applied system identification for constructed civil structures lecture

Upload: dionysius-siringoringo

Post on 06-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    1/44

    AppliedSystem

    Identification

    or ons ruc e v ruc ures

    DionysiusSiringoringo,Ph.D

    u u

    ,

    v.

    yJuly22,2010

    SeriesoflectureonAsiaPacificSummerSchool onSmartStructuresandControl

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    2/44

    Outline

    n ro uc on

    Definition

    Objectives

    ExperimentalMethods Classification

    TypeofExcitation TypeofResponse

    Classification:Parametricvs Nonparametric TypeofModel:Structuralvs Modalvs NonPhysical NumericalModel Domain:Timevs Frequencyvs CrossTimeFrequency

    Uncertainties

    Exam lesofA lication

    Discussions

    and

    Closure 2

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    3/44

    1.Introduction:Definition

    Aprocesstodeveloporimprovemathematicalrepresentationofastructuralsystemusingexperimentallyobtainedstructuralresponse(s).

    Mathematicalre resentationofastructurals stem:Mass,

    Stiffness,Damping,Flexibility,Connectivity

    response/deflection,strainresponse etc.

    ,

    structuralsystem,thetermstructuralidentificationiscommonlyused.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    4/44

    1.Introduction:Objectives

    WhySystemIdentificationforconstructedstructures?

    1. Mo e Va at ono new yconstructe structures

    verifyassumptionsindesignmodel(e.g.boundarycondition,nonlinear

    behavior,energydissipationmechanism/damping)

    verifyperformanceofcontrolsystem(e.g.baseisolation,TunedMass

    Damper,etc)

    2. ModelUpdating

    obtainFEMcalibratedstructuralmodel

    a just

    structura

    parameters

    a ter

    retro it

    or

    mo i ication

    detectstructuralchangespossiblyduetodefectordamage

    recognize

    environment/loading

    influence

    or

    pattern

    on

    the

    structure

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    5/44

    1.Introduction:Objectives

    WhySystemIdentificationforconstructedstructures?

    4. Earth uakeEn ineerin

    performance

    of

    structure

    during

    earthquake postearthquakestructuralassessment

    5. Wind Engineering verification/comparison withwindtunnelresults

    aerodynamic

    performance

    (e.g.

    aerodynamic

    damping

    of

    long

    span

    bridges)

    6. SoilStructureInteraction

    characterizeandquantifyparameterofsurroundingsoilmedium

    7. TrafficstructureInteraction

    characterizestructuralresponseduetocertaintypeofvehicle/train

    detectchangesinstructurevehicleinteractionmedium(e.g.pavementeffectonbridgeresponse,railwaytrackeffectontraincomfortmeasure)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    6/44

    1.Introduction:Scopes GlobalandLocal

    ofinstrumentedbridgesforglobalassessmentofthe

    structure

    YokohamaBayBridge

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    7/44

    1.Introduction:Scopes GlobalandLocal

    Examp eo

    Loca

    Structura

    I ent cat on

    :Eva uat on

    o

    amp ng

    onstaycableofcablestayedbridgetoassestheeffectivenessof

    cabledampersystem.

    CableHydraulicdamperStonecuttersBridge

    Singlemodedecayresponse

    ofthecable:f=0.49Hz

    -3

    -2.5

    -2

    -1.5

    =0.055487

    )log(m/s2/s)

    peak

    valley

    average

    Freevibrationtestofstaycablebypulland

    releasetest.

    80 100 120 140 160 180 200 220-5

    -4.5

    -4

    -3.5

    Time (s)

    Log(PeakAcc

    Cabledamping

    (logarithmicdecrement

    :

    d=0.055)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    8/44

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    9/44

    2.ExpMethods:TypeofExcitation

    Theexcitationcanbeclassifiedas:

    1. Dynamicorstatic(i.e.accordingtowhetherornottheyengage

    ner a e ec s

    2. Accordingtocontrollability,and

    .

