‰ = ๐ผ๐ผ๐‘Œ๐‘Œ

Admittances in series:

๐‘‰๐‘‰ = ๐‘‰๐‘‰1 + ๐‘‰๐‘‰2 =๐ผ๐ผ๐‘Œ๐‘Œ1

+๐ผ๐ผ๐‘Œ๐‘Œ2

=1๐‘Œ๐‘Œ1

+1๐‘Œ๐‘Œ2

๐ผ๐ผ

So the equivalent admittance is

๐‘Œ๐‘Œ =๐ผ๐ผ๐‘‰๐‘‰

=I

๐ผ๐ผ๐‘Œ๐‘Œ1

+ ๐ผ๐ผ๐‘Œ๐‘Œ2

๐ผ๐ผ=

๐‘Œ๐‘Œ1๐‘Œ๐‘Œ2๐‘Œ๐‘Œ1 + ๐‘Œ๐‘Œ2

Series admittances combine like parallel resistors: product over sum.

Admittances in parallel:๐ผ๐ผ = ๐ผ๐ผ1 + ๐ผ๐ผ2 = ๐‘Œ๐‘Œ1๐‘‰๐‘‰ + ๐‘Œ๐‘Œ2๐‘‰๐‘‰ = (๐‘Œ๐‘Œ1 + ๐‘Œ๐‘Œ2)๐‘‰๐‘‰The equivalent admittance is

๐‘Œ๐‘Œ =๐ผ๐ผ๐‘‰๐‘‰

=(๐‘Œ๐‘Œ1 + ๐‘Œ๐‘Œ2)๐‘‰๐‘‰

๐‘‰๐‘‰= ๐‘Œ๐‘Œ1 + ๐‘Œ๐‘Œ2

Parallel admittances add.

+

๐‘‰๐‘‰

โˆ’

+๐‘‰๐‘‰2โˆ’

๐ผ๐ผ

+๐‘‰๐‘‰1โˆ’

๐ผ๐ผ2๐ผ๐ผ1

+

๐‘‰๐‘‰

โˆ’

๐ผ๐ผ

๐‘Œ๐‘Œ2๐‘Œ๐‘Œ1

๐‘Œ๐‘Œ2

๐‘Œ๐‘Œ1

Series-Parallel Combinations Find the input impedance ๐‘๐‘๐‘–๐‘–๐‘–๐‘– at an operating frequency of 60 Hz.The radian frequency is ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘— = ๐‘—2๐‘—๐œ‹๐œ‹ = 376.99 rad.sec

Change the components to impedances:

๐‘๐‘๐ฟ๐ฟ1 = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”1 = ๐‘—๐‘—๐œ‹๐œ‹๐‘—2๐‘—๐œ‹๐œ‹๐œ‹๐œ‹2.๐œ‹๐‘—๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—๐‘—

๐‘๐‘๐‘…๐‘…1 = ๐‘…๐‘…1 = 2

๐‘๐‘๐‘…๐‘…2 = ๐‘…๐‘…2 = 2

๐‘๐‘๐‘…๐‘…3 = ๐‘…๐‘…3 = 3

๐‘๐‘๐ฟ๐ฟ2 = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ”2 = ๐‘—๐‘—๐œ‹๐œ‹๐‘—2๐‘—๐œ‹๐œ‹๐œ‹๐œ‹๐‘—.3๐‘—๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—2

๐‘๐‘๐ถ๐ถ =1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ =

1๐‘—๐‘—๐œ‹๐œ‹120๐œ‹๐œ‹๐œ‹๐œ‹1326๐œ‹๐œ‹10โˆ’6 =

2๐‘—๐‘— =

2๐‘—๐‘—โˆ’๐‘—๐‘—โˆ’๐‘—๐‘— = โˆ’๐‘—๐‘—2

Method:1.Change the components into impedances.2.Combine impedances in series and in parallel.

๐‘๐‘๐‘–๐‘–๐‘–๐‘–

๐‘…๐‘…1 = 2 ฮฉ

๐‘…๐‘…2 = 2 ฮฉ ๐‘…๐‘…3 = 3 ฮฉ๐œ”๐œ”1 = 2.65 mH

๐œ”๐œ”2 = 5.30 mH

๐ถ๐ถ = 1,326 ยตF

๐‘…๐‘…1 = 2 ฮฉ

๐‘…๐‘…2 = 2 ฮฉ

๐‘…๐‘…3 = 3 ฮฉ๐œ”๐œ”1 = 2.65 mH

๐œ”๐œ”2 = 5.30 mH

๐ถ๐ถ = 1,326 ยตF

Find the input impedance, continued:

๐‘๐‘1is j2 ohms in parallel with 3 ohms:

๐‘๐‘1 =๐‘—๐‘—2๐œ‹๐œ‹3๐‘—๐‘—2 + 3 =

๐‘—๐‘—๐œ‹3 + ๐‘—๐‘—2

3 โˆ’ 2๐‘—๐‘—3 โˆ’ ๐‘—๐‘—2 =

๐‘—๐‘—๐‘—๐‘— + 123๐œ‹๐œ‹3 + 2๐œ‹๐œ‹2 =

12 + ๐‘—๐‘—๐‘—๐‘—13

๐‘๐‘2is -j2 ohms in parallel with 2 ohms:

๐‘๐‘2 =โˆ’๐‘—๐‘—2๐œ‹๐œ‹2โˆ’๐‘—๐‘—2 + 2 =

โˆ’๐‘—๐‘—๐‘—2 โˆ’ ๐‘—๐‘—2

2 + 2๐‘—๐‘—2 + ๐‘—๐‘—2 =

โˆ’๐‘—๐‘—๐‘— + 82๐œ‹๐œ‹2 + 2๐œ‹๐œ‹2 =

8 โˆ’ ๐‘—๐‘—๐‘—8 = 1 โˆ’ ๐‘—๐‘—

๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

2 ฮฉ 3 ฮฉ๐‘—๐‘—2 ฮฉj1 ฮฉ

โˆ’๐‘—๐‘—2 ฮฉ

๐‘๐‘1 ๐‘—๐‘—2 ฮฉ 3 ฮฉ

๐‘๐‘2

2 ฮฉ

โˆ’๐‘—๐‘—2 ฮฉ

๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

j1 ฮฉ ๐‘๐‘1๐‘๐‘2

Combine ๐‘๐‘1 and ๐‘๐‘2 in series:

๐‘๐‘3 = ๐‘๐‘1 + ๐‘๐‘2๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

j1 ฮฉ ๐‘๐‘1๐‘๐‘2 ๐‘๐‘1

๐‘๐‘2

๐‘๐‘1 =12 + ๐‘—๐‘—๐‘—๐‘—

13๐‘๐‘2 = 1 โˆ’ ๐‘—๐‘—

๐‘๐‘3 = ๐‘๐‘1 + ๐‘๐‘2 =12 + ๐‘—๐‘—๐‘—๐‘—

13 + (1 โˆ’ ๐‘—๐‘—) =12 + ๐‘—๐‘—๐‘—๐‘—

13 +13 โˆ’ ๐‘—๐‘—๐‘—3

13๐‘๐‘3 =

25 + ๐‘—๐‘—513

Find the input impedance, continued:Define ๐‘๐‘4as j1 ohms in parallel with ๐‘๐‘3:

๐‘๐‘4 =๐‘—๐‘—๐œ‹๐œ‹ 25 + ๐‘—๐‘—๐‘—

13๐‘—๐‘— + 25 + ๐‘—๐‘—๐‘—

13

=โˆ’5 + ๐‘—๐‘—2๐‘—25 + ๐‘—๐‘—๐‘—๐‘—

25 โˆ’ ๐‘—๐‘—๐‘—๐‘—25 โˆ’ ๐‘—๐‘—๐‘—๐‘—

=โˆ’125 + ๐‘—๐‘—๐‘—๐‘— + ๐‘—๐‘—๐œ‹2๐‘— + 450

2๐‘—๐œ‹๐œ‹2๐‘— + ๐‘—๐‘—๐œ‹๐œ‹๐‘—๐‘—=

325 โˆ’ ๐‘—๐‘—๐‘—๐‘—๐‘—949

๐‘๐‘๐‘–๐‘–๐‘–๐‘– is 2 ohms in series with ๐‘๐‘4:

๐‘๐‘๐‘–๐‘–๐‘–๐‘– = 2 + ๐‘๐‘4 = 2 +325 โˆ’ ๐‘—๐‘—๐‘—๐‘—๐‘—

949 =1989 + 325 โˆ’ ๐‘—๐‘—๐‘—๐‘—๐‘—

949=

2223 โˆ’ ๐‘—๐‘—๐‘—๐‘—๐‘—949

๐‘๐‘๐‘–๐‘–๐‘–๐‘– = 2.342 โˆ’ ๐‘—๐‘—๐‘—.7534 ฮฉ

This is our final answer!

๐‘๐‘3๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

j1 ฮฉ

๐‘๐‘4๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

Spice with a Sinusoidal Generator

To calculate the input impedance with LTSpice:โ€ข Drive the circuit with a 1 volt generator at 60 Hzโ€ข Find the current in ๐‘…๐‘…1 flowing into the circuit ๐ผ๐ผ๐‘–๐‘–๐‘–๐‘–โ€ข Calculate the input impedance as

๐‘๐‘๐‘–๐‘–๐‘–๐‘– = 1๐ผ๐ผ๐‘–๐‘–๐‘–๐‘–

Construct the circuit.

How do we specify a sinusoidal excitation?

๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

2 ฮฉ 3 ฮฉ๐‘—๐‘—2 ฮฉj1 ฮฉ

โˆ’๐‘—๐‘—2 ฮฉ

To specify that the generator is an AC source, right-click on the generator circle to pop up a menu:

Specify AC 1, meaning that the generator is a sinusoidal or โ€œACโ€ source of amplitude 1 volt.

