bab 1 - pen gen alan

22
BAB 1: PENDAHULUAN 1.1 Introduction Nitrogen (N) is among the most important elements required in agricultural systems to produce food and to supply protein for the increasingly larger World population. The amount of N required increases directly in response to the requirement for protein in the diets of growing population numbers. World population is projected to increase from current levels of about 6.1 to nearly 8 billion people during the next 25 years, and the requirement for N inputs will increase accordingly to meet these growing dietary protein requirements. Countries such as China are rapidly increasing the use of N fertilizer as a result of their large population and an increased demand for dietary protein. Such trends must be expected and planned for in many other parts of the World with growing populations, increased demands for dietary 1.1 Pengenalan Nitrogen (N) merupakan salah satu elemen paling penting yang diperlukan dalam sistem pertanian untuk menghasilkan makanan dan untuk menyediakan protein bagi penduduk dunia yang semakin besar. Jumlah N yang diperlukan meningkat secara langsung dalam menanggapi keperluan protein dalam diet pertumbuhan penduduk. Penduduk dunia diramalkan meningkat dari level saat ini sekitar 6.1 menjadi hampir 8 bilion orang selama 25 tahun ke depan, dan keperluan untuk input N meningkat untuk memenuhi keperluan protein. Negara seperti China dengan cepat meningkatkan penggunaan baja N sebagai hasil daripada penduduk besar dan peningkatan permintaan untuk protein diet. Trend semacam ini harus diharapkan dan dirancang untuk di banyak bahagian lain Dunia dengan penduduk tumbuh, peningkatan permintaan 1

Upload: mohamad-ridzuan-kamarudin

Post on 27-Nov-2014

67 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Bab 1 - Pen Gen Alan

BAB 1: PENDAHULUAN

1.1 Introduction

Nitrogen (N) is among the most important elements required in agricultural systems to produce food and to supply protein for the increasingly larger World population. The amount of N required increases directly in response to the requirement for protein in the diets of growing population numbers. World population is projected to increase from current levels of about 6.1 to nearly 8 billion people during the next 25 years, and the requirement for N inputs will increase accordingly to meet these growing dietary protein requirements. Countries such as China are rapidly increasing the use of N fertilizer as a result of their large population and an increased demand for dietary protein. Such trends must be expected and planned for in many other parts of the World with growing populations, increased demands for dietary protein, and improved living standards.

1.1 Pengenalan

Nitrogen (N) merupakan salah satu elemen paling penting yang diperlukan dalam sistem pertanian untuk menghasilkan makanan dan untuk menyediakan protein bagi penduduk dunia yang semakin besar. Jumlah N yang diperlukan meningkat secara langsung dalam menanggapi keperluan protein dalam diet pertumbuhan penduduk. Penduduk dunia diramalkan meningkat dari level saat ini sekitar 6.1 menjadi hampir 8 bilion orang selama 25 tahun ke depan, dan keperluan untuk input N meningkat untuk memenuhi keperluan protein. Negara seperti China dengan cepat meningkatkan penggunaan baja N sebagai hasil daripada penduduk besar dan peningkatan permintaan untuk protein diet. Trend semacam ini harus diharapkan dan dirancang untuk di banyak bahagian lain Dunia dengan penduduk tumbuh, peningkatan permintaan untuk protein diet, dan standard hidup ditingkatkan.

1

Page 2: Bab 1 - Pen Gen Alan

All plants and animals require nitrogen as a nutrient to synthesize amino acids and proteins. Most nitrogen on earth is found in the atmosphere in the form of N2, but plants and animals cannot utilize it in this form. The nitrogen must first be converted into a useable form, such as nitrate, NO3 Ð. These conversions among the various forms of nitrogen form a complex cycle called the nitrogen cycle, illustrated above.

