art wind ireland.pdf

6
1 Wind Turbine Buildouts and CO2 emissions in Ireland. F. Udo February 9, 2015 1. Introduction. The Irish electricity distribution grid has seen a rapid evolution in the last 5 years. During the 2010 to 2014 period, 1,4 billion euro was spent to erect 835 MW wind turbines and 0,6 billion on a 500MW high voltage link to England. This article tries to answer the question: Is this 2 billion euro well spent? There is much debate about the efficacy of wind energy in supplying electricity to existing distribution grids. In principle it can be measured accurately by monitoring the fuel use of all the generators involved. The problem is, that this data is not available in the public domain, so one resorts to model calculations using the static characteristics of the generators involved. Dynamic effects due to regulation of the generators and spinning reserves are mostly neglected. The published data about the CO2 emissions in the Irish electricity distribution grid is a case in point. The Irish grid authority Eirgrid publishes every 15 minutes the total demand, the wind energy produced and CO2 emission calculated in a way as mentioned above 1 ). Using this data 2 ) it was possible to show, that in the absence of hydropower in April 2011 the efficacy of insertion of wind power in the grid was less than 40%, or in other words: More than 60% of the wind energy produced did not save any fuel. Wheatley 3 ) showed by using detailed output data of generators, that the CO2 reduction in all 2011 was only 70% of the expected value. This is confirmed in the year report 2013 of the Sustainable Energy Authority (SEAI) 4 ). Nevertheless the CO2 emissions in the year 2011 were at an all time low due to the commissioning of two new CCGT gas power plants. Two questions remain: A. How close are the results of the Eirgrid CO2 emission calculations to the actual emissions? B. Did the investments lead to substantial fuel savings? All numbers used in this article are taken from the websites of Eirgrid and SEAI. 2. The CO2 emission derived from fuel input data. The Year Reports of the SEAI provide the total fuel input and the input fuel mix for the electricity generation per year 5 ). The calorific value of each fuel is expressed in a common unit: Kilo Tons Oil Equivalent or ktoe. The electricity produced is given in the same units to enable a comparison of the fuel input and the electricity output. Appendix 1 presents the data also in this unit to enable a direct verification with the numbers given in the yearly reports of the SEAI. One ktoe = 11,6 GWh. Appendix 1 presents the calculation of the CO2 intensity for 2006 starting from the composition of the input fuel mix. It is based upon the calorific values and specific CO2 emissions of the different combustibles and on the ratio of total fuel input to total electricity output. Renewables are always attributed zero emissions in the CO2 balance, but windmills and wood pellets are far from CO2 free. Appendix 3 gives some data for wind turbines in order to show, that the results given in this paper are still underestimates of the real emissions. The CO2 emissions calculated in Appendix 1 are compared for each year in the period 2006 2013 to the SEAI numbers. The SEAI numbers given here are also corrected for imports & exports. Figure 1 shows the comparison of the two sets of data.

Upload: danielle-miller

Post on 17-Jan-2016

147 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Art Wind Ireland.pdf

 

 

1  

Wind  Turbine  Build-­‐outs  and  CO2  emissions  in  Ireland.    F.  Udo  February  9,  2015    1.  Introduction.  The  Irish  electricity  distribution  grid  has  seen  a  rapid  evolution  in  the  last  5  years.  During  the  2010  to  2014  period,  1,4  billion  euro  was  spent  to  erect  835  MW  wind  turbines  and  0,6  billion  on  a  500MW  high  voltage  link  to  England.  This  article  tries  to  answer  the  question:    Is  this  2  billion  euro  well  spent?    There  is  much  debate  about  the  efficacy  of  wind  energy  in  supplying  electricity  to  existing  distribution  grids.  In  principle  it  can  be  measured  accurately  by  monitoring  the  fuel  use  of  all  the  generators  involved.  The  problem  is,  that  this  data  is  not  available  in  the  public  domain,  so  one  resorts  to  model  calculations  using  the  static  characteristics  of  the  generators  involved.  Dynamic  effects  due  to  regulation  of  the  generators  and  spinning  reserves  are  mostly  neglected.  The  published  data  about  the  CO2  emissions  in  the  Irish  electricity  distribution  grid  is  a  case  in  point.    The  Irish  grid  authority  Eirgrid  publishes  every  15  minutes  the  total  demand,  the  wind  energy  produced  and  CO2  emission  calculated  in  a  way  as  mentioned  above1).    Using  this  data2)  it  was  possible  to  show,  that  in  the  absence  of  hydropower  in  April  2011  the  efficacy  of  insertion  of  wind  power  in  the  grid  was  less  than  40%,  or  in  other  words:  More  than  60%  of  the  wind  energy  produced  did  not  save  any  fuel.  Wheatley3)  showed  by  using  detailed  output  data  of  generators,  that  the  CO2  reduction  in  all  2011  was  only  70%  of  the  expected  value.  This  is  confirmed  in  the  year  report  2013  of  the  Sustainable  Energy  Authority  (SEAI)  4).    Nevertheless  the  CO2  emissions  in  the  year  2011  were  at  an  all  time  low  due  to  the  commissioning  of  two  new  CCGT  gas  power  plants.  Two  questions  remain:  