    1. Controllable(measurableandunmeasurable) staticloads

    2. Uncontrollable(measurableandunmeasurable) staticloads

    3. Controllable(measurable

    and

    un

    measurable)

    dynamic

    loads

    4. Uncontrollablemeasurable dynamicloads

    5. Uncontrollableunmeasurabledynamicinput(ambient

    dynamicexcitation)

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    10/44

    2.ExpMethods:StaticLoads

    Controllable(measurableandunmeasurable) staticloads

    Relativel rareforfullscaleex erimentsonrealstructuresbecauseofthe

    scaleoftheloadrequiredtogenerateameasurableeffect.

    vehicles,eitherstationaryormoving

    Uncontrollable(measurableandunmeasurable) staticloads

    Genera yinc u e

    e ements

    o

    ynamic

    oa

    an

    response

    monitoring,

    particularlyinthecaseoftraffic andwindwhichgeneratequasistatic and

    dynamicresponse.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    11/44

    2.ExpMethods:DynamicLoads ControllableMeasurable

    Forcedvibrationtest(FVT)

    Transferfunctionsorfrequencyresponsefunctions(FRFs)scale

    input(forcing)tooutput(response)viaeithermassorstiffness

    ,

    aboutdissipativeeffects(mathematicallyrealisedasviscous

    damping)

    Examples: massexciters,Electrodynamicshakers,

    u

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    12/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurable

    Manualexcitation

    Impulseresponsefunctions(IRF)orfreevibrationresponse.

    Neither

    mass

    nor

    stiffness

    can

    be

    identified.

    Modal

    frequency

    anddampingcanbeestimatedquiteaccurately.

    Examples:Impacthammer,peoplejump,dropweighttest,

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    13/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    Controllablebut

    unmeasurable

    dynamic

    loads

    Manualexcitation:ImpactHammerTest

    Givin excitation to a short

    spanbridge

    by

    impact

    hammer

    Free

    vibration

    response

    of

    the

    bridge

    subjected

    toimpacthammer

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    14/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    Manualexcitation

    :Drop

    Weight

    Test

    bridgebydroppingsandbagweight

    Note:whiledropweighttestiseffective

    ExampleofFreevibrationresponseofthebridge

    excitedbydroppedweight

    inexciting

    the

    free

    vibration

    response

    ofthestructure,additionaldampingis

    expectedasthedroppedweighttends

    .

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    15/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurableExcitation

    1

    1.5

    anua

    exc a on:

    uan

    re ease

    es

    o

    s ay

    ca e

    Exampleoffreevibration

    res onse of a sta cable

    -1

    -0.5

    0

    0.5

    Accelera

    tion(m/s2)

    80 100 120 140 160 180 200 220-1.5

    Time (s)

    Flowcharttoobtaindampingvalueofastaycable

    FreeVi rationResponse

    RawDataFrequencyResponse

    Filteringmodeofinterest

    Singlemodefreevibration

    response

    Givingexcitationtoastaycablebypulland

    releasedtest

    usingenvelopeofdecayresponse

    Singlemodedampingvalue

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    16/44

    2.ExpMethods:DynamicLoads ControllableUnMeasurable Excitation

    e c eexc a on

    on ro e

    ra c

    Exampleofstrainresponse

    w ena ruc pass nga r ge

    Vehicleexcitation:

    1. Responselargerthanambient

    vibrationresponse.

    2. Stressand

    acceleration

    responses

    can

    beconductedsimultaneously

    3. Effectofvehiclebridgeinteraction

    .

    Exampleofaccelerationresponsewhenatruck

    passinga

    bridge

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    17/44

    Seismic excitation

    2.ExpMethods:DynamicLoads UncontrollableMeasurableExcitation

    Transferfunctionsorfrequencyresponsefunctions(FRFs)between seismic

    input(baseexcitation)tooutput(structureresponse).Structuralproperties,modal ro ertiesandmodal artici ationfactorcanbeestimated.

    Example:instrumentedbridgesandbuildingsinJapanandCaliforniaUS.

    Example:Yokohama

    Bay

    Bridge,

    instrumented

    cable

    stayed

    bridge

    near

    Tokyo

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    18/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    Ambientexcitation:wind,traffic,andunmeasured

    microtremor.

    Correlationsbetween

    response

    are

    used

    to

    estimate

    modal

    ro erties.Modesha esunscaled.Treatedasstochastic

    systemidentification.

    Example:periodicambientvibrationmeasurementand

    instrumentedbridgesandbuildings.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    19/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    xamp eo

    am en

    exc a on

    :w n

    n uce

    v ra on

    o

    suspensionbridge.Toweraccelerationresponse

    Treatedasstationaryrandomprocess.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    20/44

    2.ExpMethods:DynamicLoads UncontrollableunmeasurableExcitation

    .