Nitrogen (N) is a major element of all organisms and it accounts for 6.25% of their dry mass on average. In biology, N undergoes a variety of oxidations and reductions that produce compounds with oxidation states ranging from 5 (as in nitrate, NO3 ) to 3 (as in ammonia, NH3). These nitrogen cycle, redox reactions are performed in different ways by different organisms, and the reactions in total make up the biological N-cycle (depicted on the front cover and in Figure 0-1). All of these reactions are performed by bacteria, archaea and some specialized fungi. There is only one example of a higher life form performing such a reaction; the remarkable exception is assimilatory NO3 reduction, which also occurs in plants. In assimilatory NO3 reduction, NO3 is reduced via nitrite (NO2 ) to the NH4 ion. In general, NH4 is then utilized for the synthesis of glutamine as the first organic N-containing molecule formed. Glutamine is the N-donor for the synthesis of other amino acids and heterocyclic N-compounds.

Nitrogen (N) adalah elemen utama dari semua organisma dan menyumbang 6,25% dari berat kering. Dalam biologi, N mengalami pelbagai pengoksidaan dan pengurangan yang menghasilkan sebatian dengan bilangan oksidasi berkisar dari 5 (seperti dalam nitrat, NO3) untuk 3 (seperti dalam ammonia, NH3). Ini kitaran nitrogen, reaksi redoks dilakukan dengan cara yang berbeza oleh organisma yang berbeza, dan reaksi secara total membuat N-kitaran biologi (digambarkan pada sampul depan dan pada Gambar 0-1). Semua reaksi ini dilakukan oleh bakteria, archaea dan beberapa cendawan khusus. Hanya ada satu contoh bentuk kehidupan yang lebih tinggi melakukan reaksi seperti itu, kecuali luar biasa adalah pengurangan NO3 assimilatory, yang juga berlaku pada tanaman. Dalam penurunan NO3 assimilatory, NO3 berkurang melalui nitrit (NO2) ke ion NH4. Secara umum, NH4 kemudian digunakan untuk sintesis glutamin sebagai organik pertama yang mengandung N-molekul terbentuk. Glutamin N-penderma untuk sintesis asid amino lain dan heterosiklik N-sebatian.

2

Page 3: Bab 1 - Pen Gen Alan

The ammonium ion, NH4 +, is an important member of the group of

nitrogen-containing compounds that act as nutrients for aquatic plants

and algae. In surface water, most of the ammonia, NH3, is found in the

form of the ammonium ion, NH4 +. This fact allows us to approximate

the concentration of all of the nitrogen in the form of ammonia and

ammonium combined, commonly called ammonia nitrogen, by

measuring only the concentration of the ammonium ions.

Ion amonium, adalah anggota penting dari kumpulan sebatian yang mengandungi nitrogen yang berfungsi sebagai nutrisi bagi tanaman akuatik dan alga. Di permukaan air, sebahagian besar ammonia, ditemui dalam bentuk ion amonium. Hal ini membolehkan kita untuk anggaran kepekatan semua nitrogen dalam bentuk ammonia dan amonium digabungkan, biasa disebut nitrogen ammonia, dengan mengukur hanya kepekatan ion amonium.

The ammonium (more obscurely: aminium) cation is a positively charged polyatomic cation with the chemical formula NH+ 4. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (N+R4), where one or more hydrogen atoms are replaced by organic radical groups (indicated by R). In the substitutive nomenclature NH4+ is denoted by the name azanium instead of ammonium.

the ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule:

NH4+ + :B- → HB + NH3

1.1 Pengenalan

Ion amonium adalah kation poliatomik bercas positif dengan formula kimia NH4

+. Ia dibentuk dari protonasi ammonia (NH3). Protonasi ialah ….

Ion amonium bersifat berasid dan apabila bertindak balas dengan bes Brønsted menghasilkan molekul ammonia yang tidak bercas.

NH4+ + :B- → HB + NH3

Ammonia sangat larut dalam air. Dalam air, NH3 berada dalam keseimbangan antara gas ammonia NH3 (g) dan ion amonium (NH4

+).

3

Page 4: Bab 1 - Pen Gen Alan

Thus, treatment of concentrated solutions of ammonium salts with strong base gives ammonia. When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions:

H3O+ + NH3   H2O + NH4+

The degree to which ammonia forms the ammonium ion depends on the pH of the solution. If the pH is low, the equilibrium shifts to the right: more ammonia molecules are converted into ammonium ions. If the pH is high (the concentration of hydronium ions is low), the equilibrium shifts to the left: the hydroxide ion abstracts a proton from the ammonium ion, generating ammonia.

