baldwin 2010

Upload: jon-baldwin

Post on 05-Apr-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Baldwin 2010

    1/20

  • 7/31/2019 Baldwin 2010

    2/20

    Thustherearemultiplereasonsforconsideringtheeffectofmeasurementcostonproductprofitability,

    beginning with the global objective of improving competitive posture,just discussed. The effect of

    measurementcostbecomesyetmore intenselyfocusedwhen,as isoftenthecase,measurementsare

    alsousedtocontrolthemanufacturingprocess. Processcontrolishighlydesirableasitnotonlyreduces

    thenumberofmeasurements (andhence costs),but itproactivelyadjusts theprocessand thus can

    reducethenumberofoutofspecificationcomponents.Costsarenowleveragedupasafewprocess

    control measurements may affect several hundred manufactured components. Additionally, anerroneousmeasurementsystemnowhastheopportunitytomisadjustthemanufacturingparameters,

    creatingoutofspecificationcomponents,andthentopassthemontothecustomer. Atalowerlevel,

    anunderstandingofmeasurement cost canbeapplied tooptimize the contributionofmeasurement

    resources to the financial bottom line, tojustify and predict the benefits ofmeasurement resource

    expendituresandtofocusavailablemetrologyresourcestobestpromoteprofitability.

    Inrecentyearstherehavebeensignsofashiftawayfromthetraditionalviewofproductmetrology,

    andtowardanunderstandingofthevaluemeasurementcanbringtoamanufacturedproduct. Most

    noticeably,thisconcepthasgainedtractioninsemiconductormanufacturingand,tosomeextent,in

    chemicalmeasurement. However,ithasbeenourobservation,basedonourconsultingandsoftware

    activitiesintheareaofCMMmeasurementuncertaintyevaluation,thatinthefieldofdimensional

    measurement,and3Dmetrologyinparticular,theconventionalperspectiveremainsdominant. While

    therearesignsofashiftamonglargemanufacturingoperations,certainlyinthearenaofmediumto

    smallbusinessestherehasbeennogroundswellofchange.

    Itappearstheremightbeseveralreasonsthatcoordinatemeasurementhaslaggedotherareasof

    metrologyinthisregard. CMMsarecomplexsystems. Theiroutputissubjecttotheeffectsofmultiple,

    sometimesinterrelatedinfluences. ThustheuncertaintyofaparticularCMMmeasurementresultis

    technicallydifficultandpossiblyexpensivetoevaluate. TheaverageCMMpractitionermaybe

    inadequatelyequippedtoperformthisevaluationanddefenditsresults. Perhapsmostproblematicis

    thefact

    that

    measurement

    cost

    analysis

    is

    acombined

    technical/business

    exercise.

    Metrologists

    may

    lacksufficientlydetailedinsighttotheeconomicimplicationsoftheirmeasurements,whilebusiness

    managersmayfindthetechnicalaspectsdaunting.

    Ourpurposehereistodiscussbothtechnicalandbusinessdecisionmakingcomponentsofthisissueas

    itappliestocomplexmeasurementsystems,CMMsinparticular,withsomegeneralitybutinsufficient

    detailtohelpprepareCMMmetrologiststocommunicateconcerningtheirdataanditseconomic

    impactwithothersinthemanufacturingenterprise. Weareobligedtomakeclearattheoutsetthat,in

    ordertomakemeaningfuljudgmentsoftheeconomicsofCMMmeasurementuncertainty,itistask

    specificmeasurementuncertainty1thatwemusthave;moregenericexpressionsofCMMmeasurement

    1TaskspecificmeasurementuncertaintyistheuncertaintyapplicabletoevaluationofaspecificGD&Tparameter

    ofaspecificpartfeature,underparticularconditionsofmanufactureandmeasurement;forexample,The

    uncertaintyofthediameterofthemaximuminscribedcylinderthatwilljustfitinsidethisnominally3inch

    diameterhole,measuredwiththisparticularCMM,underthesespecificconditions,is0.0008inchesat95%

    confidence.

