ars.els-cdn.com  · web viewsupplementary materials. comparative analysis of separation...

16
SUPPLEMENTARY MATERIALS Comparative analysis of separation technologies for processing CO 2 rich natural gas in ultra- deepwater oil fields Ofélia de Queiroz Fernandes Araújo *1 , Alessandra de Carvalho Reis, José Luiz de Medeiros Chemical Engineering Department, Federal University of Rio de Janeiro Email: [email protected], [email protected], [email protected] Jailton Ferreira do Nascimento, Wilson Mantovani Grava, Ana Paula Santana Musse CENPES - PETROBRAS Emails: [email protected], [email protected], [email protected] APPENDIX A. Design and Capacity Data of Ultra- Deepwater FPSOs Table A1. APPENDIX B. Process Flowsheets as Simulated in ASPEN-HYSYS Figures B1, B2, B3, B4, B5 and B6. APPENDIX C. Process Equipment Data and Dimensioning Figures C1, C2, C3, C4 and C5. 1 Corresponding author. Email address: [email protected] (Ofelia Araujo). Tel.: +55(21)3938-7637.

Upload: hakhanh

Post on 03-Jan-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

SUPPLEMENTARY MATERIALS

Comparative analysis of separation technologies for processing CO2

rich natural gas in ultra-deepwater oil fields

Ofélia de Queiroz Fernandes Araújo*1, Alessandra de Carvalho Reis, José Luiz de Medeiros

Chemical Engineering Department, Federal University of Rio de Janeiro

Email: [email protected], [email protected], [email protected]

Jailton Ferreira do Nascimento, Wilson Mantovani Grava, Ana Paula Santana Musse

CENPES - PETROBRAS

Emails: [email protected], [email protected], [email protected]

APPENDIX A. Design and Capacity Data of Ultra-Deepwater FPSOsTable A1.

APPENDIX B. Process Flowsheets as Simulated in ASPEN-HYSYSFigures B1, B2, B3, B4, B5 and B6.

APPENDIX C. Process Equipment Data and DimensioningFigures C1, C2, C3, C4 and C5.

APPENDIX D. Formulae for Operational ExpendituresTable D1, Eq. (D1), Eq. (D2)

1 Corresponding author. Email address: [email protected] (Ofelia Araujo). Tel.: +55(21)3938-7637.

APPENDIX A. Design and Capacity Data of Ultra-Deepwater FPSOs

Table A1. Brazilian Ultra-Deepwater Pre-Salt FPSOs

FPSO Location FieldStorage Capacity (kb)

Depth (m)

Distance off the coast (km)

Design Capacity CO2

Separation Unit

(Note 2)

H2S

Separation Unit

(Note 3)

EOR

Topside Power Generation (ISO Rating)

Topside Dry Weight (O&G Processing)Oil

(kbpd)Gas

(MMsm3/d )

Water (kbwpd)

((Note 1)

CIDADE DE SÃO VICENTE (Ref. a,b) Iracema 600 2170 30 1 PW 1 No No NoCIDADE DE ANGRA DOS REIS (Ref.: c, d, e)

Lula 1600 2149 100 5 PW 90SW 100

MP Yes Yes 3 x 32MW 19000 t

CIDADE DE PARATY (Ref.: c, d, e) Lula NE 1600 2120 120 5 PW 150SW 150

MP No Yes 4 x 31MW 13000 t

CIDADE DE CARAGUATATUBA (Ref. c, e)

Lapa 1600 2140 100 5 PW 100 SW 120

No No 4 x 35MW 24000 t

CIDADE DE MANGARATIBA (Ref.: c, f) Iracema Sul 1600 2200 150 8 PW 150 SW 240

No MS 4 x 32MW 24000 t

CIDADE DE MARICA (Ref.: c) 2150 150 6 PW 120SW 200

MP No Yes 4 x 34MW 24000 t

CIDADE DE SÃO PAULO (Ref c, f) Sapinhoá 1600 2140 120 5 PW 120SW 150

MP No Yes 3 x 33MW 19000 t

CIDADE DE ITAGUAI (Ref. c, h) Iracema Norte 1600 2240 150 8 PW 150SW 264

No MS 4 x 32 MW 24000 t

CIDADE DE ILHABELA (Ref.: c) Sapinhoá 1600 2140 150 6 PW MP Yes Yes 4 x 34 MW 24000 t