A. How  close  are  the  results  of  the  Eirgrid  CO2  emission  calculations  to  the  actual  emissions?  B. Did  the  investments  lead  to  substantial  fuel  savings?  

All  numbers  used  in  this  article  are  taken  from  the  websites  of  Eirgrid  and  SEAI.    2.  The  CO2  emission  derived  from  fuel  input  data.  The  Year  Reports  of  the  SEAI  provide  the  total  fuel  input  and  the  input  fuel  mix  for  the  electricity  generation  per  year5).  The  calorific  value  of  each  fuel  is  expressed  in  a  common  unit:  Kilo  Tons  Oil  Equivalent  or  ktoe.  The  electricity  produced  is  given  in  the  same  units  to  enable  a  comparison  of  the  fuel  input  and  the  electricity  output.    Appendix  1  presents  the  data  also  in  this  unit  to  enable  a  direct  verification  with  the  numbers  given  in  the  yearly  reports  of  the  SEAI.  One  ktoe  =  11,6  GWh.  Appendix  1  presents  the  calculation  of  the  CO2  intensity  for  2006  starting  from  the  composition  of  the  input  fuel  mix.  It  is  based  upon  the  calorific  values  and  specific  CO2  emissions  of  the  different  combustibles  and  on  the  ratio  of  total  fuel  input  to  total  electricity  output.    Renewables  are  always  attributed  zero  emissions  in  the  CO2  balance,  but  windmills  and  wood  pellets  are  far  from  CO2  free.  Appendix  3  gives  some  data  for  wind  turbines  in  order  to  show,  that  the  results  given  in  this  paper  are  still  underestimates  of  the  real  emissions.    The  CO2  emissions  calculated  in  Appendix  1  are  compared  for  each  year  in  the  period  2006  -­‐2013  to  the  SEAI  numbers.    The  SEAI  numbers  given  here  are  also  corrected  for  imports  &  exports.  Figure  1  shows  the  comparison  of  the  two  sets  of  data.    

Page 2: Art Wind Ireland.pdf

 

 

2  

 The  method  of  calculation  of  the  SEAI  numbers  is  not  explicitly  given,  but  the  results  of  the  two  methods  are  nearly  identical,  so  both  datasets  are  most  probably  obtained  in  the  same  way.    The  gradual  decline  from  2006  to  2010  is  explained  by  an  increase  of  the  contribution  of  gas  to  the  fuel  mix.  The  dip  in  2011  is  explained  by  SEAI  as  due  to  the  commissioning  of  two  new  gas  plants,  which  where  under-­‐used  in  subsequent  years  due  to  coal  getting  cheaper….  It  is  now  possible  to  test  the  CO2  model  calculations  of  Eirgrid  against  numbers,  which  are  derived  directly  from  fuel  input  data.    3.  The  comparison  with  the  Eirgrid  data.  Appendix  2  shows  the  numbers  obtained  by  integrating  the  Eirgrid  15  minute  data.  The  numbers  are  summed  over  the  years  2010  to  2014  The  calculated  CO2  emission  intensities  can  now  be  compared  to  the  data  derived  from  fuel  inputs  for  the  period  2010  to  2014.  Figure  2  presents  the  comparison  between  the  3  data  sets.  The  model  data  are  derived  from  the  15’  data  as  described  in  appendix  2.  It  is  clear,  that  the  model  underestimates  the  actual  emissions  by  about  6%.    

