arterial blood gas analysis. by the end of this session you should understand: the normal ranges for...

39
Arterial Blood Gas Analysis

Upload: reagan-kingdon

Post on 14-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Arterial Blood Gas Analysis

Page 2: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

By the end of this session you should understand:

• The normal ranges for arterial blood gas values

• How to use the 5-step approach to arterial blood gas interpretation

• Some of the common causes of arterial blood gas abnormalities and what to do to correct them

Learning outcomes

Page 3: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

Page 4: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

1. How is the patient?• Will provide useful clues to help with interpretation of the results

Page 5: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

1. How is the patient?• Will provide useful clues to help with interpretation of the results

2. Assess oxygenation• Is the patient hypoxaemic?• The PaO2 should be > 10 kPa (75 mmHg) breathing air and about 10 kPa

less than the % inspired concentration

Page 6: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

1. How is the patient?• Will provide useful clues to help with interpretation of the results

2. Assess oxygenation• Is the patient hypoxaemic?• The PaO2 should be > 10 kPa (75 mmHg) breathing air and about 10 kPa

less than the % inspired concentration

3. Determine the pH (or H+ concentration)• Is the patient acidaemic; pH < 7.35 (H+ > 45 nmol l-1)• Is the patient alkalaemic; pH > 7.45 (H+ < 35 nmol l-1) respiratory

component

Page 7: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

1. How is the patient?• Will provide useful clues to help with interpretation of the results

2. Assess oxygenation• Is the patient hypoxaemic?• The PaO2 should be > 10 kPa (75 mmHg) breathing air and about 10 kPa

less than the % inspired concentration

3. Determine the pH (or H+ concentration)• Is the patient acidaemic; pH < 7.35 (H+ > 45 nmol l-1)• Is the patient alkalaemic; pH > 7.45 (H+ < 35 nmol l-1)

4. Determine the respiratory component• If the pH < 7.35, is the PaCO2 > 6.0 kPa (45 mmHg) – respiratory acidosis

• If the pH > 7.45, is the PaCO2 < 4.7 kPa (35 mmHg) – respiratory alkalosis

Page 8: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

5-step approach to arterial blood gas interpretation

1. How is the patient?• Will provide useful clues to help with interpretation of the results

2. Assess oxygenation• Is the patient hypoxaemic?• The PaO2 should be > 10 kPa (75 mmHg) breathing air and about 10 kPa

less than the % inspired concentration3. Determine the pH (or H+ concentration)

• Is the patient acidaemic; pH < 7.35 (H+ > 45 nmol l-1)• Is the patient alkalaemic; pH > 7.45 (H+ < 35 nmol l-1)

4. Determine the respiratory component• If the pH < 7.35, is the PaCO2 > 6.0 kPa (45 mmHg) – respiratory acidosis• If the pH > 7.45, is the PaCO2 < 4.7 kPa (35 mmHg) – respiratory alkalosis

5. Determine the metabolic component• If the pH < 7.35, is the HCO3

- < 22 mmol l-1 (base excess < -2 mmol l-1) – metabolic acidosis

• If the pH > 7.45, is the HCO3- > 26 mmol l-1 (base excess > +2 mmol l-1) –

metabolic alkalosis

Page 9: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1

Initial InformationA 21-year-old woman is thrown from her horse at a local event. On the way to hospital she has become increasingly drowsy and the paramedics have inserted an oropharyngeal airway and given high-flow oxygen via a face-mask. An arterial blood gas sample has been taken.

Page 10: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

Initial InformationA 21-year-old woman is thrown from her horse at a local event. On the way to hospital she has become increasingly drowsy and the paramedics have inserted an oropharyngeal airway and given high-flow oxygen via a face-mask. An arterial blood gas sample has been taken.

• Step 1: How is the patient?

Page 11: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

Initial InformationA 21-year-old woman is thrown from her horse at a local event. On the way to hospital she has become increasingly drowsy and the paramedics have inserted an oropharyngeal airway and given high-flow oxygen via a face-mask. An arterial blood gas sample has been taken.

