astronomy 2014 physics 2 randy hedlund south high school

75
Astronomy 2014 Physics 2 Randy Hedlund South High School

Upload: tamara-bevel

Post on 11-Dec-2015

226 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Astronomy 2014 Physics 2 Randy Hedlund South High School

Astronomy 2014

Physics 2Randy Hedlund South High School

Page 2: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/1

• Can you name all the planets?

• What is the largest planet?

• What are ways that planets are different? (i.e what are there characteristics?

• If you could visit one planet which one would you visit and why

Page 3: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Activity : How did the solar system form critical reading.

Page 4: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/21. Explain in your own words how the solar system formed.

2. What 2 things causes the force of gravity to increase between two objects?

3. Create a list of 2-3 questions you have about the universe.

• Agenda : tour the solar system, ACT practice• Asteroid impact versus gradual extinction

Page 5: Astronomy 2014 Physics 2 Randy Hedlund South High School

.the rocky and cratered surface of Mercury resembles our own Moon -300°F (-184°C) (on the side away from the sun) to about 800°

Page 6: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 7: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 59 days.

•One year is 88 days.

•It has no moon or rings.

•Mercury is the closest planet to the sun.

•It looks a lot like our moon.

Click here tolearn about Mercury.

Page 8: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 243 days.

•One year is 224.7 days.

•It has no moon or rings.

•Venus is the second planet from the sun.

•It is as dry as a desert and hotter than an oven..

Click here to

learn more about

Venus.

Page 9: Astronomy 2014 Physics 2 Randy Hedlund South High School

Venus – the second planet

Very active volcanic activity

Greenhouse effect - Venus' thick, toxic atmosphere traps heat in a runaway 'greenhouse effect.' The scorched world has temperatures hot enough to melt lead.

464 °C (867°F)

Page 10: Astronomy 2014 Physics 2 Randy Hedlund South High School

Impact crater on Venus – it has relatively few, due to the young surface

Page 11: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 24 hours.

•One year is 365 1/4 days.

•It has 1 moon and no rings.

•It is the third planet from the sun.

•Earth is mostly covered with water.

Click here to learn more about Earth.

Page 12: Astronomy 2014 Physics 2 Randy Hedlund South High School

Earth – the only planet with liquid water

How does this make it hospitable?

Goldilocks zone,

Page 13: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 24.5 hours.

•One year is 687 days.

•It has 2 moons and no rings.

•It is the fourth planet from the sun and the last of the inner planets.

•Mars looks red because of rusty iron in its soil and red dust in its air.

Click here to learn more about Mars.

Page 14: Astronomy 2014 Physics 2 Randy Hedlund South High School

Mars – 4th planet

Photo of microscopic rock forms indicating past signs of water, taken by Opportunity

Mars's thin atmosphere, visible on the horizon in this low-orbit photo.

Page 15: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 9.8 hours.

•One year is 12 earth years.

•It has at least 16 moons and 2 rings.

•It is the fifth planet from the sun and the first gas planet.

•It has a great red spot of swirling gas. Click here to

learn more about Jupiter.

Page 16: Astronomy 2014 Physics 2 Randy Hedlund South High School

Theoretical models indicate that if Jupiter had much more mass than it does at present, the planet would shrink

The clouds are arranged in light-colored areas called zones and darker regions called belts that circle the planet parallel to the equator

Page 17: Astronomy 2014 Physics 2 Randy Hedlund South High School

Europa – moon of Jupiter – hydrothermal vent

Page 18: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 10.7 hours.

•One year is 29.5 Earth years.

•It has at least 17 moons and many rings.

•Saturn is the sixth planet from the sun and the second gas planet.

•Saturn’s rings are made of ice, rock, and dust.

Click here to

learn more about

Saturn.

Page 19: Astronomy 2014 Physics 2 Randy Hedlund South High School

This captivating natural color view of the planet Saturn was created from images collected shortly after Cassini began its extended Equinox Mission in July 2008. 213,000 km (from 1.14 to 3.53 times Saturn's equatorial radius), and they are thin, with a thickness as small as 100m (astrophysicsspectator.com/topics/planets/SaturnRings.html)

Page 20: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 17 hours.

•One year is 84 earth years.

•It has at least 15 moons and 10 rings.

•Uranus is the seventh planet from the sun and the third gas planet.

•Uranus seems to rotate on its side.

Click here to

learn more about

Uranus.

Page 21: Astronomy 2014 Physics 2 Randy Hedlund South High School

Uranus's axis of rotation lies on its side with respect to the plane of the Solar System, with an axial tilt of 97.77 degrees Why

Uranus's internal temperature is so low is still not understood

Page 22: Astronomy 2014 Physics 2 Randy Hedlund South High School

•One rotation takes 16 hours.

