automatic sequential pattern mining in data streamsyasushi/...•e.g., iot sensors/web click logs...

49
Automatic Sequential Pattern Mining in Data Streams Koki Kawabata*, Yasuko Matsubara & Yasushi Sakurai ISIR-AIRC, Osaka University *Supported by SIGIR Student Travel Grants

Upload: others

Post on 01-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Automatic Sequential Pattern Miningin Data Streams

Koki Kawabata*, Yasuko Matsubara & Yasushi SakuraiISIR-AIRC, Osaka University

*Supported by SIGIR Student Travel Grants

Page 2: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

MotivationGiven: time-evolving data streams• e.g., IoT sensors/Web click logs• contain multiple patterns

CIKM2019 Sakurai Lab. K.Kawabata et al. 2

Page 3: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

MotivationGiven: time-evolving data streams• e.g., IoT sensors/Web click logs• contain multiple patterns

Answer: the following questions:

1. What kind of patterns?2. How many patterns?3. When do patterns change?

CIKM2019 Sakurai Lab. K.Kawabata et al. 3

Page 4: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

?

MotivationGiven: time-evolving data streams• e.g., IoT sensors/Web click logs• contain multiple patterns

Requirements:• Incremental• We cannot access all historical data

• Automatic• # of patterns are unknown in advance• without any parameter tunings

CIKM2019 Sakurai Lab. K.Kawabata et al. 4

Page 5: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

MotivationGiven: time-evolving data streams• e.g., IoT sensors/Web click logs• contain multiple patterns

Requirements:• Incremental• We cannot access all historical data

• Automatic• # of patterns are unknown in advance• without any parameter tunings

CIKM2019 Sakurai Lab. K.Kawabata et al. 5

StreamScope: automatic & incremental approach

Page 6: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Demo movie

CIKM2019 Sakurai Lab. K.Kawabata et al. 6

Page 7: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Demo movie

CIKM2019 Sakurai Lab. K.Kawabata et al. 7

#1: Arm curl

#2: Rowing

Page 8: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Demo movie

CIKM2019 Sakurai Lab. K.Kawabata et al. 8

Page 9: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Demo movie

CIKM2019 Sakurai Lab. K.Kawabata et al. 9

#1: Arm curl

#2: Rowing

#5: Push up

#4: side raise

#3: Intervals

Page 10: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Outline1. Motivation2. Problem definition3. Model4. Streaming Algorithm5. Experiments6. Conclusions

CIKM2019 Sakurai Lab. K.Kawabata et al. 10

Page 11: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definition

CIKM2019 Sakurai Lab. K.Kawabata et al. 11

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

12

34

Given:• Data stream X

Find:1. Segment: 𝒮2. Regime: Θ3. Segment-

membership: ℱ

Page 12: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definitionData stream: set of d-dimensional vectors

CIKM2019 Sakurai Lab. K.Kawabata et al. 12

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

𝑋 = 𝑥!, … , 𝑥"

Given

𝑑 = 4

Page 13: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definitionSegment: start/end positions of each pattern

CIKM2019 Sakurai Lab. K.Kawabata et al. 13

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

𝒮 = 𝑠!, … , 𝑠#

𝑚 = 8

Hidden

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠' 𝑠(

Page 14: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definitionRegime: segment groups

CIKM2019 Sakurai Lab. K.Kawabata et al. 14

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

12

34

Θ = 𝜃!, … , 𝜃$ , Φ

𝑟 = 4

Hidden

Page 15: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definitionSegment-membership: regime-assignment

CIKM2019 Sakurai Lab. K.Kawabata et al. 15

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

12

34

ℱ = 𝑓 1 ,… , 𝑓 𝑚

1, 1,2, 2, 2,4, 4,3,ℱ = { }

e.g., 𝑓 3 = 4

Hidden

Page 16: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Problem definitionGiven: d-dimensional data stream 𝑋 = 𝑥!, … , 𝑥)

Find: compact description 𝒞 = 𝑚, 𝑟, 𝒮, Θ, ℱ of 𝑋

•𝑚 segments 𝒮• 𝑟 regimes Θ• segment-membership ℱ

CIKM2019 Sakurai Lab. K.Kawabata et al. 16

𝒞 = 𝑚, 𝑟, 𝒮, Θ, ℱ

Page 17: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Outline1. Motivation2. Problem definition3. Model4. Streaming Algorithm5. Experiments6. Conclusions

CIKM2019 Sakurai Lab. K.Kawabata et al. 17

Page 18: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Proposed modelGoal: find compact description C in a streaming setting

CIKM2019 Sakurai Lab. K.Kawabata et al. 18

Challenges:Q1. How can we represent regimes?