Choose AC Analysis and give the frequency: Click on Stimulate and then Edit Stimulation Card.

Choose AC Analysis:

โ€ข Specify the number of points per octave as 1.โ€ข Specify both the starting and the stopping frequency as 60 Hz (we only want one frequency).

We are ready to run the simulation:

The system adds the โ€œdot commandโ€ .ac oct 1 60 60.Click on the โ€œrunโ€ button to solve the circuit.

Spice calculates the amplitude and phase of the voltages and currents:

The current in R1 is reported as I(R1)=0.4064 angle -17.8 degrees

Find the input impedance with LTSpice:

The input current is the current in ๐‘…๐‘…1, so๐ผ๐ผ๐‘–๐‘–๐‘–๐‘– =I(R1)=0.4064 angle -17.8 degrees

๐‘๐‘๐‘–๐‘–๐‘–๐‘– =1๐ผ๐ผ๐‘–๐‘–๐‘–๐‘–

=1

0.4064โˆ  โˆ’ 17.8ยฐ = 2.342 + ๐‘—๐‘—๐‘—.7522

which agrees with our calculation.

We calculated๐‘๐‘๐‘–๐‘–๐‘–๐‘– = 2.342 โˆ’ ๐‘—๐‘—๐‘—.7534

To calculate the input impedance with LTSpice:โ€ข Drive the circuit with a 1 volt generator at 60 Hzโ€ข Find the current in ๐‘…๐‘…1 flowing into the circuit ๐ผ๐ผ๐‘–๐‘–๐‘–๐‘–โ€ข Calculate the input impedance as

๐‘๐‘๐‘–๐‘–๐‘–๐‘– = 1๐ผ๐ผ๐‘–๐‘–๐‘–๐‘–

๐‘๐‘๐‘–๐‘–๐‘–๐‘–2 ฮฉ

2 ฮฉ 3 ฮฉ๐‘—๐‘—2 ฮฉj1 ฮฉ

โˆ’๐‘—๐‘—2 ฮฉ

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Homework on complex numbers.

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Input Impedance Example (from a final exam)

Find the value of capacitance C such that the input impedance ๐‘๐‘๐‘–๐‘–๐‘–๐‘– is real. The frequency is ๐œ”๐œ” = 4 rad/sec.Solution

Convert the circuit elements to impedances at ๐œ”๐œ” = 4 rad/sec : ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” and ๐‘๐‘๐ถ๐ถ = 1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

.

๐‘๐‘๐‘–๐‘–๐‘–๐‘– is 1 ohm in parallel with ๐‘๐‘2๐‘๐‘๐‘–๐‘–๐‘–๐‘–=1||๐‘๐‘2 = ๐‘๐‘2

1+๐‘๐‘2If ๐‘๐‘2 is real then ๐‘๐‘๐‘–๐‘–๐‘–๐‘– is real.So choose C to make ๐‘๐‘2 real.

Define ๐‘๐‘2 by omitting the 1-ohm resistor:

1 ฮฉ1 ฮฉ

C1 H

1 H

๐‘๐‘๐‘–๐‘–๐‘–๐‘–

๐‘๐‘๐‘–๐‘–๐‘–๐‘– 1 ฮฉ๐‘—๐‘—๐‘— ฮฉ

๐‘—๐‘—๐‘— ฮฉ1 ฮฉ

1๐‘—๐‘—๐‘—๐ถ๐ถ

๐‘๐‘2๐‘—๐‘—๐‘— ฮฉ

1๐‘—๐‘—๐‘—๐ถ๐ถ

1 ฮฉ๐‘—๐‘—๐‘— ฮฉ

4114

141441

12

jCj

jY

jZjZ

++

+=+=+=

Choose the value of C to make ๐‘๐‘2 real.

1)41(44142 ++

++=

jCjjjZ

CjCjjZ

4)161(4142 +โˆ’

++=

CjCjCjCjZ

4)161(41)4)161((4

2 +โˆ’+++โˆ’

=

Define ๐‘๐‘1 to be 1๐‘—๐‘—4๐ถ๐ถ

in parallel with 1 + ๐‘—๐‘—๐‘— .

Since parallel admittances add,

๐‘Œ๐‘Œ1 = ๐‘—๐‘—๐‘—๐ถ๐ถ +1

1 + ๐‘—๐‘—๐‘—The input impedance ๐‘๐‘2 is j4 in series with ๐‘๐‘1

๐‘๐‘2๐‘—๐‘—๐‘— ฮฉ

1๐‘—๐‘—๐‘—๐ถ๐ถ

1 ฮฉ๐‘—๐‘—๐‘— ฮฉ

๐‘๐‘2๐‘—๐‘—๐‘— ฮฉ

๐‘๐‘1

CjCCjCZ

4)161()4644()161(

2 +โˆ’+โˆ’+โˆ’

=

โˆ’โˆ’โˆ’โˆ’

+โˆ’โˆ’+โˆ’

=CjCCjC

CjCCjCZ

4)161(4)161(

4)161()648()161(

2

22

2

2 16)161())161(4)161)(648((4)648()161(

CCCCCCjCCCZ

+โˆ’โˆ’โˆ’โˆ’โˆ’+โˆ’+โˆ’

=

To make ๐‘๐‘2 real, set the imaginary part to zero:

0))161(4)161)(648(( =โˆ’โˆ’โˆ’โˆ’ CCCC

0)4648)(161( =โˆ’โˆ’โˆ’ CCCThere is a common factor of (1 โˆ’ 16C) so factor it out:

0)688)(161( =โˆ’โˆ’ CC

0)161( =โˆ’ C 0)688( =โˆ’ C1176.0

172

688

===C0625.0161==C F

and

F, and

Solution of AC Circuits Using Phasors

Change to phasors and impedance.

To solve an AC circuit:1.Find the impedance of each component in the circuit.2.Draw the circuit with phasors and impedances.3.Use mesh analysis or node analysis to solve the circuit, using complex arithmetic.4.The amplitude of the voltage is the magnitude of the phasor and the phase angle of the voltage is the angle of the phasor.

Find the amplitude and phase of the voltage across the resistor, ๐‘ฃ๐‘ฃ๐‘…๐‘…. The frequency is 400 Hz.

Find the impedances:๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘—๐‘—๐‘— = 2,513 radians/sec๐‘๐‘๐‘…๐‘… = ๐‘…๐‘… = 5 ohms๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹2๐‘—๐‘—3๐œ‹๐œ‹๐‘—.๐‘—๐‘—๐‘—๐‘—๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—2 ohms

+๐‘ฃ๐‘ฃ๐‘…๐‘…โˆ’

๐‘…๐‘… = 5 ฮฉ

๐œ”๐œ” = 07958 mH

10 cos๐œ”๐œ”๐‘ก๐‘ก+๐‘‰๐‘‰๐‘…๐‘…โˆ’

5 ฮฉ

๐‘—๐‘—2 ฮฉ

10

Solve the circuit using complex arithmetic:

Node analysis: 10 โˆ’ ๐‘‰๐‘‰๐‘…๐‘…๐‘—๐‘—2 โˆ’

๐‘‰๐‘‰๐‘…๐‘…5 = 0

Multiply by j10:50 โˆ’ 5๐‘‰๐‘‰๐‘…๐‘… โˆ’ ๐‘—๐‘—2๐‘‰๐‘‰๐‘…๐‘… = 05 + ๐‘—๐‘—2 ๐‘‰๐‘‰๐‘…๐‘… = 50

๐‘‰๐‘‰๐‘…๐‘… =50

5 + ๐‘—๐‘—25 โˆ’ ๐‘—๐‘—25 โˆ’ ๐‘—๐‘—2 =

450 โˆ’ ๐‘—๐‘—๐‘—๐‘—๐‘—29 = 8.621 โˆ’ ๐‘—๐‘—3.448

Magnitude 8.6212 + (โˆ’3.448)2=9.284Angle tanโˆ’1 โˆ’3.448

8.621=-21.8 degrees

Hence๐‘‰๐‘‰๐‘…๐‘… = 9.284โˆ  โˆ’ 21.8ยฐ

Mesh analysis: 10 โˆ’ ๐‘—๐‘—2๐ผ๐ผ โˆ’ ๐‘—๐ผ๐ผ = 0๐ผ๐ผ = 1๐‘ฅ

5+๐‘—๐‘—25โˆ’๐‘—๐‘—25โˆ’๐‘—๐‘—2

= 5๐‘ฅโˆ’๐‘—๐‘—2๐‘ฅ29

= 1.724 โˆ’ ๐‘—๐‘—๐‘—.6896 amps

๐‘‰๐‘‰๐‘…๐‘… = ๐‘—๐ผ๐ผ = 5 1.724 โˆ’ j0.6896 = 8.621 โˆ’ j3.448Same as by node analysis!๐‘‰๐‘‰๐‘…๐‘… = 9.284โˆ  โˆ’ 21.8ยฐ volts

Amplitude = ๐‘‰๐‘‰๐‘…๐‘… =9.284 volts

Phase = the angle of ๐‘‰๐‘‰๐‘…๐‘… which is -21.8 degrees.