•One year is 165 earth years.

•It has 8 moons and 4 rings.

•It is the eighth planet from the sun and the last gas planet.

•Neptune is blue-green.

Click here to learn more about Neptune.

Page 23: Astronomy 2014 Physics 2 Randy Hedlund South High School

The blue clouds of Neptune are mostly frozen methane, the main chemical in natural gas -- a fuel for heating and cooking on Earth.

Page 24: Astronomy 2014 Physics 2 Randy Hedlund South High School

Formation of the solar system

1. Dust attracted by gravity

2. Contracted gases began swirling

3. Protostar formed when hot enough for fusion (10 million degrees)

4. Mass condensed into planets

Page 25: Astronomy 2014 Physics 2 Randy Hedlund South High School

Future Topics create a summary of these topics and cite your sources for extra credit

• Hubble deep field• How far back can we see?• Can plants grow on other planets?• What causes the rings on planets to form?• What is Kepler- 22

Page 26: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/3

• Have you taken the ACT? Do you plan to take the ACT?

• Compare and contrast the terrestrial planets with the gas giants.

• How does the distance from the sun affect the period of revolution?

AgendaACT asteroid impact theory versus gradual extinction theory

Page 27: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Science is a process of understanding and comprehending

Page 28: Astronomy 2014 Physics 2 Randy Hedlund South High School

ACT formats• Data Representation: This format presents students with graphic and tabular materials similar to those found in science journals and texts. The test questions associated with this format measure knowledge and skills such as graph reading, interpretation of scatterplots, and interpretation of information presented in tables, diagrams, and figures.

• Research Summaries: This format provides students with descriptions of one experiment or of several related experiments. The test questions focus on the design of the experiments and the interpretation of results.

• Conflicting Viewpoints: This format presents students with several hypotheses or views that are mutually inconsistent owing to different premises, incomplete data, or differing interpretations of data. The passage may contain illustrations, charts, graphs, tables, diagrams, or figures. The test questions measure students’ knowledge and skills in understanding, analyzing, and comparing alternative viewpoints or hypotheses.

Page 29: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Understanding: Identify and evaluate scientific concepts, assumptions, and components of an experimental design or process; identify and evaluate data presented in graphs, figures, or tables; translate given data into an alternate form.

• • Analyzing: Process information needed to draw conclusions or formulate hypotheses;

• determine whether information provided supports a given hypothesis or conclusion;

• evaluate, compare, and contrast experimental designs or viewpoints; specify alternative ways of testing hypotheses or viewpoints.

• • Generalizing: Extend information given to a broader or different context; generate a model consistent with given information; develop new procedures to gain new information;

• usegiven information to predict outcomes.

Page 30: Astronomy 2014 Physics 2 Randy Hedlund South High School

Advise from other students

• Scan everything first – get the jist• Read questions • Read article

Page 31: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 17. Astronomers recently estimated that only 3% ofasteroids with orbits that intersect Earth’s have beenidentified. This finding adds support to the asteroid impacttheory by:A. increasing the likelihood of past Earth-asteroidcollisions.B. showing how little astronomers know aboutasteroids.C. proving that iridium-rich asteroids are common inthe solar system.D. showing that many asteroids

Page 32: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 17. Astronomers recently estimated that only 3% ofasteroids with orbits that intersect Earth’s have beenidentified. This finding adds support to the asteroid impacttheory by:A. increasing the likelihood of past Earth-asteroidcollisions.B. showing how little astronomers know aboutasteroids.C. proving that iridium-rich asteroids are common inthe solar system.D. showing that many asteroids

Page 33: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 18. A geologist examines a sedimentary rock layer from• the Mesozoic-Cenozoic boundary. According to the• asteroid-impact theory, the geologist should not expect• to find:• a. a high concentration of iridium.• b. a high concentration of soot particles.• c. evidence of great volcanic activity.• d. fossilized plant remains.

Page 34: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 18. A geologist examines a sedimentary rock layer from• the Mesozoic-Cenozoic boundary. According to the• asteroid-impact theory, the geologist should not expect• to find:• a. a high concentration of iridium.• b. a high concentration of soot particles.• c. evidence of great volcanic activity.• d. fossilized plant remains.

Page 35: Astronomy 2014 Physics 2 Randy Hedlund South High School

19. What do supporters of the asteroid-impact theoryassume about the fires started by the white-hot asteroidfragments?A. They spread quickly and were wide ranging.B. They removed carbon dioxide from the atmosphere,causing a global cooling.C. They burned the vegetation, limiting the foodsupply.D. They produced high levels of carbon dioxide,causing a global warming.

