antociani si antocianidine final

38
Ministerul Educaţiei al Republicii Moldova Universitatea de Stat din Moldova Catedra de Chimie Industrială şi Tehnologie REFERAT: ANTOCIANI ȘI ANTOCIANIDINE A elaborat: An.I, Masterat Rotari Ina Specialitatea: TPCM Conducător ştiintific: Doctor în chimie, lector universitar Zadorojnîi Alexandru

Upload: ina-rotari

Post on 01-Jan-2016

142 views

Category:

Documents


13 download

TRANSCRIPT

Page 1: Antociani Si Antocianidine Final

Ministerul Educaţiei al Republicii MoldovaUniversitatea de Stat din Moldova

Catedra de Chimie Industrială şi Tehnologie

REFERAT:

ANTOCIANI ȘI ANTOCIANIDINE

A elaborat:An.I, Masterat

Rotari InaSpecialitatea:

TPCM

Conducător ştiintific: Doctor în chimie, lector universitar

Zadorojnîi Alexandru

Chişinău 2013

Page 2: Antociani Si Antocianidine Final

CUPRINS

Introducere.......................................................................................................................................2

CAPITOLUL I. Chimia antocianilor……………….......................................................................3

CAPITOLUL II. Stabilitatea antocianilor.......................................................................................8

II.1. Efectul solventului şi efectul concentraţiei

antocianilor......................................................8

II.2. Influenţa pH-ului.................................................................................................................8

II.3. Efectul copigmentării........................................................................................................10

II.4. Interacţiunea cu ionii metalici...........................................................................................12

II.5. Activitatea antioxidantă....................................................................................................13

II.6. Piranoantocianii.................................................................................................................14

CAPITOLUL III . Metode de extracţie şi obţinerea preparatelor de antociani...........................16

III.1. Extracţia antocianilor din materii prime.........................................................................16

III.1.1. Metode microbiologice, biochimice şi chimice......................................................16

III.1.2. Solubilitatea antocianilor în apă şi în solvenţi organici..........................................17

III.1.3. Tehnici de extracţie ale antocianilor.......................................................................18

III.2. Obţinerea preparatelor antocianice................................................................................18

III.2.1. Separarea prin precipitare........................................................................................18

III.2.2. Separarea prin cromatografie a antocianilor............................................................19

CONCLUZII................................................................................................................................21

BIBLIOGRAFIE..........................................................................................................................22

2

Page 3: Antociani Si Antocianidine Final

Introducere

Studiul coloranţilor naturali este un domeniu de investigaţii extensiv şi activ datorită

interesului crescut de a înlocui coloranţii sintetici care au efecte nocive asupra sănătăţii

oamenilor. Carotenoidele şi antocianii sunt coloranţii vegetali printre cei mai utilizaţi în

industria alimentară. Carotenoidele sunt liposolubile, stabile şi capabile să coloreze produsele

alimentare de la galben la roşu; acestea sunt obţinute în mare masură din morcovi, roşii şi

ardei. Pe de altă parte antocianii sunt solubili în apă şi mai puţin stabili decât carotenoidele;

aceştia sunt extraşi din struguri, fructe de pădure, varză roşie, mere, ridichi, lalele, trandafiri,

orhidee ş.a.

Antocianii (din greacă anthos = floare şi kianos = albastru) sunt cei mai importanţi

pigmenţi ai plantelor vasculare; aceştia nu sunt toxici şi sunt usor încorporabili în medii apoase

ceea ce îi face utili pe post de coloranţi naturali hidrosolubili. Aceşti pigmenţi sunt responsabili

pentru portocaliul strălucitor, roz, roşu, violet şi albastru în florile şi fructele unor plante.

Altă proprietate importantă a antocianilor este activitatea lor antioxidantă, care joacă

un rol vital în prevenirea bolilor neuronale şi cardiovasculare, cancer şi diabet printre altele.

Există studii privind efectul antocianilor în tratamentele împotriva cancerului, efectul în

nutriţia umană şi activitatea sa biologică [1].

3

Page 4: Antociani Si Antocianidine Final

CAPITOLUL I. Chimia antocianilor

Principala clasă de coloranţi alimentari derivaţi de benzopiran este reprezentată de

antociani, la aceştia adăugându-se flavoinoizi, taninuri şi coloranţi chalconici a căror structură

derivă din sistemul benzopiranic.

Antocianii sunt coloranţi hidrosolubili cu largă răspândire, responsabili de culoarea

orange, roşu, violet, sau albastru a multor flori, fructe sau legume. Utilizarea lor ca şi coloranţi

este atestată încă din antichitate deoarece romanii utilizau fructe intens colorate pentru a

intensifica culoarea vinurilor. O specie de fructe, merişoarele (engleză: cranberries) intrau în

compoziţia unui aliment conservat pe bază de carne utilizat de indienii americani pentru

călătoriile lungi, numit pemmican, conferindu-i acestuia o culoare şi o aromă plăcute şi

asigurându-i totodată o valoare acidă a pH- ului pentru a împiedica dezvoltarea

microorganismelor.

În acest moment sunt cunoscuţi 539 antociani dintre care 277 au fost identificaţi după

anul 1992. Din punct de vedere chimic antocianii sunt glicozide ale antocianidinelor având

structura de bază cationul de 2-fenilbenzopiriliu (flaviliu), substituit cu grupe OH fenolice şi/sau

metoxil [2].