  • 7/31/2019 Baldwin 2010

    3/20

    uncertaintywillnotdo. Inwhatfollows,thediscussionwillcoverinturntwodistinctphasesoftheCMM

    costanalysisprocess:riskanalysis,whichisapurelytechnicalexercise,andprofitabilitycalculation,

    whichinmanyofitsaspectsisabusinessexercise.

    RecentTechnicalActivitiesTherehavebeenrecentdevelopmentsintwoareasrelevanttoCMMmeasurementcostanalysis. Oneoftheseistheavailabilityofcommercialsoftwarepackagesfordevelopmentoftaskspecificuncertainty

    statementsforCMMmeasurements. Onesuchproductwasdescribedinanearlierpaperinthissession

    [1]. Theotheristheappearanceofanumberofnationalandinternationalstandardsaddressingthe

    someofthetechnicalaspectsofmeasurementuncertaintyevaluation[214]. Whilethesepublications

    dealwithmanyofthetechnicalaspectsofmeasurementcostanalysisandtwoofthem[7,8]touchon

    theroleofproductacceptancedecisionrulesasbusinessissues,therehasbeennodetaileddiscussion

    oftheeconomicimpactsofCMMmeasurementuncertainty.

    CMMRiskAnalysisThegeneraltopicofriskanalysisinmeasurementhasbeencoveredin[10];thereaderisreferredthere

    forbasicinformation. Here,wewilldescribethegeneralprocessandwillgiveamoredetailed

    descriptionofthepropertiesofCMMmeasurementsthatmaketheirtreatmentsomewhatunique. As

    theseuniqueaspectsarementioned,suggestedapproachesfordealingwiththemwillbeprovided.

    Amanufactureditemthatissubjecttosomespecificationmaybeinoneoftwoconditions: Itmay

    conformtothespecification(C)oritmayfailtoconform(C). Iftheitemissubjectedtomeasurement

    therearetwopossibleoutcomes:itmaypass( P )orfail( F )theinspection. Thus,therearefour

    possibleoutcomes

    of

    aproduct

    inspection:

    The

    item

    may

    conform

    to

    specification

    and

    pass

    inspection

    ( PC)oritmaynotconformtospecificationandfailinspection( FC),bothofwhicharedesired

    outcomes,resultinginacceptanceofagoodpartorrejectionofabadpart. Inthepresenceof

    measurementerrortwootherconditionsmayberealized: Thepartmay,infact,notconformto

    specificationbutpassinspection( PC). Thisisanundesirableoutcome,resultinginacceptanceofan

    outoftoleranceitem. Alternatively,apartthatconformstospecificationmayfailtheinspection( FC).

    This,too,isundesirablesinceitleadstorejectionofagooditem. Theprobabilitiesoftheselasttwo

    eventsarecalled,respectively,theconsumersandproducersrisksinreferencetothepartywho

    usuallybearsthecostoftheerror. Therelationshipsoftheserisksareoftenrepresentedina

    contingencytable(Figure1).

  • 7/31/2019 Baldwin 2010

    4/20

    Calculationoftheconform/nonconformprobabilitiesrequiresknowledgeoftheproductionprocess

    probabilitydensity. Theconformanceprobabilityisgivenby

    ( | ) ( | ) , ( | ) 1 ( | )C

    p C I p x I dx p C I p C I= =

    where,forexample, ( | )p C I denotestheprobabilityofconformancegivenanypriorinformation,I ,

    ( | )p x I istheprocessprobabilitydensityandtheintegralisovertheacceptanceregion.

    Thenthe

    consumers

    risk

    is

    ( ) ( ) ( )0 0 0| | |Cx R x R

    R p PCx I dx p PC xI p x I dx

    = = i

    wheretherangeofintegrationisoverallvaluesofxthatareoutsidetheacceptancezone,

    ( )0|p PC xI istheprobabilitythatacharacteristicknowntobenonconformingneverthelessproduces

    Figure1.ContingencyTableforProductMeasurement

  • 7/31/2019 Baldwin 2010

    5/20

    ameasurementresultwithintheacceptancezone,seeFigure2,and ( )0|p x I isthepriorprobability

    densityforthemeasurand. Similarly,theproducersriskisgivenby

    ( ) ( )0 0| |Px C

    R p FC xI p x I dx

    = i

    wherenowtheintegrationisovertheacceptancezone. Figure2isanillustrationoftheconsumersand

    producersrisksforthecaseofaGaussianerrordistribution.