Formation of ammonium compounds can also occur in the vapor phase; for example, when ammonia vapor comes in contact with hydrogen chloride vapor, a white cloud of ammonium chloride forms, which eventually settles out as a solid in a thin white layer on surfaces.

The conversion of ammonium back to ammonia is easily accomplished by the addition of strong base.

the lone electron pair on the nitrogen atom (N) in ammonia, represented as a pair of dots, forms the bond with a proton (H+). Thereafter, all four N-H bonds are equivalent, being polar covalent bonds. The ion is isoelectronic with methane and borohydride. In terms of size, the ammonium cation (rionic = 175 pm) resembles the cesium cation (rionic = 183 pm).

NH3(g) + H20 ↔ NH4+(akuas) + OH-

pH memainkan peranan penting bagi pembentukan ion amonium. Jika pH rendah, keseimbangan akan beralih ke kanan iaitu molekul ammonia lebih banyak diubah menjadi ion amonium. Jika pH tinggi (kepekatan ion hidronium rendah), keseimbangan akan ke kiri iaitu ion hidroksida sebuah proton dari ion amonium, menghasilkan ammonia.

1.5 Occurrence of ammonium 1.5 Punca ammonium

4

Page 5: Bab 1 - Pen Gen Alan

Ammonium is ubiquitous in waters and wastewater. Its concentrations range many orders of magnitude, from oligotrophic oceanic waters to heavily polluted wastewaters. Table 1.1 shows the concentration ranges of ammonium in selected waters and wastewaters

Pembentukan sebatian amonium juga boleh berlaku dalam fasa wap, misalnya, ketika stim ammonia terjadi hubungan dengan stim hidrogen klorida, awan putih bentuk amonium klorida, yang akhirnya mengendap keluar sebagai solid di dalam lapisan putih tipis pada permukaan. Penukaran amonium kembali ke ammonia mudah dicapai dengan penambahan bes yang kuat.

Ammonium dibentuk dari proses ammonifikasi, hidrolisis urea dannitrifikasi dalam kitar nitrogen

Ammonifikasi ialahHidrolisis urea ialahnitrifikasi

………………..

Amonium ada dimana-mana di perairan dan air sisa. Kepekatan yang berbeza konsentrasi pelbagai banyak tempahan dari besarnya, dari perairan laut oligotrophic untuk berat air sisa tercemar. Jadual 1.1 menunjukkan julat kepekatan dari amonium di perairan dipilih dan air sisa.

Ammonium juga terdapat di udara (Sulaiman et al., 2006) Ia berpunca daripada gas amonia yang dibebaskan oleh kilang-kilang pembuatan plastik, asid nitrik dan pewarna selain daripada penghasilannya secara semulajadi.

Malaysia Journal of Analytical Sciences, Vol 10, No 1 (2006): 109-114KEPEKATAN PLUMBUM, KADMIUM, NITRAT DAN AMMONIUM DI UDARA. Norela Sulaiman, Maimon Abdullah,

5

Page 6: Bab 1 - Pen Gen Alan

Mohd Rozali Othman

The ammonium ion, NH4 +, is an important member of the group of nitrogen containing compounds that act as nutrients for aquatic plants and algae. In surface water, most of the ammonia, NH3, is found in the form of the ammonium ion, NH4 +. This fact allows us to approximate the oncentration of all of the nitrogen in the form of ammonia and ammonium combined, commonly called ammonia nitrogen, by measuring only the concentration of the ammonium ions.

Current and impeding legislation for wastewater effluent discharge has necessitated enhanced treatment processes capable of removing higher percentages of chemical oxygen demand (COD), nitrogen, phosphorous, and suspended solids (including pathogenic bacteria, even viruses) (Verstrete, 2002).

Ion amonium (NH4+) adalah salah satu elemen penting dalam kumpulan

nitrogen mengandungi sebatian yang bertindak sebagai nutrisi bagi tanaman akuatik dan alga.