Antocianidinele (sau agliconii) sunt formaţi dintr-un inel aromatic (A), legat de un inel

heterociclic (C) care conţine un atom de oxigen, care la rândul său este legat printr-o legătură

carbon-carbon de un al treilea inel aromatic (B) – Figura 1.

Figura 1. Structura generală a antocianilor

4

Page 5: Antociani Si Antocianidine Final

Tabelul 1. Identificarea structurală a antocianidinelor (agliconii).

Nume Abrevieri Grupări CuloriR R R R R R R

Apigeninidina Ap H OH H OH H OH H

Arabidina Ab H H OH OH H OH OMe N.R.*Aurantinidina Au OH OH OH OH H OH HCapensinidina Cp OH OMe H OH OMe OH OMe Albastru-roşu

Carajurina Cj H H OH OH H OMe OMe N.R.*Cianidina Cy OH OH H OH OH OH H Portocaliu-

roşu

Delfinidina Dp OH OH H OH OH OH OH Albastru-roşuEuropinidina Eu OH OMe H OH OMe OH OH Albastru-roşuHirsutidina Hs OH OH H OMe OMe OH OMe Albastru-roşu3’-HidroxiAb 3’OHAb H H OH OH OH OH OMe N.R.*6-HidroxiCy 6OHCy OH OH OH OH OH OH OH Roşu6-HidroxiDp 6OHDp OH OH OH OH OH OH OH Albastru-roşu6-HidroxiPg 6OHPg OH OH OH OH H OH H N.R.*

Luteolina Lt H OH H OH OH OH HMalvidina Mv OH OH H OH OMe OH OMe Albastru-roşu5-MetilCy 5-MCy OH OMe H OH OH OH H Portocaliu-

roşuPelargonidina Pg OH OH H OH H OH H

Peonidina Pn OH OH H OH OMe OH H Portocaliu-Petunidina Pt OH OH H OH OMe OH OH Albastru-roşuPulchelidina Pl OH OMe H OH OH OH OH Albastru-roşuRiccionidina RiA OH H OH OH H OH H N.R.*Rosinidina Rs OH OH H OMe OMe OH H RoşuTricetinidina Tr H OH H OH OH OH OH Roşu

*N.R.: nu s-a raportat.

Când antocianidinele se găsesc în forma lor glicozidă (legate de un rest de zahar) sunt cunoscute

sub denumirea de antociani.

În natură se găsesc o mare varietate de antociani (numele şi abrevierile celor mai comuni

dintre ei se găsesc în Tabelul 1). Principalele diferenţe dintre ei sunt numărul grupelor OH, natura şi

numărul zaharurilor legate de structura lor, carboxilaţi alifatici sau aromatici legaţi în molecula de

zahar şi poziţia acestor legături.

Au fost identificate 31 de antocianidine diferite dar marea majoritate a coloranţilor naturali de

acest tip (peste 90%) se bazează pe şase compuşi: pelargonidina (Pg), cianidina (Cy), delfinidina

(Dp), peonidina (Pn), malvidina (Mv) şi petunidina (Pt) ale căror structuri sunt prezentate în Figura

2.

5

Page 6: Antociani Si Antocianidine Final

Pelargonidina Cianidina

Delfinidina Peonidina

Malvidina Petunidina

Figura 2. [3]Structurile principalelor antocianidine prezente în antociani.

Tabelul de mai jos prezintă codificarea E a acestor compuşi, folosiţi ca aditivi alimentari

(coloranţi):

Tabelul 2. Codificări E.

Compus sau extract Cod ECianidina E 163aDelfinidina E 163bMalvidina E 163c

6

Page 7: Antociani Si Antocianidine Final

Pelargonidina E 163dPeonidina E 163ePetunidina E 163fExtract din pieliţa strugurilor E 163(i)Mixtură antocian E 163(ii)Extract de coacăze E 163(iii)

Zaharurile care intră în constituţia acestor coloranţi naturali sunt: monozaharide, în ordinea

abundenţei, glucoza, ramnoza, galactoza, xiloza, arabinoza şi acidul glucuronic; dizaharide

dintre care cele mai frecvente sunt soforoza (2- glucozilglucoză), rutinosa (6-ramnozilglucoză),

sambubioza (2-xilozilglucoză), genţiobioză (6-glucozilglucoză) ş.a. Sunt cunoscuţi de

asemenea şi un număr redus de antociani (19) care au în compoziţie trizaharide. Antocianii pot

fi de asemenea acilaţi, zaharidele constituente fiind esterificate cu una sau mai multe resturi de

acizi hidroxicinamici (p-cumaric, cafeic, ferulic), hidroxibenzoici (p-hidroxibenzoic, galic), sau

acizi alifatici de tipul malonic, acetic, malic, tartric, oxalic etc. Principalele surse industriale de

antociani sunt incluse în Tabelul 3.

Tabelul 3. Surse industriale de antociani.