    Bridgeresponsesubjectedtoopentrafficusuallytreatedasstationaryrandomprocess,

    Example

    of

    vertical

    acc

    and

    the

    spectrum

    of

    a

    medium

    span

    highway

    bridge

    to

    traffic.

    sincet einputisun nown.E ecto ve ic emassisusua yneg ecte .However,incase

    ofshortspanbridge,theeffectofvehiclemassmaynotbenegligibleandinfluencethe

    identifiedbridge

    frequency.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    21/44

    2.ExpMethods:TypeofResponseExcitation

    ,

    D namic:

    Acceleration Relativeofabsolutedisplacement

    Velocity

    Inclination Strain

    Stress

    a er

    ressure Structuralandenvironmentaltemperature

    WindDirection

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    22/44

    3.AnalysisMethods:Classification

    Parametrican

    Non

    parametric

    Mo e s

    Structuralmodel

    and

    initial

    estimate

    of

    model

    parameters

    are

    knownapriori.Measuredresponsesarefittedtoobtainthe

    bestestimateofmodelparameters.

    NonParametricModel

    Modelstructureisnotspecifiedapriori.Structuralresponses

    systemand

    quantities

    such

    as

    cross/auto

    correlations,

    transfer

    function/frequencyresponsefunction.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    23/44

    Exam le

    of

    Parametric

    Model

    3.AnalysisMethods:Classification

    OutputErrorMinimizationforsystemidentificationusingseismicresponse.

    modelisrequired

    F=objectivefunction

    Example:comparisonbetweenrecordedMinimizethedifferencebetweenthe

    measuredmodalparametersandmodel

    decksubjectedtoseismicexcitationgeneratedmodalparametersbyupdating

    parametersofthemodel iteratively

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    24/44

    3.AnalysisMethods:Classification

    StateSpaceSystemidentificationusingseismicresponse.

    modelandrealizationofobservability matrix,systemmatricesA,B,RandDcanbe

    obtainedand

    modal

    parameters

    are

    realized.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    25/44

    3.AnalysisMethods:TypesofModel

    .

    Systemismodeledintermsofmass,stiffness,orflexibility,and

    dampingmatrices.

    Geometric

    distribution

    of

    mass,

    stiffness

    and

    damping

    are

    known

    Structuralconnectivitybetweendegreeoffreedomispreserved

    )()()()( tBztKutuCtuM =++ &&&Equationofmotion:

    tCMKM

    IA

    =

    11

    0exp

    SystemmatrixAinstatespaceformfor

    discretedata:

    [ ] [ ]( 1) ( ) ( )x k A x k B z k + = +

    k R x k D z k = +

    Equationofmotionindiscretedynamicsystem,wheresystem

    matrixAistobeindentified

    Goal:ToIndentifysystemmatrixAinitsoriginalform,fromwhichthemass,stiffness

    anddamping

    matrices

    can

    be

    retrieved.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    26/44

    3.AnalysisMethods:TypesofModel

    .

    Systemisdefinedinmodalcoordinatesdescribingthevibratorymotionofstructuresintermsofmodalfrequency,modaldampingandmodeshapes(alsomodephaseangleforcomplexmodes)

    Geometricdistributionofmass,stiffnessanddampingand

    informationon

    structural

    connectivity

    are

    not

    preserved.

    Describestheresonantspatial(modeshapes)andtemporalofthes ruc ure.

    Modalparametersareanalogoustoeigensolutionofstucturalmass

    and

    stiffness.Equationofmotionindiscretedynamicsystem,

    wheresystemmatrixAistobeindentified

    x x z+ = +

    [ ]( ) ( ) [ ] ( )y k R x k D z k = +

    Goal:ToIndentifysystemmatrixA bysolvingthe

    Eigenvalue problemand

    determine

    the

    modes.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    27/44

    3.AnalysisMethods:TypesofModel

    .

    Doesnothavephysicalrelationshipwiththestructure(i.e.nospatialinformation no eometr distributionofmass stiffness anddam in

    Simplyaparametercurvefitofthegivenmathematicalmodeltothemeasured

    data.

    Examples:AutoRegressiveMovingAverage(ARMA)anditsvariants,RationalPolynomialModeletc.