๐‘ฃ๐‘ฃ๐‘…๐‘… ๐‘ก๐‘ก = 9.284 cos ๐œ”๐œ”๐‘ก๐‘ก โˆ’ 21.8ยฐ

+๐‘‰๐‘‰๐‘…๐‘…โˆ’

5 ฮฉ

๐‘—๐‘—2 ฮฉ

10+๐‘‰๐‘‰๐‘…๐‘…โˆ’

5 ฮฉ

๐‘—๐‘—2 ฮฉ

10

10 ๐‘‰๐‘‰๐‘…๐‘…

๐ผ๐ผ

Example: Solve a Circuit Using Phasors

โ€ข Solve this circuit to find the amplitude and phase of the load voltage ๐‘‰๐‘‰ at ๐‘“๐‘“ =2 GHz.โ€ข The generator in this circuit is 10 cos๐œ”๐œ”๐‘ก๐‘ก volts at frequency ๐‘“๐‘“ =2 GHz so the radian frequency is ๐œ”๐œ” =

2๐œ‹๐œ‹๐‘“๐‘“ = 1.2๐‘—๐œ‹๐œ‹๐œ‹๐œ‹101๐‘ฅ radians/second.

To solve an AC circuit:1.Find the impedance of each component in the circuit.2.Draw the circuit with phasors and impedances.3.Use mesh analysis or node analysis to solve the circuit, using complex arithmetic.4.The amplitude of the voltage is the magnitude of the phasor and the phase angle of the voltage is the angle of the phasor.

73 ฮฉ

2.1 nH

11.8 pF

50 ฮฉ

10 cos๐œ”๐œ”๐‘ก๐‘ก+๐‘‰๐‘‰โˆ’

73 ฮฉ

2.1 nH

11.8 pF

50 ฮฉ

10 cos๐œ”๐œ”๐‘ก๐‘ก+๐‘‰๐‘‰โˆ’ 73 ฮฉ

๐‘—๐‘—2๐œ‹.39 ฮฉ

โˆ’๐‘—๐‘—๐œ‹.744 ฮฉ

50 ฮฉ

10โˆ ๐‘—ยฐ+๐‘‰๐‘‰โˆ’

10โˆ ๐‘—ยฐ+๐‘‰๐‘‰โˆ’

50 + ๐‘—๐‘—2๐œ‹.39 ฮฉ

0.6178 โˆ’ ๐‘—๐‘—๐œ‹.687 ฮฉ

Homework: solve this circuit yourself without looking at the lecture notes.

10โˆ ๐‘—ยฐ+๐‘‰๐‘‰โˆ’

50 + ๐‘—๐‘—2๐œ‹.39 ฮฉ

0.6178 โˆ’ ๐‘—๐‘—๐œ‹.687 ฮฉ

๐ผ๐ผ ๐ผ๐ผ

Power into a Resistor in AC Circuits

If a circuit is driven by an A.C. voltage, then how much power flows?๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ๐‘–๐‘– ๐‘ก๐‘ก = ๐ผ๐ผ๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œ™๐œ™

Instantaneous power: ๐‘๐‘ ๐‘ก๐‘ก = ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก ๐‘–๐‘–(๐‘ก๐‘ก)

Average power: ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = 1๐‘‡๐‘‡ โˆซ๐‘ฅ

๐‘‡๐‘‡ ๐‘๐‘ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก

Is there a convenient way to calculate the power directly from the phasors V and I?

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œƒ๐œƒ

๐‘–๐‘–(๐‘ก๐‘ก) = ๐ผ๐ผ๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก + ๐œ™๐œ™

๐‘–๐‘–(๐‘ก๐‘ก)+๐‘ฃ๐‘ฃ(๐‘ก๐‘ก)โˆ’

Phasor ๐‘‰๐‘‰ = ๐‘‰๐‘‰๐‘š๐‘šโˆ ๐œƒ๐œƒ

Phasor ๐ผ๐ผ = ๐ผ๐ผ๐‘š๐‘šโˆ ๐œ™๐œ™

๐ผ๐ผ+๐‘‰๐‘‰โˆ’

Instantaneous and Average Power Delivered to a Resistor

The AC voltage ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก is connected across a resistor R.Find the instantaneous power and the average power delivered to the resistor.

The instantaneous power is defined as๐‘๐‘ ๐‘ก๐‘ก = ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก ๐‘–๐‘– ๐‘ก๐‘ก

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก

๐‘–๐‘– ๐‘ก๐‘ก =๐‘‰๐‘‰๐‘š๐‘š๐‘…๐‘… cos ๐œ”๐œ”๐‘ก๐‘ก

The instantaneous power is:

๐‘๐‘ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก๐‘‰๐‘‰๐‘š๐‘š๐‘…๐‘… cos ๐œ”๐œ”๐‘ก๐‘ก =

๐‘‰๐‘‰๐‘š๐‘š2

๐‘…๐‘… cos2 ๐œ”๐œ”๐‘ก๐‘ก

Trig identity: cos2๐œƒ๐œƒ = 12

1 + cos(2๐œƒ๐œƒ)

๐‘๐‘(๐‘ก๐‘ก) =๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘… 1 + cos2๐œ”๐œ”๐‘ก๐‘ก

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก ๐‘–๐‘–(๐‘ก๐‘ก) = ๐ผ๐ผ๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก๐‘…๐‘…

Time t

Instantaneous Power ๐‘๐‘(๐‘ก๐‘ก)๐‘‰๐‘‰๐‘š๐‘š2

๐‘…๐‘…

๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘…

๐‘‡๐‘‡2

๐‘‡๐‘‡2

Average Power Delivered to a Resistor

The instantaneous power is: ๐‘๐‘ ๐‘ก๐‘ก = ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก ๐‘–๐‘– ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก ๐‘‰๐‘‰๐‘š๐‘š๐‘…๐‘…

cos ๐œ”๐œ”๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š2

๐‘…๐‘…cos2 ๐œ”๐œ”๐‘ก๐‘ก = 1

2๐‘‰๐‘‰๐‘š๐‘š2

๐‘…๐‘…1 + cos2๐œ”๐œ”๐‘ก๐‘ก

The average power delivered to the resistor is defined as the average of p(t) over one AC cycle of length T:

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž =1๐‘‡๐‘‡๏ฟฝ๐‘ฅ

๐‘‡๐‘‡๐‘๐‘ ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก

so

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž =1๐‘‡๐‘‡๏ฟฝ๐‘ฅ

๐‘‡๐‘‡ ๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘… 1 + cos2๐œ”๐œ”๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก =1๐‘‡๐‘‡๏ฟฝ๐‘ฅ

๐‘‡๐‘‡ ๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘… ๐‘‘๐‘‘๐‘ก๐‘ก +1๐‘‡๐‘‡๏ฟฝ๐‘ฅ

๐‘‡๐‘‡ ๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘… cos2๐œ”๐œ”๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก =๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘… + 0 =๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘…

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘…where ๐‘‰๐‘‰๐‘š๐‘š is the amplitude of the AC voltage.

This is often written as

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž =๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘…

=๐‘‰๐‘‰๐‘š๐‘š2

2

๐‘…๐‘…= ๐‘‰๐‘‰๐‘…๐‘…๐‘…๐‘…๐‘…๐‘…

2

๐‘…๐‘…where ๐‘‰๐‘‰๐‘…๐‘…๐‘…๐‘…๐‘…๐‘… = ๐‘‰๐‘‰๐‘š๐‘š

2is the โ€œRMS valueโ€ of the AC voltage.

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก

๐‘–๐‘– ๐‘ก๐‘ก =๐‘‰๐‘‰๐‘š๐‘š๐‘…๐‘…

cos ๐œ”๐œ”๐‘ก๐‘ก

What is meant by โ€œRMS valueโ€?

๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก ๐‘–๐‘–(๐‘ก๐‘ก) = ๐ผ๐ผ๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก๐‘…๐‘…

Amplitude and RMS ValueSuppose an AC voltage is given by๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘กThen the amplitude of the voltage is ๐‘‰๐‘‰๐‘š๐‘š.

The โ€œroot mean squareโ€ value or โ€œRMSโ€ value of a periodic function ๐‘ฃ๐‘ฃ(๐‘ก๐‘ก) with period ๐‘‡๐‘‡ is defined as

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ =1๐‘‡๐‘‡๏ฟฝ๐‘ฅ

๐‘‡๐‘‡๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก

This is the average value or โ€œmean valueโ€ of the square of the voltage function.

For a sinusoid ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก we can evaluate the RMS value of ๐‘ฃ๐‘ฃ(๐‘ก๐‘ก) as

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ2 = 1

๐‘‡๐‘‡ โˆซ๐‘ฅ๐‘‡๐‘‡ ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก 2๐‘‘๐‘‘๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š2

๐‘‡๐‘‡ โˆซ๐‘ฅ๐‘‡๐‘‡ 12

1 + cos 2๐œ”๐œ”๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก=๐‘‰๐‘‰๐‘š๐‘š2

๐‘‡๐‘‡ โˆซ๐‘ฅ๐‘‡๐‘‡ 12๐‘‘๐‘‘๐‘ก๐‘ก + ๐‘‰๐‘‰๐‘š๐‘š2

๐‘‡๐‘‡ โˆซ๐‘ฅ๐‘‡๐‘‡ 12

cos 2๐œ”๐œ”๐‘ก๐‘ก ๐‘‘๐‘‘๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š2

๐‘‡๐‘‡๐‘‡๐‘‡2

= ๐‘‰๐‘‰๐‘š๐‘š2

2

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ =๐‘‰๐‘‰๐‘š๐‘š

2

Thus the average power delivered to a resistor is

๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž = ๐‘‰๐‘‰๐‘š๐‘š2

2๐‘…๐‘…=

๐‘‰๐‘‰๐‘š๐‘š2

2

๐‘…๐‘…= ๐‘‰๐‘‰๐‘…๐‘…๐‘…๐‘…๐‘…๐‘…

2

๐‘…๐‘…

Phasors Relative to RMS ValueWe can write phasors โ€œrelative to amplitudeโ€ or we can write phasors โ€œrelative to RMS valueโ€.๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก

Phasors relative to amplitude: ๐‘‰๐‘‰ = ๐‘‰๐‘‰๐‘š๐‘š๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒThe magnitude of the phasor ๐‘‰๐‘‰ = ๐‘‰๐‘‰๐‘š๐‘š is the amplitude of the cosine voltage ๐‘‰๐‘‰๐‘š๐‘š cos ๐œ”๐œ”๐‘ก๐‘ก

Phasors relative to RMS value:๐‘‰๐‘‰ = ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ๐‘’๐‘’๐‘—๐‘—๐œƒ๐œƒ

The magnitude of the phasor ๐‘‰๐‘‰ = ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ is the RMS value of the cosine voltage, so ๐‘‰๐‘‰๐‘š๐‘š = 2๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ and the cosine is ๐‘ฃ๐‘ฃ ๐‘ก๐‘ก = 2๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ cos ๐œ”๐œ”๐‘ก๐‘ก

Which should you use?