Sursa Antocianii prezenţi majoritar

Pieliţa strugurilor şi tescovinaCianidina, delfinidina, petunidina şi peonidina ca monoglucozide libere sau acilate cu acid acetic, p-cumaric şi cafeic

Varza roşieCianidina, glucozida acilată cu acid p-cumaric şi ferulic

AfineleCianidina şi peonidina sub formă de monogalactozide şi arabinozide

Caliciile de Rosella (Hibiscus sabdariffa)

Cianidina şi delfinidina sub formă de glucozide

Coacăze negreCianidina şi delfinidina ca diglicozide libere şi acilate

Fructe de socCianidina diferite glicozide simple sau acilate cu acid p-cumaric

Dintre acestea, sursa principală constă în reziduurile care rămân la stoarcerea strugurilor care

conţin mono- şi diglicozide ale cianidinei, peonidinei, malvidinei şi delfinidinei. Cea mai

utilizată metodă de extracţie este tratarea pieliţei de struguri cu apă ce conţine până la 3000

ppm dioxid de sulf (sau echivalentul în bisulfit sau metabisulfit). Prezenţa dioxidului de sulf

intensifică extracţia şi creşte stabilitatea produsului final. După 48 – 72 ore lichidul este

decantat de pe materialul vegetal, filtrat, desulfurat şi concentrat. Se obţine astfel un lichid 7

Page 8: Antociani Si Antocianidine Final

limpede cu putere tinctorială mare care poate fi transformat prin atomizare într-o pudră colorată

hidrosolubilă. Extracţia antocianilor din cojile de struguri se poate face şi cu soluţii alcoolice

(metanol, etanol) în care se adaugă un acid mineral (HCl), acid tartric, sau dioxid de sulf (0,4 –

0,6%) dar aceasta implică costuri suplimentare datorate separării alcoolului utilizat. O variantă

modernă de separare se bazează pe răşini schimbătoare de ioni specifice cationului de

benzopiriliu care se eluează cu etanol saturat cu acid clorhidric. Deşi produsul obţinut are o

puritate avansată utilizarea răşinilor schimbătoare de ioni este limitată de costul ridicat al

acestora. Colorantul obţinut din struguri este cunoscut şi sub numele de enocianină (E 163) şi

este în principal utilizat pentru îmbunătăţirea culorii vinurilor. Alte utilizări sunt colorarea

băuturilor răcoritoare, a produselor zaharoase, a sosurilor de fructe şi a unor produse lactate.

8

Page 9: Antociani Si Antocianidine Final

CAPITOLUL II. Stabilitatea antocianilor

II.1. Efectul solventului şi efectul concentraţiei antocianilor

Cercetările recente făcute asupra sărurilor de flaviliu sintetice în soluţii de natură

diferită (acetonitril:apă, etanol, propilenglicol, dioxan şi 2-butanonă) au demonstrat că îşi

schimbă culoarea în funcţie de solvent şi de concentraţia sărurilor de flaviliu. În solvenţi protici

(solvenţi care conţin protoni disociabili) sărurile de flaviliu formează o culoare roşie, în timp ce

în solvenţi aprotici soluţiile sunt galbene. Acest lucru a fost explicat prin faptul că speciile care

dau culorile roşu şi galben corespund unui monomer şi respectiv unui dimer. Prin urmare, când

se creşte concentraţia de săruri de flaviliu, este favorizată culoarea roşie.

De asemenea, s-a observat faptul că atunci când se creşte proporţia de apă în

amestecurile acetonitril:apă, monomerul se transformă într-un dimer colorat în verde (monomer

cu caracter de transfer de sarcină). Astfel, apa joacă un rol fundamental în dimerizarea sărurilor

de flaviliu, datorită faptului că aceste molecule necesită neutralizarea propriilor repulsii

electrostatice cu molecule de apă pentru ca dimerizarea să poata avea loc.

II.2. Influenţa pH-ului

Antocianii se pot găsi în diferite forme chimice, care depind de pH-ul soluției în

care se găsesc. La pH 1, cationul flaviliu (culoare roşie) este specia predominantă şi contribuie

la culorile purpuriu şi roşu (Figura 3A). La valori ale pH-ului între 2 şi 4, speciile albastre

chinoidale sunt predominante (Figura 3B-D). La valori ale pH-ului între 5 şi 6 pot fi observate

doar două specii incolore, iar acestea sunt pseudobaza carbinolică (Figura 3E) şi respectiv

chalcona (Figura 3F). La valori ale pH-ului mai mari de 7, antocianii se degradează, acest

lucru depinzând de grupele lor substituente (Figura 3, reacţia de degradare).

La valori ale pH-ului între 4 şi 6 coexistă patru forme structurale de antociani: cationul

flaviliu, baza chinoidă anhidră, baza carbinolică incoloră şi chalcona colorată galben-deschis.

Echilibrul dintre baza chinoidă şi carbinol are loc prin intermediul cationului flaviliu, aşa cum

se arată în Figura 1 (structurile D, A şi E). Când valoarea pH-ului creşte, creşte şi cantitatea de

bază anhidră, iar în condiţii mai acide specia predominantă este cationul roşu de flaviliu.

9

Page 10: Antociani Si Antocianidine Final

H+

O

OH

OR1

OH

OH

OR3

OR2

OHO

+

OH

OR1

OH

OH

OR3

OR2

OH

OH

OR1

OH

OH

OR3

OR2

O

H+

+ H2O

pH=1 (A) pH=5 (E) pH=6 (F)

10

Page 11: Antociani Si Antocianidine Final

Figura 3. Formele chimice ale antocianilor dependente de pH şi reacţiile de degradare

ale antocianilor; unde R1 = H sau o zaharidă, R2 şi R3 = H sau metil.

Stabilitatea antocianidinelor este influenţată de substituenţii inelului B (Figura 1) şi de

prezenţa adiţională a grupelor hidroxil sau metoxil care scad stabilitatea agliconului în mediile 11

Page 12: Antociani Si Antocianidine Final

neutre. În consecinţă, Pg este cea mai stabilă antocianidină. În contrast cu agliconii, derivaţii de

monoglicozide şi cel mai frecvent cei de diglicozide sunt mai stabili în condiţii neutre de pH. Acest

comportament este explicat datorită faptului că molecula de zahar evită degradarea intermediarilor

instabili în acizi fenolici şi aldehide (Figura 3, reacţia de degradare).