Pada permukaan air, sebahagian besar ammonia (NH3) ditemui dalam bentuk ion amonium. Fakta ini membolehkan kita untuk membuat anggaran kepekatan semua nitrogen dalam bentuk ammonia dan gabungan amonium, biasanya disebut sebagai nitrogen ammonia. Kepekatan nitrogen ammonia hanya diukur menggunakan kepekatan ion-ion amonium. Undang-undang untuk pembuangan sisa air telah dilancarkan untuk mempertingkatkan proses rawatan mengurangkan peratusan jumlah Keperluan Oksigen Kimia (Chemical Oxygen Demand; COD), nitrogen, fosforus, pepejal terampai, bakteria patogen dan virus (Verstrete, 2002).

Nitrogen removal from wastewater has been subject of many studies during the last decade due to increasingly stringent environmental legislation in many countries. The uncontrolled release of nitrogen to the environment is known to cause serious pollution problems. Nitrate pollution in surface water and in groundwater has been attributed to

Kajian penyingkiran nitrogen dari pembuangan air sisa telah menjadi subjek penting selama ini disebabkan undang-undang persekitaran yang semakin ketat di kebanyakan negara. Pelepasan nitrogen yang tidak terkawal terhadap persekitaran menyebabkan masalah pencemaran alam yang serius. Pencemaran nitrat pada permukaan air

6

Page 7: Bab 1 - Pen Gen Alan

wastewater outfalls and agriculture runoff. High nitrate levels in water can cause infant methaemoglobinaemia. Many rivers now contain more than 10 mg/l NO3—N and some occasionally exceed 50 mg/l NO3—N (Horne, 1995). Nitrogen as well as phosphorous plays a major role in eutrophication (Elser et al., 1990). Nitrogen in wastewater should be handled as a nutrient resource rather than a pollutant that only has to dispose off (Gijzen and Mulder, 2001). One of the ways to remove nitrogen is by using bioremediation technique, where the nitrogen is used as nutrient to the microorganisms. The approach that has been exploited most consists of stimulation of the soil endogenous microflora by adding an electron acceptor and/or nutriments; in particular nitrogen in the form of ammonium salts (Jamal and Micheal, 1999). This nitrogen source is exploited mainly by microbial biomass for growth and production of degradative enzymes. Some of the ammonium may be transformed into nitrite and nitrate by the nitrification pathway (Prosser, 1989). Ammonium is one of the most important nitrogen compounds in surface waters and other ecosystems for three reasons. First is the preferred nutrient form of nitrogen for most plant species and for autotrophic bacteria; second it is chemically reduced and can therefore be readily oxidized in natural water, resulting in the consumption and decrease of dissolved oxygen; and third is non ionized ammonia is toxic to many forms of aquatic life already at low concentrations more than 0.2 mg/L(Paredes et al., 2007).

Under aerobic conditions, ammonium is oxidized by microorganisms to nitrate, with nitrite as an intermediate product. Two different groupsof bacteria play a role in the nitrification step: ammonium oxidizers and nitrite oxidizers. In the oxidation of ammonia, nitrite is formed as an intermediate product. It has been considered that it can rarely be t in

dan air bawah tanah telah dikaitkan limpahan air sisa pertanian. Paras nitrat yang tinggi dalam air boleh menyebabkan bayi mengalami methaemoglobinaemia. Banyak sungai sekarang mengandungi lebih dari 10 mg/L nitrogen ammonia dan kadang-kadang melebihi 50 mg/L nitrogen ammonia (Horne, 1995). Nitrogen serta fosfor memainkan peranan utama dalam eutrofikasi (Elser et al, 1990). Nitrogen dalam air sisa perlu ditangani sebagai sumber nutrisi dan bukannya pencemaran. (Gijzen dan Mulder, 2001). Salah satu cara untuk menghilangkan nitrogen adalah dengan menggunakan teknik bioremediasi, di mana nitrogen digunakan sebagai nutrisi untuk mikroorganisma. Pendekatan yang telah dieksploitasi sebahagian besar terdiri daripada stimulasi tanah endogen mikroflora dengan menambah penerima elektron dan/atau zat-zat gizi; dalam nitrogen tertentu dalam bentuk garam amonium (Jamal dan Michael, 1999). Hal ini dimanfaatkan sumber nitrogen terutama oleh biojisim mikrob untuk pertumbuhan dan pengeluaran enzim degradatif. Amonium diubah menjadi nitrit dan nitrat oleh proses nitrifikasi (Prosser, 1989). Amonium adalah salah satu sebatian nitrogen yang paling penting di permukaan air dan ekosistem yang lain. Ia kerana amonium adalah bentuk pemakanan yang disukai nitrogen untuk jenis tumbuhan dan untuk bakteria autotropik. Selain itu, amonium secara kimia berkurang kerana dioksidakan dalam air semulajadi, yang mengakibatkan pengambilan dan penurunan oksigen terlarut. Amonium juga adalah amonia terion beracun kepada berbagai bentuk kehidupan air yang sedia ada pada kepekatan rendah iaitu lebihkurang 0.2 mg/L (Paredes et al, 2007).