 

400  

450  

500  

550  

600  

650  

700  

2005   2006   2007   2008   2009   2010   2011   2012   2013   2014  

g/kWh  CO2  emission  in  g/kWh  

2  data  sets    

SEAI  data  

SEAI  Fuel  inputs  

400  

450  

500  

550  

600  

650  

700  

2005   2006   2007   2008   2009   2010   2011   2012   2013   2014   2015  

CO2  emission  in  g/kWh  3  data  sets  

 

SEAI  data  

SEAI  Fuel  inputs  

Eirgrid  15'data  

Page 3: Art Wind Ireland.pdf

 

 

3  

 Note  1:    The  fuel  input  data  for  2014  are  not  yet  published,  but  the  Eirgrid  15-­‐minute  data  clearly  indicates  that  the  result  for  2014  will  be  around  520g  CO2/kWh.  This  implies,  that  the  performance  of  the  electricity  generating  system  has  not  improved  between  2010  and  2014.  Note  2:    If  the  contribution  of  wind  is  20%,  the  overall  CO2  intensity  rises  by  10  gCO2/kWh.  The  CO2  content  of  biofuels  is  subject  to  an  intense  discussion,  so  this  contribution  has  not  been  considered.      4.  Conclusions  The  first  observation  is,  that  the  Eirgrid  model  underestimates  the  real  emissions  by  about  6%.  This  validates  the  objections  stated  in  the  introduction  against  the  procedure  followed  by  Eirgrid.  This  proves,  that  the  losses  calculated  in  ref    2  are  too  low.    The  second  observation  is,  that  the  CO2  intensity  has  risen  significantly  since  2010/2011  despite  two  billion  euro  spent  on  an  increase  in  wind  turbine  capacity  from  1260  MW  to  2211  MW  between  2010  and  2014,  and  the  benefit  of  the  East-­‐West  link  in  2013  and  2014.    The  total  generating  capacity  in  Ireland  has  risen  from  6500  MW  in  2006  to  9500  MW  in  2014  6),  while  the  consumption  of  electricity  has  not  risen  at  all  during  this  period.  The  generating  capacity  stands  now  at  more  than  three  times  the  average  consumption  level,  largely  due  to  the  build  out  of  wind  power  and  the  interconnector  to  England.  This  is  proof,  that  wind  does  not  replace  dispatchable  power.    The  effect  of  this  investment  is  nullified  by  a  slight  increase  in  the  use  of  coal  in  the  fossil  fuel  mix,  as  gas  became  expensive  in  the  recent  years.  The  performance  of  the  system  in  2011  shows  clearly,  that  without  the  extra  windmills  and  without  the  E-­‐W  link,  but  with  the  new  CCGT  gas  units  operating  one  does  better  than  with  all  the  new  wind  turbines  and  E-­‐W  link.    The  600  million  euro  costing  E-­‐W  link  allows  Eirgrid  to  export  the  problems  of  incorporating  wind  energy  to  the  UK.  The  Eirgrid  data  shows,  that  during  the  last  two  years  the  E-­‐W  link  served  as  peak  shaver  during  the  day  and  as  a  sink  for  unwanted  wind  production  during  the  night.  A  report  of  SEAI  states,  that  dispatch  down  of  wind  energy  (curtailment)  in  2013  was  halved  due  to  the  presence  of  the  link.      This  bad  performance  of  the  “greening”  of  the  electricity  supply  comes  on  top  of  the  enormous  social  and  economical  cost  of  littering  of  the  landscape  with  thousands  of  160  meters  high  rotating  monsters.      Appendix  1  Calculation  of  CO2  intensity  from  fuel  input  data.  The  table  shows  the  transformation  of  the  fuel  input  mix  to  CO2  emission/kWh  for  2006.  The  amounts  of  input  fuel  and  output  electricity  are  expressed  in  Kilo  Ton  Oil  Equivalent,  a  common  energy  unit  to  account  for  the  calorific  values  of  the  different  fuels.  One  ktoe  =  11,6  GWh    Table:    Calculation  CO2  intensity  based  on  data  from  the  year  2006.      

SEAI     1   2   3   4  Input  data   Total   Contribution   Combustion   Fuel  mix  

Fuel   ktoe   %   gCO2  /kWh   gCO2  /kWh  Coal   1265   26,2%   340   89  Peat   458   9,5%   414   39  Oil  eo   693   14,3%   264   38  Gas   2417   50,0%   206   103  Total   4833   100%  

 269  

 -­‐The  energy  input  for  fossil  generated  electricity  is  the  sum  of  all  4  components:    4833  ktoe  The  2nd  column  represents  the  fractional  contribution  of  each  fuel.  