Studiul unor antociani acilaţi izolaţi din surse naturale (varză roşie, ridichie roşie, etc.) au

arătat că aceştia prezintă o mai mare stabilitate la schimbările de pH, tratament termic şi expunere

la lumină ceea ce face posibilă utilizarea lor în valori mai ridicate ale pH-ului (4,2 – 4,5) de

exemplu pentru unele produse lactate (iaurt, smântână fermentată, brânză de vaci). Îmbunătăţirea

stabilităţii este pusă pe seama unor reacţii complexe de copigmentare intra şi intermoleculară,

fenomene de agregare, complexare cu metale şi prezenţei unor săruri anorganice.

II.3. Efectul copigmentării

Copigmentarea este un fenomen în care pigmenţii şi diverşi compuşi organici fără culoare,

sau ioni metalici, formează asocieri moleculare sau complexe generând o schimbare sau o creştere

în intensitate a culorii. În ştiinţa alimentelor, acest fenomen este considerat o interacţiune foarte

importantă deoarece culoarea este unul din principalii factori cruciali în acceptarea unui produs.

Anumite cercetări sugerează faptul că copigmentarea antocianilor cu alţi compuşi (copigmenţi)

este principalul mecanism de stabilizare a culorii în plante. Copigmenţii sunt sisteme bogate în

electroni π care sunt capabile să se asocieze cu ioni flaviliu, care sunt destul de săraci în electroni.

Aceste asocieri oferă protecţie pentru atacul nucleofilic al apei în poziţia 2 a ionului flaviliu şi

pentru alte specii precum peroxizii şi dioxidul de sulf în poziţia 4.

Copigmenţii sunt în general fără culoare, dar amestecaţi cu o soluţie de antociani, are loc o

interacţie producând un efect hipercromic şi o deplasare batocromică în spectrul de absorbţie

(regiunea UV-Vis). Copigmenţii pot fi flavonoizi, alcaloizi, aminoacizi, acizi organici, nucleotide,

polizaharide, metale sau alţi antociani.

Interacţiunea antocian-copigment poate avea loc în cinci moduri diferite depinzând de

speciile care interacţionează (Figura 4). Dacă copigmentul este alt antocian se pot forma o

asociere de sine sau o copigmentare intramoleculară (Figura 4A şi B); când interacţiunea este cu

un metal se produce o complexare (Figura 4C); în cazul copigmenţilor cu electroni liberi perechi

are loc o copigmentare intermoleculară (Figura 4D); în final, în cel mai complex caz,

copigmentarea poate fi efectuată de către aglicon, zahar, copigment şi protoni, toţi în acelaşi timp.

Când copigmentul este alt compus fenolic, interacţia este tranzitorie din cauza lipsei

legăturilor chimice. Acest comportament este rezultatul fenomenului chimic cunoscut ca formarea

complexului de transfer de sarcină sau interacţiuni π-π; acest fenomen are loc atunci când

12

Page 13: Antociani Si Antocianidine Final

interacţionează compuşi cu sarcini diferite. Astfel, în inelele legate de o legatură slabă, densitatea

electronică este transferată de la inelul bogat în electroni la cel sărac în electroni; deci cum ionul

flaviniu în antociani este încărcat pozitiv, acesta este candidatul potrivit pentru formarea de

complexe prin transfer de sarcină cu substraturi bogate în electroni.

Copigmentarea totală care rezultă se bazează pe două efecte: (1) formarea de complex π-π

care cauzează schimbări în proprietăţile spectrale ale moleculelor în ionul flaviliu, crescând

13

Page 14: Antociani Si Antocianidine Final

astfel intensitatea absorbţiei (efect hipercromic) şi lungimea sa de undă (efect batocromic); şi (2)

stabilizarea formei flaviliu de complexul π, deplasează echilibrul în aşa fel încât culoarea roşie

creşte în intensitate (Figura 5). Prin urmare, magnitudinea efectului copigmentării este

dependentă de pH, deoarece la valori scăzute ale pH-ului, toate moleculele de antocian se află în

forma ionului flaviliu, iar la valori mari de pH toate moleculele de antocian se află în forma

pseudobazei carbinolice, care este incoloră.

Efectul copigmentării este evident în condiţii slab acide (pH 4 – 6) unde antocianii se

află în forma lor incoloră. Recent s-a propus că formarea complexului π- π induce reacţii dintre

antociani şi taninuri în vinuri, producând legături covalente care generează taninurile

pigmentate. Chimia cuplării dintre antociani şi taninuri nu este bine cunoscută; cu toate acestea,

anumiţi cercetători au sugerat faptul că mecanismul implică acetaldehida, taninuri şi antociani;

reacţii similare au fost de asemenea observate între taninuri şi flavan-3-oli.

Figura 4. Interacţiunea antocianilor. (A) asocierea de sine, (B) copigmentarea

intramoleculară, (C) complexarea cu metal, (D) copigmentare intermoleculară.

14

Page 15: Antociani Si Antocianidine Final

Figura 5. Exemplu de stabilizare a antocianilor datorită formării complexului de

transfer de sarcină (interacţiunea antocianilor cu un compus fenolic).