(310 km off the coast)

120SW 180

CIDADE DE SAQUAREMA (Ref. c, e) Lula 1600 2150 150 6 PW 120SW 200

MP No Yes 4 x 34 MW 24000 t

CIDADE DE MARICÁ (Ref. c, e) Sapinhoá North

1600 2120 150 6 PW 120SW 200

MP No Yes 4 x 34 MW 24000 t

P-66 (Standard FPSO) (Ref., c) Lula South 2188(304 km off the coast)

150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-67 (Standard FPSO): FPSO Lula Norte (Ref., c)

Lula North 2170(250 km off the coast)

150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-68 (Standard FPSO): FPSO Lula Extremo Sul (Ref., c)

Iara Horst 2500 150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-69 (Standard FPSO): FPSO Atapu Norte (Ref., c)

Lula West 2500 150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-70 (Standard FPSO): FPSO Atapu Sul (Ref., c)

Lula Extreme South, Transfer of Right Tupi South

2500 150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-71 (Standard FPSO): FPSO Berbigão (Ref., c)

Iara NW 2500 150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-72 (Standard FPSO): FPSO Itaipu (Ref., c)

Transfer of Right Tupi NE

2500 150 7 PW 120SW 180

MP No Yes 4 x 31 MW 19000 t

P-73 (Standard FPSO): Transfer of 2500 150 7 PW MP No Yes 4 x 31 MW 19000 t

FPSO Búzios 6 (Ref., c) Right Entorno de Iara

120SW 180

P-74 (Transfer of Rights) FPSO Búzios 1 (Ref. c, g)

Buzios I 2500 150 7 PW 150SW 200

MP MS Yes 4 x 31 MW 22000 t

P-75 (Transfer of Rights) FPSO Búzios 2 (Ref. c, g)

Búzios II 2500 150 7 PW 150SW 200

MP No Yes 4 x 31 MW 22000 t

P-76 (Transfer of Rights) FPSO Búzios 3 (Ref. c, g)

Búzios III 2500 150 7 PW 150SW 200

MP MS Yes 4 x 31 MW 22000 t

P-77 (Transfer of Rights): FPSO Búzios 4(Ref. c, g)

Búzios IV 2500 150 7 PW 150SW 200

MP MS Yes 4 x 31 MW 22000 t

Note 1: PW=Produced Water, SW=Treated Seawater for Injection; Note 2: MP = Membrane Permeation; Note 3: MS = Molecular SieveSources:(a) http://abarrelfull.wikidot.com/cidade-de-sao-vicente-fpso; (b) http://www.inocean.no/fpso-success(c) Andrade, A.M.T., Vaz, C.E.M., Ribeiro, J., Lopreato, L.G.R., Nascimento, R.F.S. Offshore production units for Pre-salt projects. OTC-25691-MS. Offshore Technology Conference, Houston, USA, 2015.(d) http://www.sbmoffshore.com/wp-content/uploads/2013/07/FPSO_CIDADE_DE_PARATY_Petrobras_Brazil.pdf (e) http://subseaiq.com/data/PrintProject.aspx?project_id=274(f) http://www.modec.com/fps/fpso_fso/projects/(g) http://www.petrobras.com.br/fatos-e-dados/encomendas-a-estaleiros-carta-ao-valor-pro.htm(h) http://www.petrobras.com.br/fatos-e-dados/navio-plataforma-cidade-de-itaguai-chega-ao-brasil-para-integracao-de-modulos.htm

APPENDIX B. Process Flowsheets as Simulated in ASPEN-HYSYS

Figure B1. Process Flowsheet for MP Alternative for CO2 Removal from NG

Figure B2. Process Flowsheet for PA with PC Alternative for CO2 Removal from NG

Figure B3. Process Flowsheet for CA with MDEA-PZ Alternative for CO2 Removal from NG

Figure B4. Process Flowsheet for PA+MP Alternative for CO2 Removal from NG

Figure B5. Process Flowsheet for CA+MP Alternative for CO2 Removal from NG

Figure B6. Process Flowsheet for MP+MP Alternative for CO2 Removal from NG

APPENDIX C. Process Equipment Data and Dimensioning

Table C1. Overall Heat Transfer Coefficient for Several Types of Heat Exchangers

Type of heat exchangerU (W/m2K)

Minimum

Maximum

Average

Water Coolers      

Gas (< 3.5 Mpa) 200 285 242.5

Gas (3.5 - 7 Mpa) 285 455 370.0

Gas (> 7 Mpa) 455 570 512.5

MEA 740 850 795.0

Water Condensers      

Amine Regenerator 570 625 597.5

Reboilers      

Vapor 795 910 852.5

Others      

MEA - MEA 680 740 710.0

Source: Campbell. John M. Gas Conditioning and Processing. USA: Campbell Petroleum Series. 1992. 7th Edition.