• Step 1: How is the patient?• The reduced level of consciousness will impair oxygenation and

ventilation, causing an increased PaCO2 , a respiratory acidosis

Page 12: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

Initial InformationA 21-year-old woman is thrown from her horse at a local event. On the way to hospital she has become increasingly drowsy and the paramedics have inserted an oropharyngeal airway and given high-flow oxygen via a face-mask. An arterial blood gas sample has been taken.

• Step 1: How is the patient?• The reduced level of consciousness will impair oxygenation and

ventilation, causing an increased PaCO2 , a respiratory acidosis• There is unlikely to be much compensation (change in bicarbonate)

because of the acuteness of the situation

Page 13: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)

normal valuesPaO2 18.8 kPa > 10 kPa (75 mmHg) on air

pH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPa

Bicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?

Page 14: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)

normal valuesPaO2 18.8 kPa > 10 kPa (75 mmHg) on air

pH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPa

Bicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?• Step 2: Assess oxygenation

• Is the patient hypoxaemic?• The PaO2 should be about 10 kPa less than the % inspired concentration

Page 15: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)

normal valuesPaO2 18.8 kPa > 10 kPa (75 mmHg) on air

pH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPa

Bicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?

Page 16: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)

normal valuesPaO2 18.8 kPa > 10 kPa (75 mmHg) on air

pH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPa

Bicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?• Step 3: Determine the pH (or H+ concentration)

• Is the patient acidaemic; pH < 7.35?• Is the patient alkalaemic; pH > 7.45?

Page 17: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)

normal valuesPaO2 18.8 kPa > 10 kPa (75 mmHg) on air

pH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPa

Bicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?

Page 18: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)normal values

PaO2 18.8 kPa > 10 kPa (75 mmHg) on airpH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPaBicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?• Step 4: Determine the respiratory component

• If the pH < 7.35, is the PaCO2 > 6.0 kPa (45 mmHg)? – respiratory acidosis• If the pH > 7.45, is the PaCO2 < 4.7 kPa (35 mmHg)? – respiratory alkalosis

Page 19: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)normal values

PaO2 18.8 kPa > 10 kPa (75 mmHg) on airpH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPaBicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?

Page 20: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)normal values

PaO2 18.8 kPa > 10 kPa (75 mmHg) on airpH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPaBicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

• What are you going to do now?• Step 5: Determine the metabolic component

• If the pH < 7.35, is the HCO3- < 22 mmol l-1 (base excess < -2 mmol l-1) –

metabolic acidosis• If the pH > 7.45, is the HCO3

- > 26 mmol l-1 (base excess > +2 mmol l-1) – metabolic alkalosis

Page 21: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 1 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4)normal values

PaO2 18.8 kPa > 10 kPa (75 mmHg) on airpH 7.19 7.35 – 7.45PaCO2 10.2 kPa 4.7 – 6.0 kPaBicarbonate 23.6 mmol l-1 22 – 26 mmol l-1

Base excess -2.4 mmol l-1 +/- 2 mmol l-1

In summary: An acute respiratory acidosis with impaired oxygenation.

Page 22: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 2

Initial InformationA 60-year-old man is brought to the ED after a witnessed out-of-hospital cardiac arrest. The paramedics arrived after 7 min, during which CPR had not been attempted. His initial rhythm was VF and the paramedics subsequently restored a spontaneous circulation after the 3rd shock.