Idea (1): Hierarchical probabilistic modelQ2. How can we decide # of segments/regimes?

Idea (2): Model description cost

Page 19: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Idea (1): hierarchical probabilistic model

Q. How to describe patterns?

CIKM2019 Sakurai Lab. K.Kawabata et al. 19

𝜃* 𝑎""

𝑎#"𝑎"#𝑎"$ 𝑎$"

state1

state3state2

Idea: HMM-based probabilistic model• ‘within-regime’ transitions: A hidden Markov model 𝜃 = 𝜋, 𝐴, 𝐵• ‘across-regime’ transitions: Regime transition matrix Φ = 𝜙!" !,"$%

&

Model

Data stream

stand

run

walk

tRegimes

Page 20: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Idea (1): hierarchical probabilistic model

Full model Θ = 𝜃!, … , 𝜃+ , Φ

CIKM2019 Sakurai Lab. K.Kawabata et al. 20

𝜃* 𝑎""

𝑎#"𝑎"#

𝑎##

𝑎#$𝑎$#𝑎$$

𝑎"$ 𝑎$"state1

state3state2

𝜃* = 𝜋* , 𝐴* , 𝐵*Single HMM parameters:

Θ = 𝜃!, … , 𝜃$ , Φ

stand

run

walk

Regimes

Page 21: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Idea (1): hierarchical probabilistic model

Full model Θ = 𝜃!, … , 𝜃+ , Φ

CIKM2019 Sakurai Lab. K.Kawabata et al. 21

𝜃* 𝑎""

𝑎#"𝑎"#

𝑎##

𝑎#$𝑎$#𝑎$$

𝑎"$ 𝑎$"state1

state3state2

𝜃* = 𝜋* , 𝐴* , 𝐵*Single HMM parameters:

Φ = 𝜙*, *,,.!+

Regime transition matrix:

Θ = 𝜃!, … , 𝜃$ , Φ

stand

run

walk

Regimes

𝜙%% 𝜙''

𝜙%(𝜙(% 𝜙'( 𝜙('

𝜙((

𝜙%'𝜙'%

Page 22: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Idea (2): Incremental encoding schemeQ. How to decide # of segments/regimes?

CIKM2019 Sakurai Lab. K.Kawabata et al. 22

Idea: Minimum description length (MDL)• Minimize the total description cost of a data stream• Update ‘optimal’ # of segments/regimes

Page 23: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Idea (2): Incremental encoding schemeIdea: Minimize total encoding cost

CIKM2019 Sakurai Lab. K.Kawabata et al. 23

Goodcompression

Gooddescription

CostM(C) + CostC(X|C)Model cost Coding cost

min ( )

1 2 3 4 5 6 7 8 9 10

CostM

CostC

CostT

(# of r, m)

Page 24: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q. How many new components does 𝒞 need?

Idea (2): Incremental encoding scheme

CIKM2019 Sakurai Lab. K.Kawabata et al. 24

A regimeA segment A stateKeep compact!

𝒞

𝑋!

regime?How many?

segment?

Page 25: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q. How many new components does 𝒞 need?

Idea (2): Incremental encoding scheme

CIKM2019 Sakurai Lab. K.Kawabata et al. 25

Keep compact!

𝒞

𝑋!

regime?How many?

segment?