P.S.: MEA values were used for MDEA.

Table C2. Equipment Dimensioning – CA Process

Equipment D (m) H (m) Maximum Pressure (bar) Area (m2) Power (kW)

V-1 2.3 9.1 50

Separator 3.9 15.6 4.5

V-100 1.6 6.5 11.5

V-101 1.2 4.9 35.5Lean/Rich Exchanger 4.5 4630.2

E-1 50.5 2090.9

E-3 12 306.1

E-4 36 190.4

E-5 100 263.7

E-100 50.5 3998.8

Reboiler 4 1716.8

Condenser 4 600.5

Booster Pump 1905.5

K-1 14078.4

K-2 7107.4

K-3 3002.6

K-4 3035.3

K-5 2427.7

K-6 1439.6Absorber 2.3 13.2 50

Regenerator 4.0 13.2 4

Table C3. Equipment Dimensioning – PC Process

Equipment D (m) H (m) Maximum Pressure (bar) Area (m2) Power (kW)

V-1 1.53 9.08 50

V-2 4.80 19.19 1

E-1 50.5 2091.1

E-2 50.5 272.9

E-3 4 698.4

E-4 12 460.6

E-5 36 257.0

E-6 100 275.5

P-1 3812.84

K-1 14078.16

K-2 5261.75

K-3 8012.39

K-4 7164.01

K-5 6622.62

K-6 5648.52

K-7 5029.38

T-1 2.01 6.61 50

Table C4. Equipment Dimensioning – MP Process

Equipment D (m) H (m) Maximum Pressure (bar) Area (m2) Power (kW)

V-1 2.4 9.5 44.5

V-2 2.7 10.8 20

V-3 1.6 6.5 15

E-1 45 2054.1

E-2 80 1110.9

E-3 52.5 323.3

E-4 12 741.9

E-5 36 532.9

E-6 100 299.8

K-1 12794.6

K-2 5113.7

K-3 8060.7

K-4 6072.1

K-5 4732.1

K-6 4698.4

K-7 3782.3

K-8 3400.8

Membrane 51000

Table C5. Equipment Dimensioning – CA+MP Process

Equipment D (m) H (m)Maximum Pressure

(bar)

Area (m2) Power (kW)

Separator 1.2 4.7 4.5

V-2 2.7 10.8 20

V-1-2 2.4 9.5 44.5

V-3 1.6 6.5 15

Lean/Rich

Exchanger4.5 264.9

E-3 12 414.2

E-4 36 266.3

E-5 100 257.7

E-100 50.5 23.6

E-1-2 45 2054.1

E-2 80 1110.9

E-3-2 52.5 323.3

Reboiler 4 46.5

Condenser 4 26.6

Booster Pump 52.1

K-2 6760.2

K-3 4552.0

K-4 4703.9

K-5 3925.3

K-6 3390.8

K-1-2 12794.6

K-2-2 5113.7

K-3-2 8060.7

Absorber 1.6 23.1 50

Regenerator 1 19.8 4

Membrane 45000

APPENDIX D. Formulae for Operational Expenditures

Operational Expenditures can be estimated by the method of Turton et al. (2009) via Eq.

(D1) with Table D1.

OPEX=F1∗CAPEXOffshore+F2∗COL+F3∗(C RM+CWT+CUT ) (D1)

Where CRM is the cost of raw materials, CWT is the cost for wastewater treatment and CUT is

the cost of utilities. The cost of labor (COL) is calculated according to the number of

workers estimated (NOP) following Eq. (D2) (Turton et al., 2009).

NOP=4 .5∗(6 . 29+31 .7∗P2+0.23∗NEQ )0 .5(D2)

Where P is the number of solid handling equipment and NEQ is the total number of items of

process equipment.

Table D1. Cost Factors Used in OPEX Formula (Eq. (D1))

Cost Factors Value

F1 0.18

F2 2.76

F3 1.23