Dalam keadaan aerobik, amonium dioksidakan oleh mikroorganisma untuk nitrat, dan nitrit sebagai produk perantara. Dua kumpulan bakteria yang berbeza berperanan dalam langkah nitrifikasi iaitu pengoksidaan amonium dan pengoksidaan nitrit. Dalam pengoksidaan

7

Page 8: Bab 1 - Pen Gen Alan

terrestrial and aquatic environments (Paredes et al., 2007). ammonia, nitrit terbentuk sebagai produk perantara. Perkara ini dianggap jarang terkumpul dalam lingkungan darat dan perairan (Paredes et al, 2007).

The fluctuations of ammonium contents in the aquatic environments

can consequently cause impacts to both human and aquatic life. On the

other hand, ammonium is a preferred micronutrient for many plants

and phytoplankton, and thus makes it as a key water quality parameter

in studies of eutrophication (Libes, 1992).

For water disinfection process, measurements of ammonium are

important because it competitively reacts with the disinfection agent

hypochlorous acid to form less effective disinfectant. Therefore,

ammonium is an essential parameter in the assessment of potable water

quality and industrial processes.

Kebaikan ammoniumPerubahan kandungan amonium yang sesuai dalam persekitaran

akuatik boleh menyebabkan kesan baik kehidupan manusia dan

akuatik. Dengan kata lain, amonium merupakan mikronutrisi yang

diperlukan bagi kebanyakan tumbuhan dan fitoplankton, dan dengan

demikian menjadikannya sebagai salah satu parameter kualiti air dalam

kajian eutrofikasi (Libes, 1992).

Untuk proses disinfeksi air, pengukuran amonium adalah penting

kerana kompetitif bertindak balas dengan asid agen disinfeksi

hypochlorous untuk membentuk disinfektan kurang berkesan. Oleh

kerana itu, amonium merupakan parameter penting dalam penilaian

kualiti air minum dan proses industri.

8

Page 9: Bab 1 - Pen Gen Alan

In environmental fields, eutrophication, the excessive growth of biomass as a consequence of high nutrient inputs, leads to the perturbation of the ecological balance of a water body (Liikanen & Martikainen, 2003; Vaithiyanathan & Richardson, 1997). The growth and decay of biomass may cause oxygen depletion or hypoxia, resulting in problems such as increased fish mortality (Bourdelais et al., 2002).

Even low concentrations of ammonium can adversely affect aquatic life, such as reduction in hatching success and growth rate as well as injury to gill tissue, liver and kidneys (U.S. EPA. 1986; NRC, 1979). In addition, ammonium can penetrate the cell membrane under alkaline conditions. In excess, it is harmful to aquatic life by accumulating in organisms and causing alteration in metabolism and body pH (Simpson & Sherrard. 1969). Coma and even death may occur at extremely high levels (Felipo & Butterworth 2002). For human health, ingestion of ammonium contaminated food may result in corrosion of mouth lining, esophagus and stomach (Libes, 1992).

Keburukan ammoniumDi dalam persekitaran, proses eutrofikasi mengakibatkan lebihan pertumbuhan biojisim dan ini menyebabkan gizi makanan yang tinggi, mengarahkan gangguan pada keseimbangan ekologi air (Liikanen & Martikainen, 2003; Vaithiyanathan & Richardson, 1997). Pertumbuhan dan kemerosotan biojisim boleh menyebabkan penipisan oksigen atau hipoksia dan ini mengakibatkan masalah kematian ikan (Bourdelais et al, 2002.).