Page 36: Astronomy 2014 Physics 2 Randy Hedlund South High School

19. What do supporters of the asteroid-impact theoryassume about the fires started by the white-hot asteroidfragments?A. They spread quickly and were wide ranging.B. They removed carbon dioxide from the atmosphere,causing a global cooling.C. They burned the vegetation, limiting the foodsupply.D. They produced high levels of carbon dioxide,causing a global warming.

Page 37: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 20. Both theories presented in the passage cite which of the following factors as contributing directly to the dinosaurs’ extinction?

• A. High levels of soot and volcanic ash• b. High concentrations of iridium• c. Global temperature change• d. Increased amounts of carbon dioxide

introduced into the atmosphere

Page 38: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 20. Both theories presented in the passage cite which of the following factors as contributing directly to the dinosaurs’ extinction?

• A. High levels of soot and volcanic ash• b. High concentrations of iridium• C. Global temperature change• d. Increased amounts of carbon dioxide

introduced into the atmosphere

Page 39: Astronomy 2014 Physics 2 Randy Hedlund South High School

21. Mass extinctions throughout history often occur inconjunction with drops in the sea level. What wouldproponents of the gradual-extinction theory have todemonstrate to tie those facts together?A. Mass extinctions and drops in the sea level areboth caused by increased volcanic activity.B. The greenhouse effect causes lowering of the sealevel as well as gradual mass extinctions.C. With less water available, fires run rampant anddestroy the food supply.D. Drops in the sea level and mass extinctions are caused by changes in climate

Page 40: Astronomy 2014 Physics 2 Randy Hedlund South High School

21. Mass extinctions throughout history often occur inconjunction with drops in the sea level. What wouldproponents of the gradual-extinction theory have todemonstrate to tie those facts together?A. Mass extinctions and drops in the sea level areboth caused by increased volcanic activity.B. The greenhouse effect causes lowering of the sealevel as well as gradual mass extinctions.C. With less water available, fires run rampant anddestroy the food supply.D. Drops in the sea level and mass extinctions are caused by changes in climate

Page 41: Astronomy 2014 Physics 2 Randy Hedlund South High School

22. After examining the 250-million-year fossil record, 2 paleontologists have uncovered evidence suggesting that the rate of species extinctions peaks every 26 million years. Supporters of the asteroid-impact theory would most likely favor which of the following explanations to account for this finding?

a. Some massive object periodically disrupts the solar system, causing comets and asteroids to enter the inner solar system.

b. The tilt of Earth’s axis changes every 26 million years, causing long-term climatic changes that lead to mass-extinction episodes.

c. Earth’s orbit becomes more elliptical every 26 million years and it travels farther from the Sun, causing periods of global cooling.

d. Earth’s global weather patterns change in response to the size of the polar ice caps, plunging Earth into a global

Page 42: Astronomy 2014 Physics 2 Randy Hedlund South High School

22. After examining the 250-million-year fossil record, 2 paleontologists have uncovered evidence suggesting that the rate of species extinctions peaks every 26 million years. Supporters of the asteroid-impact theory would most likely favor which of the following explanations to account for this finding?

a. Some massive object periodically disrupts the solar system, causing comets and asteroids to enter the inner solar system.

b. The tilt of Earth’s axis changes every 26 million years, causing long-term climatic changes that lead to mass-extinction episodes.

c. Earth’s orbit becomes more elliptical every 26 million years and it travels farther from the Sun, causing periods of global cooling.

d. Earth’s global weather patterns change in response to the size of the polar ice caps, plunging Earth into a global

Page 43: Astronomy 2014 Physics 2 Randy Hedlund South High School

1. What happens to the apparent wavelength of an object as it approaches?

2. What happens to the wavelength of an object as it goes away?

12/4

Page 44: Astronomy 2014 Physics 2 Randy Hedlund South High School

Electromagnetic radiation

What happens to the wavelength as the wave moves away

Electromagnetic radiation – a type of energy that travels at light speed through a vacuum

Give examples of each

Page 45: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 46: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/5

• 1. What does the balloon represent?

• 2. What do the dots represent?

• 3. What is the purpose of the lab?

• 4. How could you graph the data?

Page 47: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 4. Students login to their CFS and click “Survey” > “Start” > “Select a Teacher”

Page 48: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Hubble’s law – the universe is expanding and will continue to expand, the further away a galaxy, the faster it moves away

Page 49: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 50: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Red shift – change in color frequency due to stars moving away

• Redshift is a shift in absorption bands toward the red end of the spectrum. What could make the absorption bands of a star shift toward the red?

Page 51: Astronomy 2014 Physics 2 Randy Hedlund South High School

1. Read the graph and describe what happen to the temperature of the universe as it expanded?

2. How do we know that the universe is expanding? Expansion lab due today!!

12/8

Page 52: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 53: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/9

• What are some types of fuels?• What does it mean when things fuse together?• What powers the stars?• ?