Page 4: Art Wind Ireland.pdf

 

 

4  

 -­‐The  3rd  column  shows  the  amount  of  CO2  emitted  by  combustion  of  1  kWh  of  each  element  of  the  fuel  mix.  In  other  words  the  3rd  column  says:  A  generator  running  on  coal  with  100%  efficiency  emits  340  g/kWh.  The  last  column  shows  the  contribution  of  each  fuel  component  to  the  CO2  emission  of  the  input  mix.  This  is  obtained  by  multiplying  column  2  by  column  3.    Column  4  shows,  that  the  fuel  mix  as  used  in  2006  produces  269  gram  CO2  for  the  burning  of  1  kWh  fuel.  In  this  way  we  change  from  ktoe  to  kWh  without  introducing  electricity  generation  efficiencies  for  each  fuel  separately.  The  efficacy  of  the  transformation  from  fuel  to  electricity  follows  from  the  ratio  between  the  total  amount  of  fuel  burned  and  the  total  electricity  produced.    The  European  rule  is  to  attribute  CO2  emissions  of  exported  power  to  the  country  of  origin,  so  official  numbers  for  the  CO2  emissions  include  no  contribution  for  imports.  The  recently  completed  East-­‐West  connection  is  used  to  import  up  to  500  MW  during  the  day,  while  during  windy  nights  superfluous  wind  energy  is  exported.  Here  we  study  the  performance  of  the  Irish  system,  so  imports  are  subtracted  from  (and  exports  are  added  to)  the  “total  demand”  or  “energy  delivered”  to  determine  the  indigenous  production.    The  total  electricity  generation  in  2006  is  given  as   2225  ktoe  in  the  SAEI  report  2006.      Less  net  imports              153  ktoe    Less  the  contribution  from  renewables          231  ktoe    Net  fossil  electricity  production           1841  ktoe    The  energy  conversion  efficiency  is  now  output/input:    1841/4833  =  38,1%  for  the  generation  from  fossil  fuels.  Table  1  shows,  that  1  kWh  fuel  mix  produces  269  gCO2/kWh,  so  the  production  of  1  kWh  electricity  from  fossil  fuels  emits:    269/0,381  =  706  gCO2/kWh,  a  surprisingly  high  number.    Adding  the  contribution  of  renewables  (231  ktoe)  to  the  1841  ktoe  electricity  production  increases  the  indigenous  production  to  2072  ktoe  and  increases  the  apparent  energy  conversion  efficiency  to  42,9%.  This  lowers  the  apparent  CO2  intensity  to  628  gCO2/kWh.      Appendix  2:    The  CO2  data  of  Eirgrid.  On  the  website  of  Eigrid  one  finds  the  following  text: EirGrid, with the support of the Sustainable Energy Authority of Ireland, has together developed the following methodology for calculating CO2 emissions. The rate of carbon emissions is calculated in real time by using the generators MW output, the individual heat rate curves for each power station and the calorific values for each type of fuel used. The heat rate curves are used to determine the efficiency at which a generator burns fuel at any given time. The fuel calorific values are then used to calculate the rate of carbon emissions for the fuel being burned by the generator.  It  is  clear  from  this  definition,  that  the  model  does  not  include  the  dynamic  behaviour  of  the  system  and  neglects  the  spinning  reserve.  This  casts  doubt  on  the  level  of  emissions  calculated  from  the  model.  The  data  is  presented  on  the  Eirgrid  website  at  intervals  of  15  minutes,  so  one  has  2900  lines  each  month  and  35000  lines  of  data  for  each  year.  Publication  started  in  2010,  so  2010  contains  only  two  months  of  data.  Table  1  presents  the  integral  over  a  year  of  the  Eirgrid  data.    The  total  demand  entries  are  remarkably  stable.  They  are  corrected  for  imports  &  exports  in  row  3.        

Page 5: Art Wind Ireland.pdf

 

 

5  

 Table  1  

 2010   2011   2012   2013   2014  

Tot.Demand  GWh   4880   25791   25631   25846   25781  Imports  GWh   88   516   436   2249   2552  

Tot.-­‐imports  GWh   4792   25275   25195   23597   23229  Tot.  CO2  kTons   2333   11660   12960   11590   11450  CO2  g/kWh   486,8   461,3   514,4   491,2   492,9  

           Tot.  Wind  GWh   515   4233   4104   4644   4925  Wind%   10,6%   16,4%   16,0%   18,0%   19,1%  

 

 

 

-­‐Row  3  is  row  1  minus  row  2  or  the  total  demand  minus  imports.    -­‐The  CO2  emissions  are  extracted  from  the  15-­‐minute  Eirgrid  tables.    The  units  are  metric  tons  (1000kg).    -­‐These  CO2  emissions  are  generated  by  the  Eirgrid  model  as  described  above  in  italics.    -­‐The  emission  intensity  is  calculated  by  dividing  total  CO2  emission  in  kilotons  by  the  indigenous  production  (Row  4  divided  by  row  3).      Appendix  3  Additional  fuel  use  by  windmills.  Wind  energy  is  nearly  always  characterised  as  a  clean  source  of  energy  without  CO2  emissions.  This  is  not  quite  true  as  the  construction,  transport,  erection  and  maintenance  of  windmills  requires  energy.    This  component  is  minimised  by  wind  energy  proponents  by  stating,  that  a  mill  recuperates  its  own  energy  within  a  few  months.  Authors  from  outside  the  wind  business  are  more  critical.  A. Ir  J  van  Oorschot  director  of  a  large  Dutch  civil  engineering  company  involved  in  the  building  of  