Kepekatan ammonium yang tinggi mempengaruhi kehidupan dalam akuatik terutama penurunan tahap kejayaan untuk penetasan dan pertumbuhan anak ikan. Ia juga boleh menyebabkan kecederaan pada tisu insang, hati dan ginjal (US EPA 1986;. NRC, 1979). Selain itu, amonium terutamanya dalam persekitaran alkali boleh menembusi membran sel hidupan akuatik.

Ammonium yang terkumpul dalam kehidupan air boleh menyebabkan perubahan pada pH dan metabolisma tubuh (Simpson & Sherrard 1969.). Kandungan ammonium yang sangat tinggi boleh menyebabkan koma dan kematian (Felipo & Butterworth 2002).

Untuk kesihatan manusia, pengambilan makanan yang tercemar amonium boleh menyebabkan korosi dari lapisan mulut, kerongkong dan perut (Libes, 1992).

1.2 Problem statement

Nowadays, current mainstream technologies for wastewater treatment, such as the activated sludge process with nitrogen and phosphorous

1.2 Permasalahan Kajian

Pada masa kini, teknologi memproses air kumbahan, seperti proses lumpur aktif dengan nitrogen dan penghapusan fosforus, terlalu mahal

9

Page 10: Bab 1 - Pen Gen Alan

removal, are too costly to provide a satisfactory solution for the growing wastewater problems in developing regions. The treatment of wastewater should be geared towards the effective re-use of nutrients it self (Gijzen and Mulder, 2001). If this nutrients (containing nitrogen in the form of ammonium cation) release to the environment is uncontrolled, it will contribute to the serious pollutions problem and also affect the human health. Some of the disadvantages of ammonium-nitrogen are it is toxic, it can produce eutrophication of surface waters, cause of corrosion and cause of methemoglobinemia in infants (Bitton, 2005). Biological treatment is an environmentally sound approach to reduce nitrogen and phosphorus levels and has been applied for almost 50 years in special reactors termed high-rate ponds (Jing et al., 2006). The study shows that there are obvious advantages of eliminating ammonium from wastewater using biological treatment. First, it does not generate secondary pollution by generation of ammonia (NH3) and second the biomass can be harvested and used as a slow-release fertilizer or soil conditioner (De la Noue et al., 1992; Mallick, 2002). Besides the treatment is environmentally approach it is also give low cost of operating.

untuk memberikan penyelesaian yang memuaskan untuk masalah air sisa dikebanyakan kawasan. Rawatan air sisa harus diarahkan penggunaan semula berkesan nutrisi itu sendiri (Gijzen dan Mulder, 2001). Jika ini nutrisi (mengandungi nitrogen dalam bentuk kation amonium) terlepas ke persekitaran tidak terkawal, maka akan memberikan sumbangan untuk masalah pencemaran yang serius dan juga mempengaruhi kesihatan manusia. Beberapa kekurangan dari amonium-nitrogen seperti ianya beracun, menghasilkan eutrofikasi dari permukaan air, boleh menyebabkan karat dan penyebab methemoglobinemia pada bayi (Bitton, 2005). Rawatan biologi merupakan suatu pendekatan mesra alam untuk mengurangkan nitrogen dan fosforus peringkat dan telah dilaksanakan selama hampir 50 tahun di reaktor khusus disebut tinggi tingkat tambak (Jing et al, 2006.).

1.3 Objectives of the StudyThe objectives of the study are:(i) To study the degradation of ammonium-nitrogen by microflora in drain.(ii) To study the effect of ammonium-nitrogen concentration in the growth of microflora.(iii) To study the effect of different loading rate in ammonium-nitrogen removal.

1.3 Objektif Kajian

Tujuan kajian ini adalah untuk:

(i) memencilkan dan mencirikan bakteria dalam air sisa kumbahan kilang pemprosesan sarung tangan getah. (ii) menguji kemampuan bakteria yang dipencilkan dalam bioremediasi terhadap amonium.