In the lecture notes I use phasors relative to amplitude.

However, sometimes phasors relative to RMS value is preferred.

Everybody knows that the AC line voltage is 110 volts.

Is this amplitude or RMS value?

Answer: in the power industry the custom is to use phasors relative to RMS value so 110 volts is the RMS value.

The amplitude is ๐‘‰๐‘‰๐‘š๐‘š = 2๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ๐‘š๐‘š๐‘Ÿ๐‘Ÿ = 1.๐‘—๐‘—๐‘—๐œ‹๐œ‹๐‘—๐‘—๐‘— = 155.5 volts.

Most โ€œDVMsโ€ or โ€œdigital voltmetersโ€ read RMS values on the AC voltage setting.

Power to an Impedance?

We will return to the topic of power in AC circuits later in the course.

The course web site is: http://users.encs.concordia.ca/~trueman/web_page_273.htm

ELEC273 Lecture Notes Set 10 Phasors and Impedance

Final Exam: Friday December 15, 2017 from 9:00 to 12:00 (confirmed)

Mesh Equations in the โ€œPhasor Domainโ€1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents ๐ผ๐ผ1, ๐ผ๐ผ2, ๐ผ๐ผ3, โ€ฆ3. Write a KVL equation for each mesh path and an equation for each current source.

Example #1: really easy!!!!!

The operating frequency is 60 Hz.The sources are๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 16 sin๐œ”๐œ”๐‘ก๐‘กWrite mesh equations for this circuit.Solve the equations to find the values of the mesh currents.

+๐‘ฃ๐‘ฃ1(๐‘ก๐‘ก)โˆ’

+๐‘ฃ๐‘ฃ2(๐‘ก๐‘ก)โˆ’

2 ฮฉ5 ฮฉ

1 ฮฉ

663.1 ยตF

5.3 mH 10.6 mH

Step 1: Convert all the components to impedances at the operating frequency. Convert the sources to phasors.

The operating frequency is ๐‘“๐‘“ =60 Hz. The radian frequency is ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘— = ๐‘—2๐‘—๐œ‹๐œ‹ = 376.99 โ‰ˆ 377 radians/second. For the 5.3 mH inductance, ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹3๐‘—๐‘—๐œ‹๐œ‹๐‘—.3๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—๐‘—.9981 โ‰ˆ ๐‘—๐‘—2 ohmsThe 10.6 mH inductance has an impedance of ๐‘—๐‘—๐‘— ohms.The 663.1 microfarad capacitance has an impedance of ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถโˆ’๐‘—๐‘—โˆ’๐‘—๐‘—

= โˆ’๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

= โˆ’๐‘—๐‘—377๐‘ฅ๐‘ฅ663.1๐‘ฅ๐‘ฅ1๐‘ฅโˆ’6

= โˆ’๐‘—๐‘—๐‘— ohms.

Write the sources as phasors:๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก becomes phasor ๐‘‰๐‘‰1 = 10โˆ ๐‘—ยฐ๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 16 sin๐œ”๐œ”๐‘ก๐‘กChange sine to cosine using the trig identity sin๐œ”๐œ”๐‘ก๐‘ก = cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) so ๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 16 sin๐œ”๐œ”๐‘ก๐‘ก = 16cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) which becomes phasor ๐‘‰๐‘‰2 = 16โˆ  โˆ’ 90ยฐSince 1โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐‘— we can write ๐‘‰๐‘‰2 = 16โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐œ‹๐‘—๐‘—

+๐‘ฃ๐‘ฃ1(๐‘ก๐‘ก)โˆ’

+๐‘ฃ๐‘ฃ2(๐‘ก๐‘ก)โˆ’

2 ฮฉ5 ฮฉ

1 ฮฉ

663.1 ยตF

5.3 mH 10.6 mH ๐‘‰๐‘‰1 =10

๐‘‰๐‘‰2 =16โˆ  โˆ’ 90ยฐ= โˆ’๐‘—๐‘—๐‘—๐œ‹

2 ฮฉ5 ฮฉ

1 ฮฉ

โˆ’j4 ฮฉ

๐‘—๐‘—2 ฮฉ ๐‘—๐‘—๐‘— ฮฉ

๐‘‰๐‘‰2=โˆ’๐‘—๐‘—๐‘—๐œ‹

๐‘‰๐‘‰1 = 10

2 + j2 ฮฉ 1 + j4 ฮฉ

5 โˆ’ j4 ฮฉ

๐ผ๐ผ1 ๐ผ๐ผ2

Mesh path FABEF:+10 โˆ’ 2 + ๐‘—๐‘—2 ๐ผ๐ผ1 โˆ’ 5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐ผ๐ผ2 = 0

Mesh path EBCDE:+ 5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐ผ๐ผ2 โˆ’ 1 + ๐‘—๐‘—๐‘— ๐ผ๐ผ2 โˆ’ โˆ’๐‘—๐‘—๐‘—๐œ‹ = 0

Collect terms:โˆ’2 โˆ’ ๐‘—๐‘—2 โˆ’ 5 + ๐‘—๐‘—๐‘— ๐ผ๐ผ1 + 5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = โˆ’10โˆ’7 + ๐‘—๐‘—2 ๐ผ๐ผ1 + 5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = โˆ’10

5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ1 + โˆ’5 + ๐‘—๐‘—๐‘— โˆ’ 1 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = โˆ’๐‘—๐‘—๐‘—65 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ1 + โˆ’6 ๐ผ๐ผ2 = โˆ’๐‘—๐‘—๐‘—6

Step 2: Assign mesh currents ๐ผ๐ผ1 and ๐ผ๐ผ2:

Step 3:Write a KVL equation for each mesh path and an equation for each current source.

Label the circuit diagram with the voltage across each impedance. Then it is easy to get the signs correct in the mesh equations:

๐‘‰๐‘‰2= โˆ’๐‘—๐‘—๐‘—๐œ‹๐‘‰๐‘‰1 = 10

2 + j2 ฮฉ 1 + j4 ฮฉ

5 โˆ’ j4 ฮฉ

๐ผ๐ผ1 ๐ผ๐ผ2

10 โˆ’๐‘—๐‘—๐‘—๐œ‹

๐ผ๐ผ1 ๐ผ๐ผ2

+ 2 + j2 ๐ผ๐ผ1 โˆ’ + 1 + j4 ๐ผ๐ผ2 โˆ’

+5 โˆ’ j4 (๐ผ๐ผ1 โˆ’ ๐ผ๐ผ2)โˆ’

A B C

DEF

Solve the equations: Solve the equations by hand:โˆ’7 + ๐‘—๐‘—2 ๐ผ๐ผ1 + 5 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = โˆ’105 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ1 + โˆ’6 ๐ผ๐ผ2 = โˆ’๐‘—๐‘—๐‘—6

Eliminate ๐ผ๐ผ2:โˆ’7 + ๐‘—๐‘—25 โˆ’ ๐‘—๐‘—๐‘—

๐ผ๐ผ1 + ๐ผ๐ผ2 =โˆ’10

5 โˆ’ ๐‘—๐‘—๐‘—5 โˆ’ ๐‘—๐‘—๐‘—โˆ’6 ๐ผ๐ผ1 + ๐ผ๐ผ2 =

โˆ’๐‘—๐‘—๐‘—๐œ‹โˆ’6

Evaluate the coefficients:(โˆ’1.049 โˆ’ ๐‘—๐‘—๐‘—.4390)๐ผ๐ผ1 + ๐ผ๐ผ2 = (โˆ’1.220 โˆ’ ๐‘—๐‘—๐‘—.9756)(โˆ’0.8333 + ๐‘—๐‘—๐‘—.6667)๐ผ๐ผ1 + ๐ผ๐ผ2 = ๐‘—๐‘—2.667Subtract:(โˆ’0.2157 โˆ’ ๐‘—๐‘—1.106)๐ผ๐ผ1 = (โˆ’1.220 โˆ’ ๐‘—๐‘—3.643)๐ผ๐ผ1 = 3.380 โˆ’ ๐‘—๐‘—๐‘—.4438 = 3.๐‘—๐‘—๐‘—โˆ  โˆ’ 7.5ยฐ

Evaluate ๐ผ๐ผ2: ๐ผ๐ผ2 = ๐‘—๐‘—2.667 โˆ’ (โˆ’0.8333 + ๐‘—๐‘—๐‘—.6667)๐ผ๐ผ1๐ผ๐ผ2 = 2.521+j0.0435=2.521 โˆ ๐‘—.0ยฐ

Homework: solve the equations by hand yourself!Use determinants and show that you get the same answer.

Example 2: Mesh Equations with a current source. 1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents ๐ผ๐ผ1, ๐ผ๐ผ2, ๐ผ๐ผ3, โ€ฆ3. Write a KVL equation for each mesh path and an equation for each current source.