    Somecanbeconvertedtomodalmodelform.

    Example:AutoRegressiveMovingAverage(ARMA)Modelwheretheautoregressive

    coefficientscanberelatedtomodalparameters

    )()()()( 0111

    1 tyadt

    tdyadt

    tydadt

    tydn

    n

    nn

    n++

    L

    )()()()(

    0111tub

    dt

    tdub

    du

    tudb

    du

    tudb

    mmmm++=

    L

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    28/44

    3.AnalysisMethods:Domain

    1. FrequencyDomain

    TransferFunction

    /Frequency

    Response

    Function/

    Impulse

    ResponseFunction.

    AverageNormalizedPowerSpectrumDensity(ANPSD)

    ComplexExponentialFrequencyDomainMethod(Schmerr

    Eigensystem RealizationAlgorithminFrequencyDomain(ERAFD)(Juang &Suzuki1988)

    Frequency

    Doma n

    Decompos t on

    Br nc er et

    a .

    2001

    28

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    29/44

    3.AnalysisMethods:Domain

    2. TimeDomain

    IbrahimTimeDomain(ITD)(Ibrahim&Mikulcik 1973)

    LeastSquaredComplexExponentialMethod(LSCE)(Brown

    Polyreference ComplexExponentialMethod(PRCE)(Vold etal.

    1982) Eigensystem RealizationAlgorithm(ERA)(Juang &Pappa 1985)

    StochasticSubspaceIdentification(Overschee &DeMoor

    29

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    30/44

    3.AnalysisMethods:Domain

    Representsfrequencyevolutionastimeprogresses.

    Can detect nonlinearit and nonstationar si nals

    ShortTimeFourierTransform(STFT)

    Waveletbasedsystemidentification

    EmpiricalModeDecomposition HilbertHuangTransform

    signals)

    30

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    31/44

    3.AnalysisMethods:DirectandIndirectMethodTimeDomain

    WhentheIRF/FRFisavailable,theycanbeuseasinputdirectlyto

    s stemidentificationmethod.

    IndirectMethod

    When

    the

    IRF/FRF

    is

    unavailable

    such

    as

    in

    case

    of

    ambient

    v ra onmeasuremen ,ana ona me o snee e o

    constructsyntheticIRF,ex.throughcrosscorrelation(Natural

    ExcitationTechnique(NEXT)or throughRandomDecrement.

    RawData NEXT ERA

    Randec ITD

    31

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    32/44

    3.AnalysisMethods:Checklist

    Typesof

    Inputs

    and

    Outputs

    System

    Identification

    Method

    Controllabledynamicloads

    MeasuredInput(s)

    assexc teran a er rans er unct ons nput utput ys

    InstrumentedImpact

    Hammer

    SingleInput SingleOutput(SISO)orSingleInputMulti

    Output(SIMO)

    system

    Unmeasured In ut s

    Manualexcitation(people jumping) ImpulseResponseFunction/FreevibrationResponse

    Snapback, or step relaxation ImpulseResponseFunction/FreevibrationResponse

    Swingingbelltoexciteacathedraltower ImpulseResponseFunction/FreevibrationResponse

    Uncontrollabledynamicloads

    MeasuredInput(s)

    seismicexcitation(SingleInput) Transferfunction,SISOorSIMO

    seismicmultipleexcitation(MultipleInput) Transferfunctionmatrix, MIMO

    Uncontrollabledynamic

    loads

    UnmeasuredInput(s)

    ambientvibrationtest(operationalmodal

    analysis) Stationarybroadbandassumption

    windexcitation OutputCrosscorrelation

    trafficexcitation CovarianceDrivenSystemIdentification

    microtremorwith

    unmeasured

    input Data

    Driven

    Stochastic

    Subspace

    Identification 32

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    33/44

    4.Uncertainties

    Uncertaintyisunavoidableinunderstandingtheresultsofsystemidentification. Modalpropertiesaresusceptibleto

    .

    Howtoquantifytheconfidenceoftheidentifiedmodalproperties?

    .