A regimeA segment A stateDetails in paper

Page 26: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Outline1. Motivation2. Problem definition3. Model4. Streaming Algorithm5. Experiments6. Conclusions

CIKM2019 Sakurai Lab. K.Kawabata et al. 26

Page 27: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Streaming algorithms• Algorithms

CIKM2019 Sakurai Lab. K.Kawabata et al. 27

StreamScopeOptimize/update parameter set 𝒞

1. SegmentAssignmentIdentify regime transitions & segments

2. RegimeGeneration

Estimate new regimes 𝜃

Main

Page 28: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

StreamScope• Overview

CIKM2019 Sakurai Lab. K.Kawabata et al. 28

𝑋:

1. Keep current window:• The latest segment, 𝑠%• New observations, 𝑥&, …

𝑋) = 𝑠* ∪ 𝑥+

Data stream 𝑋

𝑡 →

𝒞

Page 29: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

StreamScope• Overview

CIKM2019 Sakurai Lab. K.Kawabata et al. 29

𝑋:

1. Keep current window:• The latest segment, 𝑠%• New observations, 𝑥&, …

𝑋) = 𝑠* ∪ 𝑥+

Data stream 𝑋

𝑡 →

𝒞

2. Update model set 𝓒• Minimize Δ𝐶𝑜𝑠𝑡'(𝑋(|𝒞)

Increase segments?(SegmentAssignment)

vs.Increase states/regimes?(RegimeGeneration)

Page 30: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

StreamScope• Overview

CIKM2019 Sakurai Lab. K.Kawabata et al. 30

Data stream 𝑋

𝑡 →

𝒞

𝑋:

1. Keep current window:• The latest segment, 𝑠%• New observations, 𝑥&, …

𝑋) = 𝑠* ∪ 𝑥+

3. Update 𝑿𝒄• If pattern has changed

2. Update model set 𝓒• Minimize Δ𝐶𝑜𝑠𝑡'(𝑋(|𝒞)

Increase segments?(SegmentAssignment)

vs.Increase states/regimes?(RegimeGeneration)

Page 31: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

1. SegmentAssignmentGiven:• Observation 𝒙𝒕• Model parameter set Θ = {𝜃%, … , 𝜃&, Φ}

Find:• Optimal cut point between regimes: 𝑚, 𝒮, ℱ

CIKM2019 Sakurai Lab. K.Kawabata et al. 31

Page 32: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

1. SegmentAssignmentOverview

CIKM2019 Sakurai Lab. K.Kawabata et al. 32

𝜃!

𝜃"

𝜃#

1 2 3 4

𝑡 →𝑥" 𝑥# 𝑥$ 𝑥* 𝑥+ 𝑥, 𝑥-

Dynamic programing algorithm to compute

𝑃(𝑥"|Θ) 𝜙"$

Page 33: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

1. SegmentAssignmentOverview

CIKM2019 Sakurai Lab. K.Kawabata et al. 33

𝜃!

𝜃"

𝜃#

1 2 3 4

𝜙"#Dynamic programing algorithm to compute

𝑃(𝑥"|Θ)Keep all candidate

cut pointsℒ = 𝐿!, 𝐿%, …

𝐿# = 2, 3

𝐿# = 4, 2

𝑥" 𝑥# 𝑥$ 𝑥* 𝑥+ 𝑥, 𝑥-

𝑡 →

𝑠𝑤𝑖𝑡𝑐ℎ? ?

𝑠𝑤𝑖𝑡𝑐ℎ? ?𝜙"$

Page 34: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

1. SegmentAssignmentOverview

CIKM2019 Sakurai Lab. K.Kawabata et al. 34

𝜃!

𝜃"

𝜃#𝑡 →

Dynamic programing algorithm to compute

𝑃(𝑥"|Θ)

𝛾 − guarantee:𝛾 ∝ 𝑚𝑒𝑎𝑛( 𝑠 )

𝐿# = 2, 3

𝛾

𝑥" 𝑥# 𝑥$ 𝑥* 𝑥+ 𝑥, 𝑥-

Keep all candidate cut points

ℒ = 𝐿!, 𝐿%, …

𝜙"$

Page 35: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

2. RegimeGenerationGiven:• Current window 𝑋)

Find:• New regimes: parameter set 𝑚, 𝑟, 𝒮, Θ, ℱ for 𝑋)