windmills  calculates  a  period  of  1,5  years  at  a  capacity  factor  of  0,22,  the  Dutch  average7.  B. A  calculation8  based  on  the  data  from  a  group  at  Sydney  gives  11,5  months  recuperation  period  

based  on  a  cap  factor  of  25%.    The  conclusion  from  these  two  studies  is,  that  a  period  of  one  year  is  a  fair  estimate  for  the  Irish  mills.    This  back  pay  period  assumes  an  efficiency  of  100%    in  the  incorporation  of  wind  energy  in  the  grid.  Reference  4  shows,  that  this  efficiency  is  63%  in  Ireland  so  a  better  estimate  of  the  payback  time  is  1,5  years.    The  Irish  mills  are  subsidised  for  a  period  of  15  years,  so  after  this  they  are  mostly  exchanged  for  new  ones  with  new  subsidies.  The  result  is,  that  the  fuel  use  is  1,5  years  out  of  15  years,  so  at  least  10%  of  the  total  energy  production  is  fossil  energy  with  corresponding  CO2  emissions  of  about  500  gCO2/kWh.  This  gives  a  CO2  content  of  wind  energy  of  50  gCO2/kWh.    The  amount  of  wind  energy  is  rapidly  increasing  with  time,  so  this  additional  contribution  to  the  CO2  intensity  is  also  increasing  with  time.  This  contribution  nor  the  CO2  content  in  the  other  renewables  was  taken  into  account  in  this  text.        

Page 6: Art Wind Ireland.pdf

 

 

6  

                                                                                                                   References.    1    www.eirgrid.com  The  section  “Operations”  contains  15  minutes  data  about  the  total  demand,  the  CO2  emission  and  the  wind  production.    The  data  for  the  East-­‐West  connection  are  available  under  the  head  “East  West”.  The  graphs  for  wind  energy  and  for  the  imports  from  the  EW  link  show  a  nice  anti  correlation  on  Jan  15  2015.  Ireland  exports  the  variations  in  wind  energy  to  the  UK….    2    F.  Udo,    Wind  energy  in  the  Irish  power  system.       http://www.clepair.net/IerlandUdo.html    3    J.B.  Wheatley:  Quantifying  CO2  savings  from  windpower;      Energy  Policy,  2013,  vol.  63,  issue  C,  pages  89-­‐96.    4.       This  effect  has  been  recognised  now  by  the  Sustainable  Energy  Authority  in  its  year  report         “Quantifying  Ireland’s  Fuel  and  CO2  Emissions  Savings  from  Renewable  Electricity  in  2012”  Quote  page  2:  Individual  fossil-­‐fuel  generators  run  in  less  efficient  modes  with  renewable  electricity  generation  on  the  system,  showing  a  7%  increase  in  the  CO2  emissions  intensity  for  such  generators.  In  2012  the  part  of  wind  energy  on  the  total  was  16%.  Neglecting  the  4%  hydro  this  implies,  that  84%  of  the  total  generation  was  fossil  driven  and  had  an  efficiency  loss  of  7%.  This  84%  used  1,07  *  0,84  =  0,90  of  the  fuel  it  would  use  without  wind,  hence  the  fuel  gain  is  10%  for  16%  wind.  The  efficacy  of  wind  is  10/16  =  63%.  Note:  This  is  data  from  an  official  report.  This  is  a  rare  example  of  honesty  from  a  government  agency  about  the  extra  fuel  necessary  to  incorporate  wind  energy  into  an  existing  grid..    5      The  annual  reports  for  the  period  2006  to  2013  are  listed  under  the  title  “Energy  in  Ireland”     www.seai.ie/Publications/Statistics_Publications/    6     “More  on  the  Energy  Bubble”     http://irishenergyblog.blogspot.nl/2015/01/energy-­‐bub.html    7      The  calculation  is  presented  in  ref  13  of:      C.  le  Pair  en  K.  de  Groot:  De  invloed  van  elektriciteit  uit  wind  op  het  fossiel  brandstofgebruik.       (in  Dutch)    8        F.  Udo:  Building  wind  turbines  costs  more  energy  than  you  think.     http://www.clepair.net/Udo201303payback.html