II.4. Interacţiunea cu ionii metalici

Varietatea culorilor în flori a fost iniţial explicată prin formarea de chelaţi între metale şi

sărurile de flaviliu. În ciuda interesului scăzut în industria alimentară despre complexările

antocian-metal, aceasta interacţiune constituie o alternativă viabilă pentru stabilizarea culorii;

mai ales dacă metalele implicate nu reprezintă un risc pentru sănătate sau chiar acestea fac parte

din mineralele esenţiale din dietă.

Una din principalele caracteristici ale antocianilor şi antocianidinelor cu grupări o-

dihidroxil în inelul B (Cy, Dp, Pt) este capacitatea lor de a forma complexe metal-antocian

(Tabelul 1). Anumite studii despre stabilitatea culorii în plante sugerează că culorile albastre

apar datorită complexării dintre antociani şi anumite metale precum Al, Fe, Cu, Sn, Mg şi Mo.

În interacţia Al (III)-antocian, complexarea a fost efectuată cu Cy şi alţi derivaţi de

flavonoide şi s-a demonstrat faptul că acest proces stabilizează baza chinoidă prin evitarea

oxidării sale. Alţi autori au studiat variaţia culorii ţesutului de varză Hindu adăugând soluţii de

Mo (IV şi VI), unde în ambele cazuri s-a stabilizat culoarea albastră. Acest fapt sugerează o

posibilă complexare antocian-molibden.

Mai multe studii recente au arătat că complexarea dintre o-dihidroxil antociani şi ionii de 15

Page 16: Antociani Si Antocianidine Final

Fe (III) sau Mg (II) la pH 5 este esenţială pentru formarea culorii albastre în plante, mai ales

dacă raportul stoechiometric antocian:Fe (III) este 1:6 sau mai mult pentru Mg (II).

II.5. Activitatea antioxidantă

Compuşii care se oxidează cel mai uşor sunt de regulă cei mai buni antioxidanți (molecule

care pot dona un electron liber sau atomi de hidrogen radicalilor liberi reactivi). Câteva studii au

sugerat faptul că conţinutul de antocian şi activitatea lor antioxidantă corespunzătoare contribuie

la efectul protector al fructelor şi al legumelor împotriva bolilor degenerative şi cronice. Anumite

plante şi extracte din fructe cu conţinut ridicat în compuşi fenolici s-a raportat că acestea

acţionează ca inhibitori de mutageneză şi carcinogeneză. În categoria substanţelor fitochimice

care prezintă activitate antioxidantă sunt incluşi, în afară de compuşii fenolici (flavonoizi),

compuşi cu azot (derivaţi de clorofilă), tocoferoli, carotenoide şi acidul ascorbic.

În catecoli oxidarea are loc prin radicalii liberi până când se formează o semichinonă foarte

stabilă. Compuşii care conţin catecol sau 1,4-hidrochinonă sunt uşor de oxidat deoarece radicalul

fenoxil poate fi stabilizat cu oxigen. Aceste specii sunt destul de stabile şi nu extrag hidrogen din

alte substanţe şi au o durată de timp suficientă pentru a reacţiona cu o altă semichinonă şi de a

crea o reacţie de deprotonare care generează o chinonă şi un grup fenolic utilizând doi radicali.

Dacă se face o analogie între grupele catecol şi cele mai comune antocianidine ar fi de

aşteptat ca cele cu substituţie o-dihidroxilică (Cy, Dp şi Pt) să fie cele mai sensibile la oxidare. În

cazul oxidării Pg, Pn şi Mv oxidarea nu este uşoară din cauza faptului că aceşti compuşi nu sunt

substituiţi o-dihidroxil. Din cele şase cele mai comune antocianidine, Pg este cea mai stabilă în

condiţii de pH neutru.

Considerând stabilizarea radicalului semichinonă în catecol, în Figura 6 se propune un

mecanism al radicalilor liberi pentru stabilizarea semichinonei formate din oxidarea Cy.

Presupunând, de asemenea, această supoziţie pentru antocianidinele o- dihidroxil cu metalele,

este probabil ca complexul să reducă capacitatea antioxidantă a antocianilor sau

antocianidinelor, deoarece atomii de oxigen sunt legaţi de ionul metalic, la fel ca în complexul

Al-antocian şi aceştia nu ar mai putea fi disponibili pentru reacţiile de oxidare.

Antocianidinele şi antocianii au arătat o activitate antioxidantă mai ridicată decât

vitaminele C şi E. Aceşti compuşi sunt capabili de a captura radicali liberi prin donarea atomilor

de hidrogen fenolici; acesta este motivul activității anticarcinogenice. De asemenea, s-a raportat

o corelaţie liniară între valorile capacității antioxidante şi conţinutul de antociani în mure, zmeură

roşie, zmeură neagră şi căpşune; în plus s-a descris faptul că extractele lor posedă o activitate de

baleiaj ridicată faţă de speciile reactive de oxigen generate chimic. Activitatea antioxidantă a

fructelor de pădure este direct proporţională cu conţinutul de antociani.

16

Page 17: Antociani Si Antocianidine Final

Figura 6. Mecanismul propus pentru stabilizarea radicalului semichinonă (structuri de

rezonanţă.

II.6. Piranoantocianii

Prima menţiune despre piranoantociani a apărut în anul 1996 când a fost detectată o

nouă clasă de pigmenţi în filtratele din vinurile roşii. Aceste molecule au căpătat o atenţie din

ce în ce mai mare în ultimii zece ani deoarece sunt mai stabile la variaţii de pH decât antocianii.