The operating frequency is 60 Hz.The sources are๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 2 sin๐œ”๐œ”๐‘ก๐‘กWrite mesh equations for this circuit.

Step 1: Convert the sources.๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก becomes phasor ๐‘‰๐‘‰1 = 10โˆ ๐‘—ยฐ๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 sin๐œ”๐œ”๐‘ก๐‘ก = 2 cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) becomes ๐‘‰๐‘‰2 = 2โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐‘—2

10 cos๐œ”๐œ”๐‘ก๐‘ก

2 ฮฉ 1 ฮฉ

331.6 ยตF

5.3 mH 10.6 mH

2 sin๐œ”๐œ”๐‘ก๐‘ก

Step 1, continued: Convert the components to impedances.

The operating frequency is ๐‘“๐‘“ =60 Hz. The radian frequency is ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘— = ๐‘—2๐‘—๐œ‹๐œ‹ = 376.99 โ‰ˆ 377radians/second. For the 5.3 mH inductance, ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹3๐‘—๐‘—๐œ‹๐œ‹๐‘—.3๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—๐‘—.9981 โ‰ˆ ๐‘—๐‘—2 ohms

The 10.6 mH inductance has an impedance of ๐‘—๐‘—๐‘— ohms.

The 331.6 microfarad capacitance has an impedance of ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถโˆ’๐‘—๐‘—โˆ’๐‘—๐‘—

= โˆ’๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

= โˆ’๐‘—๐‘—377๐‘ฅ๐‘ฅ331.6๐‘ฅ๐‘ฅ1๐‘ฅโˆ’6

= โˆ’๐‘—๐‘—๐‘— ohms.

Step 2: Assign mesh currents ๐ผ๐ผ1 and ๐ผ๐ผ2.

10 cos๐œ”๐œ”๐‘ก๐‘ก

2 ฮฉ 1 ฮฉ

331.6 ยตF

5.3 mH 10.6 mH

2 sin๐œ”๐œ”๐‘ก๐‘ก 10

2 ฮฉ 1 ฮฉ j4 ฮฉ

-j8 ฮฉโˆ’๐‘—๐‘—2j2 ฮฉ

2+j2 ฮฉ

10 โˆ’๐‘—๐‘—2

1-j4 ฮฉ

๐ผ๐ผ1 ๐ผ๐ผ2

Step 3: Write a KVL equation for each mesh.Write a โ€œconstraint equationโ€ for each current source.

Constraint equation for the current source: ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ1 = โˆ’2๐‘—๐‘—

Supermesh Path ABCDEFA: +10 โˆ’ 2 + ๐‘—๐‘—2 ๐ผ๐ผ1 โˆ’ 1 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = 0

2 + ๐‘—๐‘—2 ๐ผ๐ผ1 + 1 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = 10

Hence the equations are:โˆ’๐ผ๐ผ1 + ๐ผ๐ผ2 = โˆ’2๐‘—๐‘—2 + ๐‘—๐‘—2 ๐ผ๐ผ1 + 1 โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ2 = 10

Homework:1.Solve the equations for ๐ผ๐ผ1 and ๐ผ๐ผ2๐ผ๐ผ1 =5.02 amps, angle 40.0 degrees๐ผ๐ผ2 =4.04 amps, angle 17.7 degrees

2.Verify the solution with LTSpice.

2+j2 ฮฉ

10 โˆ’๐‘—๐‘—2

1-j4 ฮฉ

๐ผ๐ผ1 ๐ผ๐ผ2

A

B C D

EF

Mesh Equations in the โ€œPhasor Domainโ€1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign mesh currents ๐ผ๐ผ1, ๐ผ๐ผ2, ๐ผ๐ผ3, โ€ฆ3. Write a KVL equation for each mesh path. Write an equation for each current source.

Write mesh equations at frequency ๐œ”๐œ” = 100 rad/sec

The sources are๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 14.14cos(๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ)๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2sin(๐œ”๐œ”๐‘ก๐‘ก)

Solve the mesh equations.

Verify your solution with LTSpice.

Example

SolutionConvert the components to impedances: ๐œ”๐œ” = 100 rad/sec.

๐œ”๐œ” = 20 mH ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐‘—๐‘—๐‘—๐œ‹๐œ‹2๐‘—๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—2๐ถ๐ถ = 0.5 mF ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= โˆ’๐‘—๐‘—

1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ.5๐‘ฅ๐‘ฅ1๐‘ฅโˆ’3= โˆ’๐‘—๐‘—2๐‘—

8 ฮฉ 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 ฮฉ

j3

33+j3

9 ฮฉ50 mH

9j5

9+j5

Draw the circuit with phasors and impedances:8 ฮฉ 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 ฮฉ

j3

33+j3

9 ฮฉ50 mH

9j5

9+j5 Convert the sources to phasors: ๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 14.14cos(๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ) becomes phasor ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ = 14.14โˆ ๐‘—๐‘—ยฐ๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 sin ๐œ”๐œ”๐‘ก๐‘ก = 2cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) becomes phasor ๐ผ๐ผ๐‘Ÿ๐‘Ÿ = 2โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐‘—2

๐ผ๐ผ๐‘…๐‘…= โˆ’๐‘—๐‘—2

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =10 + ๐‘—๐‘—10

๐ผ๐ผ3

9+j5

8-j18 -j9

3+j312

๐ผ๐ผ1 ๐ผ๐ผ2

๐ผ๐ผ๐‘…๐‘…= โˆ’๐‘—๐‘—2

๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ =10 + ๐‘—๐‘—10

๐ผ๐ผ3

9+j5

8-j18 -j9

3+j312

๐ผ๐ผ1 ๐ผ๐ผ2

Write the mesh equations:

Constraint equation: ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ1 = โˆ’๐‘—๐‘—2

Mesh path ABCDEA: โˆ’12๐ผ๐ผ1 โˆ’ 8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐ผ๐ผ3 โˆ’ โˆ’๐‘—๐‘—๐‘— ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ3 โˆ’ 3 + ๐‘—๐‘—3 ๐ผ๐ผ2 โˆ’ 10 + ๐‘—๐‘—๐‘—๐‘— = 0

Mesh path BFGDCB: โˆ’ 9 + ๐‘—๐‘—๐‘— ๐ผ๐ผ3 + โˆ’๐‘—๐‘—๐‘— ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ3 + 8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐ผ๐ผ3 = 0

A

B DC

E

FG

= 10 + ๐‘—๐‘—10

Collect terms:Mesh path ABCDEA: โˆ’12๐ผ๐ผ1 โˆ’ 8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐ผ๐ผ3 โˆ’ โˆ’๐‘—๐‘—๐‘— ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ3 โˆ’ 3 + ๐‘—๐‘—3 ๐ผ๐ผ2 โˆ’ (10 + ๐‘—๐‘—๐‘—๐‘—) = 0

โˆ’12 โˆ’ 8 + ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 + ๐‘—๐‘—๐‘— โˆ’ 3 โˆ’ ๐‘—๐‘—3 ๐ผ๐ผ2 + 8 โˆ’ ๐‘—๐‘—๐‘—๐‘— โˆ’ ๐‘—๐‘—๐‘— ๐ผ๐ผ3 = 10 + ๐‘—๐‘—๐‘—๐‘—

โˆ’20 + ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 + โˆ’3 + ๐‘—๐‘—6 ๐ผ๐ผ2 + 8 โˆ’ ๐‘—๐‘—27 ๐ผ๐ผ3 = 10 + ๐‘—๐‘—๐‘—๐‘—

Mesh path BFGDCB: โˆ’ 9 + ๐‘—๐‘—๐‘— ๐ผ๐ผ3 โˆ’ โˆ’๐‘—๐‘—๐‘— ๐ผ๐ผ3 โˆ’ ๐ผ๐ผ2 โˆ’ 8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ3 โˆ’ ๐ผ๐ผ1 = 0

8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐‘—๐‘—๐‘—๐ผ๐ผ2 + โˆ’9 โˆ’ ๐‘—๐‘—๐‘— + ๐‘—๐‘—๐‘— โˆ’ 8 + ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ3 = 0

8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐‘—๐‘—๐‘—๐ผ๐ผ2 + โˆ’17 + ๐‘—๐‘—22 ๐ผ๐ผ3 = 0

Current generator: ๐ผ๐ผ2 โˆ’ ๐ผ๐ผ1 = โˆ’๐‘—๐‘—2

The mesh equations:

โˆ’20 + ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 + โˆ’3 + ๐‘—๐‘—๐œ‹ ๐ผ๐ผ2 + 8 โˆ’ ๐‘—๐‘—2๐‘— ๐ผ๐ผ3 = 10 + ๐‘—๐‘—๐‘—๐‘—8 โˆ’ ๐‘—๐‘—๐‘—๐‘— ๐ผ๐ผ1 โˆ’ ๐‘—๐‘—๐‘—๐ผ๐ผ2 + โˆ’17 + ๐‘—๐‘—22 ๐ผ๐ผ3 = 0๐ผ๐ผ2 โˆ’ ๐ผ๐ผ1 = โˆ’๐‘—๐‘—2

Solve the mesh equations:

๐ผ๐ผ1 = 0.5919โˆ ๐‘—๐œ‹๐‘—.2ยฐ๐ผ๐ผ2 = 1.884โˆ  โˆ’ 107.2ยฐ๐ผ๐ผ3 = 0.8574โˆ  โˆ’ 172.0ยฐ

Node Equations in the โ€œPhasor Domainโ€1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign a datum node and node voltages ๐‘‰๐‘‰1, ๐‘‰๐‘‰2, ๐‘‰๐‘‰3, โ€ฆ3. Write a KCL equation for each node.

Example - really easy!

The operating frequency is 60 Hz.

๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 16 sin๐œ”๐œ”๐‘ก๐‘ก

Write node equations for this circuit. Find the voltage across 5 ohms in series with 663.1 microfarads.

+๐‘ฃ๐‘ฃ1(๐‘ก๐‘ก)โˆ’

+๐‘ฃ๐‘ฃ2(๐‘ก๐‘ก)โˆ’

2 ฮฉ5 ฮฉ

1 ฮฉ

663.1 ยตF

5.3 mH 10.6 mH

Convert the circuit into the โ€œphasor domainโ€:

We converted this circuit to the phasor domain on a previous slide!โ€ข Sources:๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก becomes phasor ๐‘‰๐‘‰1 = 10โˆ ๐‘—ยฐ๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 16 sin๐œ”๐œ”๐‘ก๐‘ก = 16cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) becomes phasor ๐‘‰๐‘‰2 = 16โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐‘—๐‘—๐œ‹โ€ข The operating frequency is ๐‘“๐‘“ =60 Hz. The radian frequency is

๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘— = ๐‘—2๐‘—๐œ‹๐œ‹ = 376.99 โ‰ˆ 377 radians/second. โ€ข For the 5.3 mH inductance, ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹3๐‘—๐‘—๐œ‹๐œ‹๐‘—.3๐œ‹๐œ‹10โˆ’3 =

๐‘—๐‘—๐‘—.9981 โ‰ˆ ๐‘—๐‘—2 ohmsโ€ข The 10.6 mH inductance has an impedance of ๐‘—๐‘—๐‘— ohms.โ€ข The 663.1 microfarad capacitance has an impedance of ๐‘๐‘๐ถ๐ถ =

1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

= 1๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

โˆ’๐‘—๐‘—โˆ’๐‘—๐‘—

= โˆ’๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

= โˆ’๐‘—๐‘—377๐‘ฅ๐‘ฅ663.1๐‘ฅ๐‘ฅ1๐‘ฅโˆ’6

= โˆ’๐‘—๐‘—๐‘— ohms.

+๐‘ฃ๐‘ฃ1(๐‘ก๐‘ก)โˆ’

+๐‘ฃ๐‘ฃ2(๐‘ก๐‘ก)โˆ’

2 ฮฉ5 ฮฉ

1 ฮฉ

663.1 ยตF

5.3 mH 10.6 mH๐‘—๐‘—๐‘—๐œ‹

2 ฮฉ5 ฮฉ

1 ฮฉ

โˆ’j4 ฮฉ

๐‘—๐‘—2 ฮฉ ๐‘—๐‘—๐‘— ฮฉ10

๐‘—๐‘—๐‘—๐œ‹10

2 + j2 ฮฉ 1 + j4 ฮฉ

5 โˆ’ j4 ฮฉ

Choose a datum and a node voltage:

Write a KCL equation at the node:

10 โˆ’ ๐‘‰๐‘‰12 + ๐‘—๐‘—2 โˆ’

๐‘‰๐‘‰15 โˆ’ ๐‘—๐‘—๐‘— โˆ’

๐‘‰๐‘‰1 โˆ’ โˆ’๐‘—๐‘—๐‘—๐œ‹1 + ๐‘—๐‘—๐‘— = 0

Collect terms:โˆ’๐‘‰๐‘‰1

2 + ๐‘—๐‘—2 โˆ’๐‘‰๐‘‰1

5 โˆ’ ๐‘—๐‘—๐‘— โˆ’๐‘‰๐‘‰1

1 + ๐‘—๐‘—๐‘— =โˆ’10

2 + ๐‘—๐‘—2 +๐‘—๐‘—๐‘—๐œ‹

1 + ๐‘—๐‘—๐‘—โˆ’1

2 + ๐‘—๐‘—2 โˆ’1

5 โˆ’ ๐‘—๐‘—๐‘— โˆ’1

1 + ๐‘—๐‘—๐‘— ๐‘‰๐‘‰1 =โˆ’10

2 + ๐‘—๐‘—2 +๐‘—๐‘—๐‘—๐œ‹

1 + ๐‘—๐‘—๐‘—

One way to solve this quation is to use a common denominator for all the terms:โˆ’ 5 โˆ’ ๐‘—๐‘—๐‘— 1 + ๐‘—๐‘—๐‘— โˆ’ 2 + ๐‘—๐‘—2 1 + ๐‘—๐‘—๐‘— โˆ’ (2 + ๐‘—๐‘—2)(5 โˆ’ ๐‘—๐‘—๐‘—)

2 + ๐‘—๐‘—2 (5 โˆ’ ๐‘—๐‘—๐‘—)(1 + ๐‘—๐‘—๐‘—) ๐‘‰๐‘‰1

=โˆ’10 1 + ๐‘—๐‘—๐‘— + ๐‘—๐‘—๐‘—๐œ‹(2 + ๐‘—๐‘—2)

(2 + ๐‘—๐‘—2)(1 + ๐‘—๐‘—๐‘—)A better way is to do the division term by term; see next page.

๐‘—๐‘—๐‘—๐œ‹10

2 + j2 ฮฉ 1 + j4 ฮฉ

5 โˆ’ j4 ฮฉ

๐‘‰๐‘‰1

Solve:โˆ’1

2 + ๐‘—๐‘—2โˆ’

15 โˆ’ ๐‘—๐‘—๐‘—

โˆ’1

1 + ๐‘—๐‘—๐‘—๐‘‰๐‘‰1 =

โˆ’102 + ๐‘—๐‘—2

+๐‘—๐‘—๐‘—๐œ‹

1 + ๐‘—๐‘—๐‘—

Change the coefficients from ratios to simple rectangular form using your calculator:

โˆ’0.25 + ๐‘—๐‘—๐‘—.25 โˆ’ 0.1220 โˆ’ ๐‘—๐‘—๐‘—.09756 โˆ’ 0.05882 + ๐‘—๐‘—๐‘—.2353 ๐‘‰๐‘‰1 = โˆ’2.5 + j2.5 + 3.765 + j0.9412

Do the addition of real parts and of imaginary parts:โˆ’0.4302 + ๐‘—๐‘—๐‘—.3877 ๐‘‰๐‘‰1 = 1.265 + ๐‘—๐‘—3.441

Do the division:

๐‘‰๐‘‰1 =1.265 + ๐‘—๐‘—3.441

โˆ’0.4302 + ๐‘—๐‘—๐‘—.3877 = 2.355 โˆ’ ๐‘—๐‘—๐‘—.876 = 6.33๐‘—โˆ  โˆ’ 68.1ยฐ

As a working engineer, would I do this calculation by hand?Probably not! I could easily make a mistake, and hand calculation takes a lot of time. Iโ€™d use a short computer program to solve the equation.

Node Equations with a current generator

Example #2

Procedure for writing node equations in the โ€œfrequency domainโ€:1. Convert all the components to impedances at the operating frequency. Convert the sources to phasors. 2. Assign a datum node and node voltages ๐‘‰๐‘‰1, ๐‘‰๐‘‰2, ๐‘‰๐‘‰3, โ€ฆ3. Write a KCL equation for each node.

The operating frequency is 60 Hz.The sources are๐‘ฃ๐‘ฃ1 ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก๐‘ฃ๐‘ฃ2 ๐‘ก๐‘ก = 2 sin๐œ”๐œ”๐‘ก๐‘กWrite a node equation for the voltage across the current generator.

10 cos๐œ”๐œ”๐‘ก๐‘ก

2 ฮฉ 1 ฮฉ

331.6 ยตF

5.3 mH 10.6 mH

2 sin๐œ”๐œ”๐‘ก๐‘ก

Step 1: Convert to the phasor domain.

We did this conversion for mesh analysis, see above!

Convert the sources.๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 10 cos๐œ”๐œ”๐‘ก๐‘ก becomes phasor ๐‘‰๐‘‰1 = 10โˆ ๐‘—ยฐ๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 sin๐œ”๐œ”๐‘ก๐‘ก = 2 cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) becomes ๐‘‰๐‘‰2 = 2โˆ  โˆ’ 90ยฐ = โˆ’2๐‘—๐‘—

The operating frequency is ๐‘“๐‘“ =60 Hz. The radian frequency is ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘— = ๐‘—2๐‘—๐œ‹๐œ‹ = 376.99 โ‰ˆ 377 radians/second.

For the 5.3 mH inductance, ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹3๐‘—๐‘—๐œ‹๐œ‹๐‘—.3๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—๐‘—.9981 โ‰ˆ ๐‘—๐‘—2 ohms

The 10.6 mH inductance has an impedance of ๐‘—๐‘—๐‘— ohms.

The 331.6 microfarad capacitance has an impedance of ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถโˆ’๐‘—๐‘—โˆ’๐‘—๐‘—

= โˆ’๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ

= โˆ’๐‘—๐‘—377๐‘ฅ๐‘ฅ331.6๐‘ฅ๐‘ฅ1๐‘ฅโˆ’6

= โˆ’๐‘—๐‘—๐‘— ohms.

10 cos๐œ”๐œ”๐‘ก๐‘ก

2 ฮฉ 1 ฮฉ

331.6 ยตF

5.3 mH 10.6 mH

2 sin๐œ”๐œ”๐‘ก๐‘ก 10

2 ฮฉ 1 ฮฉ j4 ฮฉ

-j8 ฮฉโˆ’๐‘—๐‘—2j2 ฮฉ

2+j2 ฮฉ

10 โˆ’๐‘—๐‘—2

1-j4 ฮฉ๐‘‰๐‘‰1

Write the node equation at ๐‘‰๐‘‰1:

10 โˆ’ ๐‘‰๐‘‰12 + ๐‘—๐‘—2 + โˆ’2๐‘—๐‘— โˆ’

๐‘‰๐‘‰11 โˆ’ ๐‘—๐‘—๐‘— = 0

โˆ’๐‘‰๐‘‰12 + ๐‘—๐‘—2 โˆ’

๐‘‰๐‘‰11 โˆ’ ๐‘—๐‘—๐‘— = 2๐‘—๐‘— โˆ’

102 + ๐‘—๐‘—2

โˆ’12 + ๐‘—๐‘—2 โˆ’

11 โˆ’ ๐‘—๐‘—๐‘— ๐‘‰๐‘‰1 = 2๐‘—๐‘— โˆ’

102 + ๐‘—๐‘—2

Homework: Solve the equation.Verify the solution with Spice.