Page 54: Astronomy 2014 Physics 2 Randy Hedlund South High School

• 100 k = • Why research fusion?• Breakeven – where energy in = energy out

Page 55: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Fusion – the process which atoms fuse together, produces a large amount of energy that powers the stars

• How do we know about fusion?

Page 56: Astronomy 2014 Physics 2 Randy Hedlund South High School

1. They follow the light

2. How do astronomers determine distances of stars and galaxies?

Page 57: Astronomy 2014 Physics 2 Randy Hedlund South High School

Cosmic background radiation

• Big bang – how the universe started• Cosmic background radiation – energy that is

found everywhere in the galaxy - 4 degrees

• You might want to underline below• Dark matter – 75 percent of the universes mass

does not give off electromagnetic radiation• Dark energy – mysterious force that is causing

everything to accelerate

Page 58: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 59: Astronomy 2014 Physics 2 Randy Hedlund South High School

Any mass, not just a black hole, bends light. A spectacular example of gravitational lensing is the galaxy cluster

Page 60: Astronomy 2014 Physics 2 Randy Hedlund South High School

Parallax warm up

• 1. Stretch your arm out and stick up your thumb. How does your thumb move when you blink each eye? (create a diagram)

2. Bring your thumb in about half the distance and repeat.• What do you notice about the distance of your

thumb and the change in position. 3. How can astronomers tell how far away stars are

Page 61: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Parallax – method used to tell distance from earth using apparent motion

• Larger stars die faster

Page 62: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/10

1. What are 3 things you can tell me about the diagram above?

2. How do solar systems form?Activity close reading - explain how redshift is used for evidence for the expanding universe- key idea

Stars of the universe grand tour

Page 63: Astronomy 2014 Physics 2 Randy Hedlund South High School

Recent Hubble Space Telescope observations shed considerable light on the birth of stars and associated planetary systems. The following image shows regions in the Orion Nebula where solar systems may be forming How is it like looking back in time

Page 64: Astronomy 2014 Physics 2 Randy Hedlund South High School

Solar system• Planetesimals – large

astroids like pluto that helped form planets

• Nebula –large clouds of dust

Page 65: Astronomy 2014 Physics 2 Randy Hedlund South High School

1. What are three patterns you notice in this graph?

2. What color do hotter stars burn at?

3. What you think are the 4 families of stars?

Fun fact : Larger stars die faster!

Page 66: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 67: Astronomy 2014 Physics 2 Randy Hedlund South High School

1. What is the surface temperature of the sun?

2. If the sun were hotter, what color would it be?

3. What is the relationship between brightness and surface temperature for main sequence stars?

Larger stars die faster!

12/11/2014

Agenda - To read or to scan?- Tips for ACT- Practice test- Group study- Class discussion

Page 68: Astronomy 2014 Physics 2 Randy Hedlund South High School

12/11

• What are two main things you think should keep in mind when taking the science ACT?

• Do you think it is better to read everything first or scan first? (lets carry out this experiment: I will describe experiment)

Page 69: Astronomy 2014 Physics 2 Randy Hedlund South High School

Student surveyClass period Unsure (a) Better to scan text

(b)Better to read everything first(Close reading)©

3rd hour initial response

0 4 6

3rd hour final response

2 1 5

4th hour initial response

2 8 9

4th hour final response

Background : - Many students and tutors claim it is best to scan, read questions,

scan text by students. - Certain text authors claim it is better to read everything carefully first.

Page 70: Astronomy 2014 Physics 2 Randy Hedlund South High School

Tips on taking ACT

Tips on science ACT : - Focus on what is supported by the text - Look for patterns in the graphs- Science is a process – don’t worry about what you don’t understand

Page 71: Astronomy 2014 Physics 2 Randy Hedlund South High School

• Types of questions found in ACT• 1. Data representations• 2. Research summaries • 3. Conflicting view points

• Wonderings:

Page 72: Astronomy 2014 Physics 2 Randy Hedlund South High School

Conclusions

• What are some different tactics you use to study for the ACT?

Page 73: Astronomy 2014 Physics 2 Randy Hedlund South High School

Conclusions

• What are some different tactics you use to study for the ACT?

Page 74: Astronomy 2014 Physics 2 Randy Hedlund South High School
Page 75: Astronomy 2014 Physics 2 Randy Hedlund South High School

Results

Class period unsure Scan text Close reading

1st hour initial response

1 9 4

1st hour final response2nd hour initial response

3 9 2

2nd hour final response

1 3 12

3rd hour initial response

0 4 6

3rd hour final response

2 1 5

4th hour initial response

2 8 9

4th hour final response