Aceştia sunt formaţi prin reacţia dintre antociani şi molecule cu greutate moleculară scăzută

precum 4-vinilfenol, acid piruvic și flavonoli. De asemenea, anumiţi piranoantociani au fost

identificaţi în studii privind soluţii model de vin şi în vinuri. Aceste atribute diferite ale

piranoantocianilor au ridicat diverse întrebări despre o posibilă contribuţie a lor la culoarea

vinurilor roşii învechite.

Structura piranoantocianilor rezultă din ciclizarea dintre C-4 şi gruparea hidroxil la C-5

(Tabelul 1) a fracţiunii originale din flaviliu, obţinându-se un al patrulea inel (D) care se

presupune că ar fi responsabil pentru stabilitatea lor înaltă. Structurile bine cunoscute ale

principalilor piranoantociani sunt prezentate în Figura 7. Studiile făcute pe soluţii model au

arătat faptul că concentraţia lor este dependentă de câţiva factori precum acidul piruvic,

acetaldehidă, concentraţia de antociani, pH şi temperatură. Mecanismul propus sugerează o

reacţie dintre antocianii din vinuri cu acizii hidroxicinamici liberi, simpli şi intacţi, precum

acizii cumaric, cafeic, ferulic şi sinapic. S-a constatat că reacţia este destul de rapidă în soluţiile

17

Page 18: Antociani Si Antocianidine Final

model, dar depinde de condiţiile de depozitare. De asemenea, s-a observat că concentraţia

acestor pigmenţi nou-formaţi a crescut cu timpul depozitării vinurilor roşii. Pentru analiza

compuşilor puri s-au folosit UV-Vis, RMN de 1H şi 13C, ESI-MS, şi LC-ESI-MS.

Anumiţi piranoantociani au fost identificaţi şi în sucul de morcovi negrii, sucul de

portocale roşii, deşi structura antocianilor din portocalele roşii este diferită de pigmenţii comuni

întâlniţi în vinurile roşii sau morcovii negrii, formarea de astfel de pigmenţi de piranoantociani

în sucul de portocale roşii a fost probabil să aibă loc.

Figura 7. Structurile chimice ale principalilor piranoantociani.

18

Page 19: Antociani Si Antocianidine Final

CAPITOLUL III . Metode de extracţie şi obţinerea preparatelor de antociani

III.1. Extracţia antocianilor din materii prime

Extracţia cu solvent este cea mai comună metodă folosită pentru extracţia diverşilor

compuşi ce se găsesc în fructe, inclusiv pentru flavonoizi. Compuşii fenolici au fost extraşi prin

măcinare, uscare sau liofilizarea fructelor, sau doar prin înmuierea fructelor proaspete în

solvenţii de extracţie care vor fi precizaţi în continuare. Antocianii sunt molecule polare, aşadar

cei mai comuni solvenţi folosiţi pentru extracţii sunt amestecurile apoase de etanol, metanol sau

acetonă. Aceste metodologii implică coextracţia compuşilor nonfenolici, precum zaharurile,

acizii organici şi proteinele, necesitând procese ulterioare de purificare (spre exemplu extracţia în

fază solidă).

Printre cele mai frecvente metode sunt acelea în care se folosesc ca extractanţi metanol

sau etanol acidifiat. Dintre acestea, extracţia cu metanol este cea mai eficientă; de fapt, s-a

constatat că în cazul extracţiei antocianilor din pulpă de struguri, extracţia cu metanol este cu

20% mai eficientă decât cea cu etanol, şi cu 73% mai eficientă decât cu apă simplă; cu toate

acestea, în industria alimentară, etanolul este preferat datorită toxicităţii metanolului.

După cum am menţionat mai sus, materia primă, supusă extracţiei, conţine factori

străini, care pot să interfereze cu antocianii, mascând sau modificând proprietăţile lor. Obţinerea

extractului veritabil de antociani necesită în majoritatea cazurilor о prelucrare preventivă a

materiilor prime cu scopul eliminării influenţei nedorite a factorilor străini, prelucrare care

include utilizarea metodelor mecanice, fizico-chimice şi chimice. Instalaţiile industriale moderne

pentru extracţie permit adaptarea gradului de fărâmiţare şi omogenizare a materiei prime,

temperatura, pH-ul, timpul, raportul raţional între masa materiei prime şi volumul solventului,

ceea ce dă posibilitate de a prognoza caracteristicile calitative şi cantitative ale extractului.

III.1.1. Metode microbiologice, biochimice şi chimice

Metodele microbiologice permit eliminarea a numeroase substanţe parazite. Anume din

aceasta cauza reziduurile fermentate sunt câteodată mai convenabile pentru extracţie, decât

materiile prime brute. Hidraţii de carbon pot fi înlăturaţi prin fermentarea alcoolică sau

malonică. În aceste cazuri va avea loc stabilizarea parţială a antocianilor datorită biosintezei

substanţelor cu acţiune conservantă. Distrugerea membranelor citoplasmatice poate fi realizată

prin tratarea materiei prime cu preparatele enzimelor citolitice. Totuşi, trebuie ţinut cont de

faptul, că în prezenţa enzimelor deseori are loc şi transformarea antocianilor. Acizii organici şi

minerali de asemenea au acţiune citolitică. Prelucrarea materiei prime cu anhidridă acetică duce

la acetilarea completă a substanţelor fenolice, urmare fiind solubilizarea produşilor acetilării în

faza organică, substanţele, astfel obţinute, nu pot fi considerate drept naturale.