On arrival:- Intubated, ventilated with 50% oxygen- HR 120 min-1, BP 150/95 mmHg- Comatose (GCS 3)

• Use the 5-step approach to analyse the results of an arterial blood sample

Page 23: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 2 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 50% (FiO2 0.5)normal values

PaO2 7.5 kPa (56 mmHg) > 10 kPa (75 mmHg) on air

pH 7.10 7.35 – 7.45

PaCO2 6.2 kPa (47 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 14 mmol l-1 22 – 26 mmol l-1

BE - 10 mmol l-1 +/- 2 mmol l-1

Page 24: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 2 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 50% (FiO2 0.5)normal values

PaO2 7.5 kPa (56 mmHg) > 10 kPa (75 mmHg) on air

pH 7.10 7.35 – 7.45

PaCO2 6.2 kPa (47 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 14 mmol l-1 22 – 26 mmol l-1

BE - 10 mmol l-1 +/- 2 mmol l-1

In summary: This is a typical ABG result after prolonged cardiac arrest. There is a mixed metabolic and respiratory acidosis – the predominant component is metabolic, with significant impairment of oxygenation.

Page 25: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 3

Initial InformationA 65-year-old man with severe COPD has been found collapsed in the respiratory unit. On initial assessment by the ward nurse he is apnoeic but has an easily palpable carotid pulse. The nurse is attempting to ventilate his lungs with a bag-mask and supplemental oxygen (with reservoir) and has called the cardiac arrest team.

On arrival:- Oropharyngeal airway, ventilated with bag-mask, oxygen at 15 l min-1

- Carotid pulse palpable, 90 min-1, SpO2 99%- Comatose (GCS 3)

• Use the 5-step approach to analyse the results of an arterial blood sample

Page 26: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 3 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 85% (FiO2 0.85) estimatednormal values

PaO2 19.5 kPa (147 mmHg) > 10 kPa (75 mmHg) on air

pH 7.10 7.35 – 7.45

PaCO2 18.0 kPa (135 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 36 mmol l-1 22 – 26 mmol l-1

BE + 12 mmol l-1 +/- 2 mmol l-1

Page 27: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 3 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 85% (FiO2 0.85) estimatednormal values

PaO2 19.5 kPa (147 mmHg) > 10 kPa (75 mmHg) on air

pH 7.10 7.35 – 7.45

PaCO2 18.0 kPa (135 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 36 mmol l-1 22 – 26 mmol l-1

BE + 12 mmol l-1 +/- 2 mmol l-1

In summary: The significant acidaemia (pH 7.10) indicate an additional acute respiratory acidosis as a result of the respiratory arrest. In the pre-existing compensated chronic respiratory acidosis, the pH would have been close to normal.

Page 28: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 4

Initial InformationA 75-year-old woman is admitted to the ED following a VF cardiac arrest, witnessed by paramedics. This had been preceded by 30 min of severe central chest pain. Spontaneous circulation restored after 2 shocks, but the patient remained apnoeic and unresponsive. The paramedics intubated her trachea and ventilated her with an automatic ventilator.

On arrival:- Tube confirmed in trachea, tidal volume of 900 ml, rate of 18 breaths

min-1, 100% oxygen- Pulse 100 min-1, BP 90/54 mmHg- Comatose (GCS 3)

• Use the 5-step approach to analyse the results of an arterial blood sample

Page 29: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 4 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 100% (FiO2 1.0)normal values

PaO2 25.4 kPa (192 mmHg) > 10 kPa (75 mmHg) on air

pH 7.62 7.35 – 7.45

PaCO2 2.65 kPa (20 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 20 mmol l-1 22 – 26 mmol l-1

BE - 4 mmol l-1 +/- 2 mmol l-1

Page 30: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 4 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 100% (FiO2 1.0)normal values

PaO2 25.4 kPa (192 mmHg) > 10 kPa (75 mmHg) on air

pH 7.62 7.35 – 7.45

PaCO2 2.65 kPa (20 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 20 mmol l-1 22 – 26 mmol l-1

BE - 4 mmol l-1 +/- 2 mmol l-1

In summary: A respiratory alkalosis, mild metabolic acidosis and impaired oxygenation.

Page 31: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 5

Initial InformationAn 18-year-old insulin dependent diabetic is admitted to the ED. He has been vomiting for 48 h and because he was unable to eat, he has taken no insulin.