Step 2: Assign a datum node and node voltages ๐‘‰๐‘‰1, ๐‘‰๐‘‰2, ๐‘‰๐‘‰3, โ€ฆStep 3: Write a KCL equation for each node.

2+j2 ฮฉ

10 โˆ’๐‘—๐‘—2

1-j4 ฮฉ๐‘‰๐‘‰1

Example: Node equations with a supernode.

The frequency is 1950 MHz. Write node equations for this circuit.Find the amplitude and phase of ๐‘‰๐‘‰๐‘œ๐‘œ.

Remark: โ€ข A voltage generator embedded inside a node is called a โ€œsupernodeโ€. โ€ข Only one unknown node voltage is needed for a supernode.โ€ข We write a KCL equation for the closed surface that encloses the voltage generator.

2 cos ๐œ”๐œ”๐‘ก๐‘ก5 cos ๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ

81.63 pH 2 ฮฉ

5 ฮฉ16.32 pF

10 ฮฉ

+๐‘‰๐‘‰๐‘œ๐‘œโˆ’

2 cos ๐œ”๐œ”๐‘ก๐‘ก5 cos ๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ

81.63 pH 2 ฮฉ

5 ฮฉ 16.32 pF10 ฮฉ

Convert to phasors and impedances:

Sources:๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 cos๐œ”๐œ”๐‘ก๐‘ก is represented by phasor ๐ผ๐ผ๐‘Ÿ๐‘Ÿ = 2๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 5 cos(๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ) is represented by phasor ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ = 5โˆ ๐‘—๐‘—ยฐ

๐‘“๐‘“ = 1950 MHz so ๐œ”๐œ” = 2๐œ‹๐œ‹๐‘“๐‘“ =1.22๐‘—๐œ‹๐œ‹101๐‘ฅ rad/sec

๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐œ‹๐œ‹๐‘—.22๐‘—๐œ‹๐œ‹101๐‘ฅ๐œ‹๐œ‹๐‘—.๐‘—๐œ‹3๐œ‹๐œ‹10โˆ’12 = ๐‘—๐‘—๐‘—ohm1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= โˆ’๐‘—๐‘—

1.225๐‘ฅ๐‘ฅ1๐‘ฅ10๐‘ฅ๐‘ฅ16.32๐‘ฅ๐‘ฅ1๐‘ฅโˆ’12= โˆ’๐‘—๐‘—๐‘— ohms

25โˆ 45ยฐ

๐‘—๐‘—๐‘— ฮฉ 2 ฮฉ

5 ฮฉ

โˆ’๐‘—๐‘—๐‘— ฮฉ10 ฮฉ

+๐‘‰๐‘‰๐‘œ๐‘œโˆ’

Combine impedances:

25โˆ 45ยฐ

๐‘—๐‘—๐‘— ฮฉ 2 ฮฉ

5 ฮฉโˆ’๐‘—๐‘—๐‘— ฮฉ10 ฮฉ

2 10 ฮฉ5โˆ 45ยฐ

Series:๐‘—๐‘—๐‘— in series with 2 is equivalent to (2 + ๐‘—๐‘—๐‘—) ohms

Parallel:5 in parallel with โˆ’๐‘—๐‘—๐‘— is equivalent to๐‘—๐œ‹๐œ‹ โˆ’๐‘—๐‘—๐‘—

5 โˆ’ ๐‘—๐‘—๐‘—=โˆ’๐‘—๐‘—2๐‘—5 โˆ’ ๐‘—๐‘—๐‘—

= 2.5 โˆ’ ๐‘—๐‘—2.5

2 + ๐‘—๐‘—๐‘— ฮฉ

2.5 โˆ’ ๐‘—๐‘—2.5 ฮฉ+๐‘‰๐‘‰๐‘œ๐‘œโˆ’

Node equations:

2 10 ฮฉ5โˆ 45ยฐ 2 + ๐‘—๐‘—๐‘— ฮฉ

2.5 โˆ’ ๐‘—๐‘—2.5 ฮฉ

๐‘‰๐‘‰1 ๐‘‰๐‘‰2 ๐‘‰๐‘‰๐‘ฅ

Constraint equation: ๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰1 = 5โˆ ๐‘—๐‘—ยฐ

At the supernode:

2 โˆ’๐‘‰๐‘‰110 โˆ’

๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰๐‘ฅ2 + ๐‘—๐‘—๐‘— = 0

At the ๐‘‰๐‘‰๐‘ฅ node: ๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰๐‘ฅ2 + ๐‘—๐‘—๐‘— โˆ’

๐‘‰๐‘‰๐‘ฅ2.5 โˆ’ ๐‘—๐‘—2.5 = 0

+๐‘‰๐‘‰๐‘œ๐‘œโˆ’

Use three nodes:

For the supernode: ๐‘‰๐‘‰1 and ๐‘‰๐‘‰2.

For the output, use ๐‘‰๐‘‰๐‘ฅ.

There are three nodes so three equations to solve, in three unknowns.

Solve to find:๐‘‰๐‘‰๐‘œ๐‘œ = 5.772 โˆ  โˆ’ 30.5ยฐ

Amplitude of ๐‘‰๐‘‰๐‘ฅ is 5.772 voltsPhase of ๐‘‰๐‘‰๐‘ฅ is -30.5 degrees.

Can we solve this circuit โ€œsmarterโ€?

2 10 ฮฉ5โˆ 45ยฐ 2 + ๐‘—๐‘—๐‘— ฮฉ

2.5 โˆ’ ๐‘—๐‘—2.5 ฮฉ

+๐‘‰๐‘‰๐‘œ๐‘œโˆ’

๐‘‰๐‘‰1Use only one unknown node voltage, ๐‘‰๐‘‰1.

Build the constraint equation into the supernode directly.

Once the value of ๐‘‰๐‘‰1 has been found, use the voltage-divider relationship to find ๐‘‰๐‘‰๐‘ฅ:

๐‘‰๐‘‰๐‘ฅ = 2.5 โˆ’ ๐‘—๐‘—2.5๐‘‰๐‘‰1 + 5โˆ ๐‘—๐‘—ยฐ

2 + ๐‘—๐‘—๐‘— + 2.5 โˆ’ ๐‘—๐‘—2.5

We can solve the node equation to find๐‘‰๐‘‰1 = 5.884โˆ  โˆ’ 44.2ยฐAnd then the voltage divider to find๐‘‰๐‘‰๐‘ฅ = 5.772โˆ  โˆ’ 44.2ยฐ

This agrees with the โ€œdumberโ€ solution!

๐‘‰๐‘‰1 + 5โˆ ๐‘—๐‘—ยฐ

We only need one node equation to find node voltage, ๐‘‰๐‘‰1.At the supernode:

2 โˆ’๐‘‰๐‘‰110 โˆ’

๐‘‰๐‘‰1 + 5โˆ ๐‘—๐‘—ยฐ2 + ๐‘—๐‘—๐‘— + 2.5 โˆ’ ๐‘—๐‘—2.5 = 0

So

โˆ’๐‘‰๐‘‰110 โˆ’

๐‘‰๐‘‰14.5 โˆ’ ๐‘—๐‘—๐‘—.5 = โˆ’2 +

5โˆ ๐‘—๐‘—ยฐ4.5 โˆ’ ๐‘—๐‘—๐‘—.5

Node Equations in the โ€œPhasor Domainโ€We did this example using mesh analysis. Letโ€™s do it by node analysis.

Convert the components to impedances: ๐œ”๐œ” = 100 rad/sec.

The frequency is ๐œ”๐œ” = 100 rad/sec.๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 14.14cos(๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ)๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 sin ๐œ”๐œ”๐‘ก๐‘ก = 2cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ)

Write a set of node equations in matrix form.