19

Page 20: Antociani Si Antocianidine Final

20

Page 21: Antociani Si Antocianidine Final

III.1.2. Solubilitatea antocianilor în apă şi în solvenţi organici

Solubilitatea antocianilor în apă prezintă о importanţă majoră pentru industria alimentară.

Agliconii sunt practic insolubili în apă, în schimb glucozidele se caracterizează prin solubilitate

mai ridicată. Solvenţii organici după comportamentul lor faţa de antociani se împart în 3 grupe:

- Solvenţi nepolari: Ei nu dizolvă nici antociani, nici antocianidine, chiar la

temperaturi înalte. Printre aceşti solvenţi pot fi menţionaţi benzen, hidrocarburile alifatice,

etilacetatul, eterul de petrol, eterul dietilic.

- Solvenţi organici polari: Ei dizolvă la fel de bine atât antocianidinele cât şi

antocianinele, la rece. Din această clasă fac parte alcoolii inferiori (metanolul, etanolul),

acetonitrilul, acetona etc.

- Solvenţi amfipolari: Ei asigură o solubilitate medie a antocianilor în comparaţie cu

celelalte tipuri de solvenţi. La acestea se referă alcoolii alifatici ( butanolii şi pentanolii

izomeri).

Schema complexă de tratare a materiei prime cu scopul extragerii antocianilor include

extracţia cu eter de petrol, etilacetat şi alcooli, consecutivitatea folosirii solvenţilor variind în

dependenţă de raportul componenţilor în materia primă.

Extracţia fracţionată are о serie de dezavantaje considerabile, unul din cele mai

principale fiind imposibilitatea obţinerii amestecului de antociani, care nu este contaminat cu

substanţe-balast. Mai mult decat atât, utilizarea unor solvenţi influenţează nemijlocit

stabilitatea antocianilor. Problema obţinerii amestecurilor de antociani, şi a componenţilor

individuali se rezolvă cu succes prin utilizarea metodelor urmatoare.

21

Page 22: Antociani Si Antocianidine Final

Figura 8. Extracţia fracţionată din materia primă

III.1.3. Tehnici de extracţie ale antocianilor

Influenţa puternică a acidităţii şi temperaturii, comportamentul deosebit al antocianilor în diferiţi

solvenţi impune modificarea substanţială a tehnologiilor tradiţionale de extracţie. Tehnologia utilizată

trebuie să asigure realizarea a 3 obiective: extracţia cea mai amplă a produsului necesar, contaminarea

minimă a extractului cu substanţe parazite şi evitarea descompunerii fermentative şi nefermentative în

timpul extracţiei. Extractele, obţinute prin diferite metode, se supun concentrării prin distilarea

dizolvantului, prin uscarea în aeroemulsie, inclusiv cu utilizarea ultrasunetelor. Concentrarea extractelor

de asemenea poate fi efectuată folosind procedeele de osmoză şi de ultrafiltrare prin membrane

semipermeabile cu diametrul porilor 0,004 ± 0,001 μm.

Extracţia din materia primă la rece

Această metodă este folosită frecvent în laborator. Utilizarea ei dă posibilitatea de a evita

transformarea termică a extractului, ceea ce permite conservarea componenţilor în stare nativă.

Dezavantajul metodei este gradul mic de extracţie şi timpul îndelungat al tratamentului, care variază de la

12 ore până la 2 săptămâni.

Tratarea rapidă a materiei prime cu extractant fierbinte

Metoda permite comasarea randamentului înalt de extracţie cu calităţile excelente ale extractului,

obţinut la rece, printre care sunt: transparenţa, cantitatea redusă a balastului solubil, stabilitatea

microbiologică şi chimică. În calitate de extractant se pot folosi solvenţi organici, apă, soluţiile apoase şi

alcoolice ale acidului citric. Un avantaj suplimentar al metodei este posibilitatea realizării procesului

eficient de extracţie în contracurent.

III.2. Obţinerea preparatelor antocianice

III.2.1. Separarea prin precipitare

Eliberarea extractului antocianic de balastul natural se efectuează folosind metoda de precipitare şi

metoda de separare cromatografică. Precipitarea face posibilă obţinerea amestecurilor complexe de

antociani, care sunt întotdeauna contaminaţi cu alte substanţe din compoziţia extractului şi cu

precipitantul utilizat.

22

Page 23: Antociani Si Antocianidine Final

Precipitare cu sărurile de plumb (II)

Antocianii pot fi precipitaţi din soluţii apoase neutre cu Pb(NO3)2, Pb(CH3COO)2 şi în

modul cel mai eficient, cu acetatul bazic de plumb (II), Pb(OH) (CH3COO). Precipitarea are loc

în medii neutre şi bazice, din care cauza pe parcursul separării se descompune о bună parte a

antocianilor. Sărurile de plumb pot precipita şi alte substanţe, ce conţin grupe carboxilice şi

fenolice, metoda se foloseşte pentru separarea acestor substanţe de hidraţii de carbon. După

centrifugarea şi spălarea precipitatului cu apă şi etanol, antocianii se trec în soluţie prin tratarea

multiplă cu etanol, acidulat cu HCl, iar PbCl2 greu solubil se elimină prin centrifugare. În timpul

operaţiunilor de precipitare cu sărurile de plumb, se descompun până la 20% din antociani,

probabil, datorită influenţei mediului neutru sau slab bazic. Preparatele antocianice astfel

obţinute, conţin ioni de Pb2+, care le fac toxice şi le schimbă proprietăţile analitice.