CIKM2019 Sakurai Lab. K.Kawabata et al. 35

Page 36: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

2. RegimeGeneration1. Two phase iterative approach

• Phase1: split segments into 2 groups

• Phase2: update 2 model parameters

CIKM2019 Sakurai Lab. K.Kawabata et al. 36

Phase 1

Phase 2

S1 =S2 =

𝜃!, 𝜃%, Φ

𝜃!𝜃"

𝑋/

Page 37: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

2. RegimeGeneration1. Two phase iterative approach

• Phase1: split segments into 2 groups

• Phase2: update 2 model parameters

2. Recursively split new regimes

• While total cost can be reduced

CIKM2019 Sakurai Lab. K.Kawabata et al. 37

𝜃!𝜃"

𝑋/

𝜃!𝜃"𝜃#

Page 38: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Outline1. Motivation2. Problem definition3. Model4. Streaming Algorithm5. Experiments6. Conclusions

CIKM2019 Sakurai Lab. K.Kawabata et al. 38

Page 39: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Experiments•We answer the following questions:

CIKM2019 Sakurai Lab. K.Kawabata et al. 39

Q1. Effectiveness:How successful is it in discovering patterns?

Q2. Accuracy:How well does it find cut-points & regimes?

Q3. Scalability:How does it scale in terms of time & memory consumption?

Page 40: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q1. Effectiveness - #Mocap• MoCap sensor stream

CIKM2019 Sakurai Lab. K.Kawabata et al. 40

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

?

Page 41: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q1. Effectiveness - #Mocap• MoCap sensor stream

CIKM2019 Sakurai Lab. K.Kawabata et al. 41

1000 2000 3000 4000 5000Time

0

0.5

1

Value

L-armR-armL-legR-leg

12

34

#1 Going straight

#2 Stretching arms

#4 Stretching left arm

#3 Stretching right arm

StreamScope can find intuitive patterns automatically

Page 42: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q1. Effectiveness - #Bicycle• Bicycle dataset

CIKM2019 Sakurai Lab. K.Kawabata et al. 42

≈Acceleration– (X,Y,Z)

Page 43: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q1. Effectiveness - #Bicycle• Bicycle dataset

CIKM2019 Sakurai Lab. K.Kawabata et al. 43

#1 #2

#3 #4

#5

Page 44: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q2. Accuracy• Segmentation accuracy (higher is better)

CIKM2019 Sakurai Lab. K.Kawabata et al. 44

#Mocap #Bicycle #Workout0

0.5

1

Mac

ro-F

1 sc

ore

StreamScope AutoPlait TICC-2 TICC-4 TICC-8 pHMM

Good accuracy compared with other methods

Page 45: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q2. Accuracy• Clustering accuracy (higher is better)

CIKM2019 Sakurai Lab. K.Kawabata et al. 45

#Mocap #Bicycle #Workout0

0.5

1

Accuracy

StreamScope AutoPlait TICC-2 TICC-4 TICC-8 pHMM

Good accuracy compared with other methods

Page 46: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q3. Scalability•Wall clock time vs. stream length

CIKM2019 Sakurai Lab. K.Kawabata et al. 46The complexity is independent of the data length

1 1.5 2 2.5 3 3.5 4Time 104

10-4

10-2

100

102

104

Wal

l clo

ck ti

me

(s)

StreamScope AutoPlait TICC pHMM

100x

Page 47: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Q3. Scalability• Memory space vs. stream length

CIKM2019 Sakurai Lab. K.Kawabata et al. 47The complexity is independent of the data length

1 1.5 2 2.5 3 3.5 4Time 104

104

105

106

Mem

ory

spac

e (b

yte)

StreamScopeO(n)

100x

Page 48: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

ConclusionsStreamScope has the following advantages:

Effective:Find optimal segments/regimes

Adaptive:Automatic and incremental

Scalable:It does not depend on data length

CIKM2019 Sakurai Lab. K.Kawabata et al. 48

Page 49: Automatic Sequential Pattern Mining in Data Streamsyasushi/...•e.g., IoT sensors/Web click logs •contain multiple patterns Requirements: •Incremental •We cannot access all

Thank you !

CIKM2019 Sakurai Lab. K.Kawabata et al. 49