    2. MonteCarloSimulation

    3. BootstrapMethod

    33

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    34/44

    4.Uncertainties:Errorpropagationanalysisusingperturbation

    CorrelationMatrix

    Input[Up]

    InformationMatrix = Ryy()=Ryy(0)+RyyCorrelationMatrix:

    InformationMatrix

    [Ryy],[Ryu],

    [Ruu]

    Output[Yp] SingularValue

    Yp()=Yp(0)+Yp Ryu()=Ryu(0)+Ryu = +

    Rhh()=Rhh(0)+RhhSingularValue

    Decom osition

    RealizationofSystem

    Matrix[A]

    ecompos on RealizationofSystem

    Matrix

    A()=A(0)+AObjectives:

    Realizationof

    Modal

    Parameters

    , ,

    RealizationofModal

    Parameters

    () = (0) + To

    define and

    quantifythe

    error

    on

    themodalparametersastheeffect

    ofinputandoutput noise

    34

    () = (0) + () = (0) +

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    35/44

    4.Uncertainties:Bootstrap Analysis

    boundsofidentifiedmodalparametersbyNEXTERA

    Randomlyselected Ensemble1 ERA

    CCF1,CCF2,CCF3,CCFN

    Randomlyselected

    componen

    CCF1,CCF5,CCF3,CCFMComputeCCFaverage

    Ensemble2 ERA

    1,1,1

    McomponentCCF7,CCF2,CCF1,CCFMComputeCCFaverage

    .

    2,2,2

    .

    Randomlyselected EnsembleP

    (Mcomponent)

    .

    .

    ERA

    .

    .

    CCF4,CCF6,CCF2,CCFM

    ComputeCCF

    average

    p,p,p

    CCF:CrosscorrelationfunctionEstimatemeanvalueand

    95%Confidencebound

    35

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    36/44

    4.Uncertainties:Bootstrap Analysis

    confidencelevelcanbeobtained

    Examp eso ri ge1s requencystatistica istri utionon i erentstructura con itions

    usingBootstrap

    Method

    36

    withcertainstatisticalcharacteristics.Thereforedecisionmadeonstructural

    condition

    involved

    statistical

    confidence.

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    37/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    BridgeType:

    3SpanSuspensionBridge

    Simplysupportedatthe

    Tower Height : 130m

    Tower width :21m atbase

    Length:

    1,380m

    Span: 330720330m

    montop

    Girdermaterial: Streamlinedsteelbox

    Towermaterial: Steelbox(welded)

    TotalDeckWidth: 20m Completed : 1998

    37

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    38/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    s ng

    o a

    arame ers

    38

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    39/44

    5.Examples:AmbientVibrationMeasurementofSuspensionBridge

    Structuralidentification

    :effect

    of

    friction

    force

    and

    aerodynamic

    forces

    on

    identified

    frequencyanddamping(Nagayama et.al2005)

    39

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    40/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    40

    l S i i d d S d ifi i f C bl S d id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    41/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    Adatadrivenidentificationmethodwasappliedconsideringmultipleinputexcitation

    andmultiple

    responses

    (MIMO

    System)

    41

    5 E l S i i I d d S t Id tifi ti f C bl St d B id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    42/44

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    Withdenseinstrumentationandgoodqualityofseismicrecordsweidentifybridge

    modalparameters

    until

    high

    order

    42

    5 E l S i i I d d S t Id tifi ti f C bl St d B id

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    43/44

    Observationofthe erformanceofseismicisolationdevicesusin 1st lon itudinal

    5.Examples:SeismicInducedSystemIdentificationofCableStayedBridge

    mode(Siringoringo &Fujino 2008)

    (b)TypicalMixedSlipStickMode(Earthquake19950703)(a)TypicalslipslipMode (Earthquake19900220)

    FromthefirstlongitudinalmodewecanobservebehaviorofLinkBearingConnection

    during

    earthquake.

    Differentbehaviour ofLinkBearingConnectionattheendpierswasobservedduring

    43

    .

    It

    was

    found

    that

    the

    expected

    slip

    slip

    mode

    only

    occurred

    during

    large

    earthquake.

    S t d R di M t i l

  • 8/3/2019 Applied System Identification for Constructed Civil Structures Lecture

    44/44

    SuggestedReadingsMaterials:

    ,

    ,

    ,

    .AppliedSystemIdentification byJer NanJuang

    MonitoringandAssessmentofStructuresbyGSTArmer

    TheStateoftheArtinStructuralIdentificationofConstructedFacilities(ASCEReport1999)

    Q

    &

    SQuestions andSharing? DionysiusSiringoringo

    . .u y . .

    44