Precipitare cu acizi

Agliconii în forma sărurilor de flaviliu pot fi precipitaţi din soluţii apoase cu acizi tari.

Această metodă nu se utilizează pentru separarea antocianilor din cauza solubilităţii lor ridicate

şi a hidrolizei în mediul acid. Folosirea acizilor alimentari (citric, tartric etc.) nu este potrivită,

deoarece aceştia nu creeaza pH ≤ 1, acidul clorhidric fiind cel mai potrivit din punct de vedere al

proprietăţilor alimentare ale produsului finit. De obicei pentru precipitare se foloseşte soluţie de

10 – 20 % (masic) de acid clorhidric.

III.2.2. Separarea prin cromatografie a antocianilor

Metodele de extracţie fracţionată şi de precipitare, nu permit separarea completă a

antocianilor de substanţele-balast şi obţinerea lor în stare individuală. Realizarea acestor

obiective a devenit posibilă doar cu ajutorul metodelor cromatografice, care sunt simple,

eficiente şi diverse după natura adsorbantului şi a eluantului utilizat, a tehnicilor cromatografice.

Cromatografia în strat subţire şi pe hârtie

Pigmentarea proprie a antocianilor face extrem de utilizabilă metoda cromatografiei în

stratul subţire, deoarece cromatogramele în cele mai dese cazuri nu necesită developare

suplimentară. Eluanţii folosiţi au preponderent mediul acid, ceea ce denotă faptul, că antocianii

se separă în forma sărurilor de flaviliu. Cromatografia în strat subţire se foloseşte până în

prezent nu numai pentru identificarea, dar şi pentru separarea preparativă a antocianilor.

Solvenţii cel mai frecvent utilizaţi pot fi împărţiţi în 2 grupe: “butanolici”, consideraţi nepolari

(BAW şi Bu·HCl) şi “apoşi”,evident, mai polari. Dependenţa valorilor Rf de structura

antocianilor are unele particularităţi esenţiale. În solvenţii din ambele grupe valorile Rf se

23

Page 24: Antociani Si Antocianidine Final

micşorează cu hidroxilarea inelului nucleului fenilbenzopirilic, şi se măresc în cazul metoxilării

lui. Glucozidarea contribuie la creşterea valorilor Rf în solvenţi apoşi şi micşorarea lor în

solvenţi butanolici. Această tendinţă se inversează pentru antocianinele acetilate: Rf creşte în

solvenţi butanolici, şi scade în solvenţii apoşi.

Cromatografia în strat subţire de asemenea poate fi folosită mai ales pentru determinarea

vinurilor falsificate. În particular, dacă vinul conţine coloranţi artificiali de tipul carmazinei,

acestea îşi păstrează culoarea roşie, fiind cromatografiaţi pe hârtie, îmbibată cu soluţia

carbonatului de sodiu de 10 % (masic). Pigmenţii naturali din vinuri în aceste condiţii capătă

culoarea albastră [3].

24

Page 25: Antociani Si Antocianidine Final

CONCLUZII

Accentul asupra investigaţiilor recente ne permite sa prevedem o creştere notabilă în

utilizarea antocianilor pe post de coloranţi naturali în diverse produse în următorii ani. Având în

vedere efectul benefic pentru sănătate a acestor molecule, încorporarea lor în industria alimentară

şi a băuturilor va reprezenta o valoare importantă. Punerea în aplicare a unor metode mai bune de

extracţie, purificare şi identificare, mai întâi într-un laborator reper, iar apoi la scală de instalaţie

experimentală, va avea în viitorul apropiat un impact asupra costului acestor coloranţi şi a

standardelor lor; precum şi crearea de noi instrumente pentru autentificarea produselor

alimentare şi descoperirea falsurilor sofisticate.

În ultimul timp au fost efectuate numeroase studii privind efectul benefic al antocianilor

asupra sănătăţii: ingerarea acestora alături de alţi polifenoli prezenţi în alimente scade riscurile

de îmbolnăvire de cancer, boli cardiovasculare, boala Alzheimer, infecţii virale, etc., probabil

datorită acţiunii de antioxidant sau de modulare a activităţii unor enzime şi receptori celulari.

Este cunoscut aşa numitul “paradox francez” potrivit căruia mortalitatea datorată bolilor

cardiovasculare este mult mai mică decât cea atribuită proporţiei de acizi graşi saturaţi din dieta

zilnică a francezilor, acest lucru fiind pus pe seama consumării cu regularitate a vinului roşu,

bogat în antociani şi alte flavonoide.

25

Page 26: Antociani Si Antocianidine Final

BIBLIOGRAFIE

[1] A. Castañeda-Ovando, M.L. Pacheco-Hernández, M.E. Páez-Hernández, J.A.

Rodríguez, C.A. Galán-Vidal, Food Chemistry, 113, 2009, pag. 859-871.

[2] R. Stan, Coloranţi alimentari în "Aditivi alimentari - produşi naturali şi de

sinteză", Ed. Printech, Bucureşti, 2007, pag. 19-22.

[3] N. Barbă, C. N. Tărăbășanu-Mihăilă, A. Zadorojnâi, S. Chercheja Coloranți

organici în produsele alimentare, cosmetice și farmaceutice, Chișinău-2004, pag. 34-

37

26