๐œ”๐œ” = 20 mH ๐‘๐‘๐ฟ๐ฟ = ๐‘—๐‘—๐œ”๐œ”๐œ”๐œ” = ๐‘—๐‘—๐‘—๐‘—๐‘—๐œ‹๐œ‹2๐‘—๐œ‹๐œ‹10โˆ’3 = ๐‘—๐‘—2๐ถ๐ถ = 0.5 mF ๐‘๐‘๐ถ๐ถ = 1

๐‘—๐‘—๐œ”๐œ”๐ถ๐ถ= โˆ’๐‘—๐‘—

1๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ.5๐‘ฅ๐‘ฅ1๐‘ฅโˆ’3= โˆ’๐‘—๐‘—2๐‘—

8 ฮฉ 20 mH 0.5 mF 8 j2 -j20 8-j18

30 mH

8 ฮฉ

j3

33+j3

9 ฮฉ50 mH

9j5

9+j5

Draw the circuit with phasors and impedances:Convert the sources to phasors: ๐‘ฃ๐‘ฃ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 14.14cos(๐œ”๐œ”๐‘ก๐‘ก + 45ยฐ) becomes phasor ๐‘‰๐‘‰๐‘Ÿ๐‘Ÿ = 14.14โˆ ๐‘—๐‘—ยฐ๐‘–๐‘–๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก = 2 sin ๐œ”๐œ”๐‘ก๐‘ก = 2cos(๐œ”๐œ”๐‘ก๐‘ก โˆ’ 90ยฐ) becomes phasor ๐ผ๐ผ๐‘Ÿ๐‘Ÿ = 2โˆ  โˆ’ 90ยฐ = โˆ’๐‘—๐‘—2

Write Node EquationsNode 1:

โˆ’๐‘‰๐‘‰112

โˆ’๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰28 โˆ’ ๐‘—๐‘—๐‘—๐‘—

โˆ’๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰39 + ๐‘—๐‘—๐‘—

= 0

Node 2:๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰28 โˆ’ ๐‘—๐‘—๐‘—๐‘—

+ (โˆ’๐‘—๐‘—2) โˆ’๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3โˆ’๐‘—๐‘—9

= 0

Node 3:๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰39 + ๐‘—๐‘—๐‘— +

๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3โˆ’๐‘—๐‘—๐‘— โˆ’

๐‘‰๐‘‰3 โˆ’ 14.14โˆ 45ยฐ3 + ๐‘—๐‘—3 = 0

Collect terms in the node equations:Node 1: Multiply by 12(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(9 + ๐‘—๐‘—๐‘—)

โˆ’๐‘‰๐‘‰112

โˆ’๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰28 โˆ’ ๐‘—๐‘—๐‘—๐‘—

โˆ’๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰39 + ๐‘—๐‘—๐‘—

= 0

โˆ’(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(9 + ๐‘—๐‘—๐‘—)๐‘‰๐‘‰1 โˆ’ 12(9 + ๐‘—๐‘—๐‘—)(๐‘‰๐‘‰1โˆ’๐‘‰๐‘‰2) โˆ’ 12(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) = 0โˆ’(72 โˆ’ ๐‘—๐‘—๐‘—๐œ‹2 + ๐‘—๐‘—๐‘—๐‘— + 90)๐‘‰๐‘‰1 โˆ’ (108 + ๐‘—๐‘—60)(๐‘‰๐‘‰1โˆ’๐‘‰๐‘‰2) โˆ’ (96 โˆ’ ๐‘—๐‘—216)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) = 0โˆ’(162 โˆ’ ๐‘—๐‘—๐‘—22)๐‘‰๐‘‰1 โˆ’ (108 + ๐‘—๐‘—๐œ‹๐‘—)(๐‘‰๐‘‰1โˆ’๐‘‰๐‘‰2) โˆ’ (96 โˆ’ ๐‘—๐‘—2๐‘—๐œ‹)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) = 0โˆ’162 + ๐‘—๐‘—๐‘—22 โˆ’ 108 โˆ’ ๐‘—๐‘—๐œ‹๐‘— โˆ’ 96 + ๐‘—๐‘—2๐‘—๐œ‹ ๐‘‰๐‘‰1 + 108 + ๐‘—๐‘—๐œ‹๐‘— ๐‘‰๐‘‰2 + (96 โˆ’ ๐‘—๐‘—2๐‘—๐œ‹)๐‘‰๐‘‰3 = 0โˆ’366 + ๐‘—๐‘—2๐‘—๐‘— ๐‘‰๐‘‰1 + 108 + ๐‘—๐‘—๐œ‹๐‘— ๐‘‰๐‘‰2 + (96 โˆ’ ๐‘—๐‘—2๐‘—๐œ‹)๐‘‰๐‘‰3 = 0

Node 2:๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰28 โˆ’ ๐‘—๐‘—๐‘—๐‘— + (โˆ’๐‘—๐‘—2) โˆ’

๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3โˆ’๐‘—๐‘—9 = 0

(โˆ’๐‘—๐‘—๐‘—)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰2) + (8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(โˆ’๐‘—๐‘—๐‘—)(โˆ’๐‘—๐‘—2) โˆ’ (8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) = 0(โˆ’๐‘—๐‘—๐‘—)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰2) + (โˆ’๐‘—๐‘—๐‘—2 โˆ’ 162)(โˆ’๐‘—๐‘—2) โˆ’ (8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) = 0(โˆ’๐‘—๐‘—๐‘—)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰2) + (โˆ’144 + ๐‘—๐‘—32๐‘—) โˆ’ (8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) = 0โˆ’๐‘—๐‘—๐‘— ๐‘‰๐‘‰1 + (๐‘—๐‘—๐‘— โˆ’ 8 + ๐‘—๐‘—๐‘—๐‘—)๐‘‰๐‘‰2+(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)๐‘‰๐‘‰3 = โˆ’ โˆ’144 + ๐‘—๐‘—32๐‘—โˆ’๐‘—๐‘—๐‘— ๐‘‰๐‘‰1 + (โˆ’8 + ๐‘—๐‘—27)๐‘‰๐‘‰2+(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)๐‘‰๐‘‰3 = โˆ’ โˆ’144 + ๐‘—๐‘—32๐‘—

Arrange the equations into matrix form:Node 3:๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰39 + ๐‘—๐‘—๐‘—

+๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3โˆ’๐‘—๐‘—๐‘—

โˆ’๐‘‰๐‘‰3 โˆ’ 14.1โˆ 45ยฐ

3 + ๐‘—๐‘—3= 0

(โˆ’๐‘—๐‘—๐‘—)(3 + ๐‘—๐‘—3)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) + (9 + ๐‘—๐‘—๐‘—)(3 + ๐‘—๐‘—3)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) โˆ’ (9 + ๐‘—๐‘—๐‘—)(โˆ’๐‘—๐‘—๐‘—)(๐‘‰๐‘‰3 โˆ’ 14.1โˆ 45ยฐ) = 0(โˆ’๐‘—๐‘—27 + 27)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) + (27 + ๐‘—๐‘—15 + ๐‘—๐‘—2๐‘— โˆ’ 15)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) โˆ’ (โˆ’๐‘—๐‘—๐‘—๐‘— + 45)(๐‘‰๐‘‰3 โˆ’ 14.1โˆ 45ยฐ) = 0(โˆ’๐‘—๐‘—2๐‘— + 27)(๐‘‰๐‘‰1 โˆ’ ๐‘‰๐‘‰3) + (12 + ๐‘—๐‘—42)(๐‘‰๐‘‰2 โˆ’ ๐‘‰๐‘‰3) โˆ’ (โˆ’๐‘—๐‘—๐‘—๐‘— + 45)๐‘‰๐‘‰3 = (โˆ’๐‘—๐‘—๐‘—๐‘— + 45)(โˆ’14.๐‘—โˆ ๐‘—๐‘—ยฐ)(โˆ’๐‘—๐‘—2๐‘— + 27)๐‘‰๐‘‰1 + (12 + ๐‘—๐‘—๐‘—2)๐‘‰๐‘‰2 + (๐‘—๐‘—2๐‘— โˆ’ 27 โˆ’ 12 โˆ’ ๐‘—๐‘—๐‘—2 + ๐‘—๐‘—๐‘—๐‘— โˆ’ 45)๐‘‰๐‘‰3 = (โˆ’๐‘—๐‘—๐‘—๐‘— + 45)(โˆ’14.๐‘—โˆ ๐‘—๐‘—ยฐ)โˆ’๐‘—๐‘—2๐‘— + 27 ๐‘‰๐‘‰1 + 12 + ๐‘—๐‘—๐‘—2 ๐‘‰๐‘‰2 + โˆ’84 + ๐‘—๐‘—66 ๐‘‰๐‘‰3 = โˆ’1256 + ๐‘—๐‘—3๐‘—๐‘—.9

Hence the node equations are:โˆ’366 + ๐‘—๐‘—2๐‘—๐‘— ๐‘‰๐‘‰1 + 108 + ๐‘—๐‘—๐œ‹๐‘— ๐‘‰๐‘‰2 + (96 โˆ’ ๐‘—๐‘—2๐‘—๐œ‹)๐‘‰๐‘‰3 = 0โˆ’๐‘—๐‘—๐‘— ๐‘‰๐‘‰1 + (โˆ’8 + ๐‘—๐‘—2๐‘—)๐‘‰๐‘‰2+(8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)๐‘‰๐‘‰3 = โˆ’ โˆ’144 + ๐‘—๐‘—32๐‘—โˆ’๐‘—๐‘—2๐‘— + 27 ๐‘‰๐‘‰1 + 12 + ๐‘—๐‘—๐‘—2 ๐‘‰๐‘‰2 + โˆ’84 + ๐‘—๐‘—๐œ‹๐œ‹ ๐‘‰๐‘‰3 = โˆ’1256 + ๐‘—๐‘—3๐‘—๐‘—.9

Arrange the node equations into a matrix equation:โˆ’366 + ๐‘—๐‘—2๐‘—๐‘— 108 + ๐‘—๐‘—๐œ‹๐‘— (96 โˆ’ ๐‘—๐‘—2๐‘—๐œ‹)

โˆ’๐‘—๐‘—๐‘— (โˆ’8 + ๐‘—๐‘—2๐‘—) (8 โˆ’ ๐‘—๐‘—๐‘—๐‘—)โˆ’๐‘—๐‘—2๐‘— + 27 12 + ๐‘—๐‘—๐‘—2 โˆ’84 + ๐‘—๐‘—๐œ‹๐œ‹

๐‘‰๐‘‰1๐‘‰๐‘‰2๐‘‰๐‘‰3

=0

144 โˆ’ ๐‘—๐‘—32๐‘—โˆ’1256 + ๐‘—๐‘—3๐‘—๐‘—.9

๐‘‰๐‘‰1 = 7.091โˆ  โˆ’ 19.8ยฐ๐‘‰๐‘‰2 = 1.448โˆ 168.9ยฐ๐‘‰๐‘‰3 = 14.00โˆ ๐‘—2.0ยฐ

top related