10

Page 11: Bab 1 - Pen Gen Alan

(iii) membangunkan teknologi deria amonium secara optik

1.4 Scope of the studyThe scope of study includes the acclimatizing of microflora in drain to treat (degrade) ammonium-nitrogen (NH4-N) in wastewater. The wastewater that contains NH4-N was simulated with the appropriate nutrients for microflora. The initial simulated wastewater was analyzed. Then, experiments were conducted separately in reactor with different operation loading rate (0.4, 1.3, 2.2, 3.1, and 4.0 mg/l/day). The amount of NH4-N in each tank was 5 liters. The efficiency of treatment for different NH4-N concentrations was evaluated in terms of water quality parameters (COD) and the changes in concentration. Besides that, the suspended solids parameter is used to measure the quality of the effluent.

1.4 Skop Penyelidikan Ruang lingkup kajian meliputi pemencilan dan pencirian bakteria dari air sisa kumbahan dari kilang pemprosesan lateks menggunakan kaedah makrobiologi. Kesemua bakteria ini kemudiannya dianalisis bioremedasi terhadap ammonium. Kemudian bakteria yang berpotensi ini dipilih untuk dibangunkan sensor menggunakan kaedah optik.

11

Page 12: Bab 1 - Pen Gen Alan

Table 1.1 : Concentration ranges of ammonium in various water environments (NRC, 1979).

Water type Concentration range (M)Seawater <3 x 10-6

Estuarine/ River water 0.1 x 10-6 ─ 10 x 10-3

Rainwater 0.1 x 10-6 ─ l0 x 10-3

Treated sewage 0.1 x 10-3 ─ 0.01Raw sewage 0.1 ─ 0.01

Table 1.2 : Classification of analytical methods for ammonium determinations.Method Type Technique

Gravimetry Precipitation and volatilizationTitrimetry Volumetric Acid-base titration

Electroanalysis Conductimetric ConductimetryPotentiometric Electrode

Voltametric Cathodic stripping voltammetry (CSV)Spectroscopy Absorbance Indophenol blue (IPB)

Rubazoic acidNesslerization

Emission ChemiluminescenceFluorescence

Chromatography Column Gas chromatography (GC)Liquid chromatography (LC)Capillary electrophoresis (CE)

Planar Thin-layer chromatography (TLC)Paper chromatography (PC)

12

Page 13: Bab 1 - Pen Gen Alan

13

Page 14: Bab 1 - Pen Gen Alan

Table 1.3 : Microbial sensors for determinations of environmental related compounds.

Analyte Biocomponent Transducer Detection limit(mg/L)

Ammonium (Hikuma et al., 1980)

Nitrosomonas europaea

O2 sensor 0.04

Nitrate (Strehlitz et al., 1994; (Strehlitz et al., 1996)

Azotobacter vinelandii NH4+ ISE 0.6

Nitrite (Karube et al., 1982) Nitrobacter sp. O2 sensor 2.3Urea (Ihn & Kim, 1989) Proteus vulgaris NH4

+ ISE 0.04Sulfate (Kobos, 1986) Desulfovibrio

desulfuricumSulfide ISE 3.8

Benzoate (Riedel et al., 1991) Rhododococcus P1 O2 sensor 2.8Phenol (Neujahr & Kjellén, 1979; Riedel et al., 1995)

Trichosporon cutaneum (beigelii)

O2 sensor 2

Sulfur dioxide (Nakamura et al., 1993)

Thiobacillus thiooxydans

pH electrode

5

Chlorophenol (Riedel et al., 1995)

Trichosporon cutaneum (beigelii)

O2 sensor 0.3

Cyanide (Lee & Karube, 1995) Pseudomonas fluorescence

O2 sensor 0.1

PAH (Vorlop et al., 1992) Pseudomonas fluorescens WW4

O2 sensor 0.01

Mercury (Holmes et al., 1993) E. coli recombinant Optrode 0.02PCB (Vorlop et al., 1992; Beyersdorf-Radek et al., 1991)

Pseudomonas putida O2 sensor 100

Formic acid (Matsunaga et al., 1980)

Pseudomonas oxalaticus

C02 ISE 5

Methane (Okada et al., 1981) Methylomonas flagellata

O2 sensor 0.4

14

Page 15: Bab 1 - Pen Gen Alan

Figure 1.2 Schematic diagram of spectrophotometry

15