On arrival:- Breathing spontaneously RR 35 min-1, oxygen 4 l min-1 via

Hudson mask, SpO2 98% - HR 130 min-1, BP 90/65 mmHg - GCS 12 (E3, M5, V4)

• Use the 5-step approach to analyse the results of an arterial blood sample

Page 32: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 5 (continued)• Arterial blood gas analysis reveals:

Inspired oxygen 30% (FiO2 0.3) estimatednormal values

PaO2 17.0 kPa (129 mmHg) > 10 kPa (75 mmHg) on air pH 6.89 7.35 – 7.45

PaCO2 2.48 kPa (19 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 4.7 mmol l-1 22 – 26 mmol l-1

BE - 29.2 mmol l-1 +/- 2 mmol l-1

The blood glucose is 30 mmol l-1 and there are ketones +++ in the urine

Page 33: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 5 (continued)• Arterial blood gas analysis reveals:

Inspired oxygen 30% (FiO2 0.3) estimatednormal values

PaO2 17.0 kPa (129 mmHg) > 10 kPa (75 mmHg) on air pH 6.89 7.35 – 7.45

PaCO2 2.48 kPa (19 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 4.7 mmol l-1 22 – 26 mmol l-1

BE - 29.2 mmol l-1 +/- 2 mmol l-1

The blood glucose is 30 mmol l-1 and there are ketones +++ in the urine

In summary: These blood gas results are consistent with severe diabetic ketoacidosis. Further evidence is the presence of ketones in his urine and the very high blood glucose. There is a primary metabolic acidosis with partial compensation provided by the respiratory alkalosis.

Page 34: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 6

Initial InformationA 75-year-old man is on the surgical ward 2 days after a laparotomy for a perforated sigmoid colon secondary to diverticular disease. He has become increasingly hypotensive over the last 6 h, despite 1000 ml 0.9% saline.

On arrival:- RR 35 min-1, SpO2 92% on 6 l min-1 oxygen via facemask- HR 120 min-1, sinus tachycardia, warm peripheries, BP 70/40 mmHg - Urine output 90 ml in the last 6 h- GCS 13 (E3, M6, V4)

• Use the 5-step approach to analyse the results of an arterial blood sample

Page 35: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 6 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4) estimatednormal values

PaO2 8.2 kPa (62 mmHg) > 10 kPa (75 mmHg) on air

pH 7.17 7.35 – 7.45

PaCO2 4.5 kPa (34 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 12 mmol l-1 22 – 26 mmol l-1

BE - 15 mmol l-1 +/- 2 mmol l-1

Page 36: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Case study 6 (continued)

• Arterial blood gas analysis reveals:

Inspired oxygen 40% (FiO2 0.4) estimatednormal values

PaO2 8.2 kPa (62 mmHg) > 10 kPa (75 mmHg) on air

pH 7.17 7.35 – 7.45

PaCO2 4.5 kPa (34 mmHg) 4.7 – 6.0 kPa (35 – 45 mmHg)

HCO3- 12 mmol l-1 22 – 26 mmol l-1

BE - 15 mmol l-1 +/- 2 mmol l-1

In summary: There is a primary metabolic acidosis with slight compensation provided by the mild respiratory alkalosis. The degree of this is probably limited by the presence of an acute abdomen. The most likely diagnosis is sepsis syndrome secondary to intra-abdominal infection. The plasma lactate would be elevated.

Page 37: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Any questions?

Page 38: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Summary

This workshop has covered:

• The terms used to describe the results of arterial blood gas analysis

• The normal ranges for arterial blood gas values• How respiration and metabolism are linked• How to use the 5-step approach to arterial blood gas

interpretation• Some of the common causes of arterial blood gas abnormalities

and what to do to correct them

Page 39: Arterial Blood Gas Analysis. By the end of this session you should understand: The normal ranges for arterial blood gas values How to use the 5-step approach

Advanced Life Support Course Slide set

All rights reserved© Resuscitation Council (UK) 2010