    Figure2. Consumer'sandProducer'sRisks

    AssumptionofGaussianformfortheproductionandmeasurementprobabilitydensitiesisacommon

    practice,andofferstheadvantageofcomputationaltractability;thisistreatedindetailin[10]. Such

    assumptionscanproverashinthecaseofCMMmetrologyandcanleadtosubstantialerrors. Infact,

    normaldistributionsoftenturnouttobeasmuchtheexceptionastherule.

    ProductionProbabilityDensityTherearetwoissuesinapplyingprobabilitydensitiesinmeasurementriskanalysis. Thefirstisto

    determinetheinherentprocessvariability. Thisistypicallydonebymeasuringalargesampleofthe

    productandplottingahistogramoftheresults. Anynonrepeatabilityofthemeasurementsystemwill

    besuperimposedontheproductionvariation. Ideallythecontributionofmeasurementvariabilitywill

    bemadenegligiblebyusingameasurementsystemwithsufficientlysmallrepeatability. Alternatively,

    measurementrepeatabilitycanbedeterminedbyrepeatedlymeasuringastableartifactandlookingat

    thedistributionoftheresults. Iftherepeatabilityofthemeasurementsystemsodeterminedis

    characterizedbyastandarddeviation,m ,andthetotalstandarddeviationofameasurementis T ,

    theprocessstandarddeviationis2 2

    p T m = . Itis,ofcourse,prudenttoperiodicallyverifythat

    theprocessremainsstable.

    Thesecondissueischoiceofanappropriateandconvenientrepresentationoftheprobabilitydensity.

    Productiondensitiesfortwosidedmeasurements,e.g.size,lengthorangle,canoftenbereasonably

  • 7/31/2019 Baldwin 2010

    6/20

    representedasGaussians. Onesidedmeasurements,e.g.form,positionororientation,represent

    instancesinwhichvaluesnearzeroarenotfrequentlyobservedandtheGaussiandistributionis

    thereforeinappropriate,sinceitwillassignfiniteprobabilitiestovaluesthatarephysicallyimpossible. It

    isconceivablethatdistributionsofinherentlyonesidedquantitiescouldbemodeledbyaGaussian

    distributiontruncatedatzero,butitismorepracticaltouseadistributionmodelthatnaturallygoesto

    zero.The

    beta

    distribution

    is

    one

    such

    that

    works

    well;

    it

    is

    treated

    in

    Appendix

    IIof

    [10]

    and

    illustrated

    inFigure3.

    Figure3. GammaProbabilityDensityforaOnesidedMeasurement

    MeasurementProbabilityDensityWhileCMMssharemanysimilaritieswithotherdimensionalmeasurementtechnologies,similar

    complexitiesarisewithregardtothemeasurementprobabilitydensity,dueprimarilytothemultitudeof

    variablesthatcaninfluencethemeasurementresultandthecomplexitiesoftheirinteractions[1].

    WhileapproximatelyGaussianmeasurementdensitiesaresometimesobserved,thevarietyof

    distributiontypesistypicallygreatanddifficulttopredictfromintuitionoranalysis. Afewobserved

    measurementdistributionsarepresentedasexamplesinfigures47,whichwerechosenfortheir

    relativesimplicity

    and

    represent

    cases

    where

    asingle

    error

    source

    was

    known

    to

    predominate.

  • 7/31/2019 Baldwin 2010

    7/20

    Figure4. MeasurementDistributionforaLengthmeasurement

    Thisisanobservedmeasurementdistributionforalengthmeasurementmadeunderconditionswhere

    thegeometricerrorsoftheCMMwereknowntopredominate. Inthisinstance,aGaussiandistribution

    mightbeareasonableapproximation.

    Figure5. MeasurementDistributionwithTemperatureVariation

    Here.InFigure5,themajorinfluencewastemperaturevariation,usingacontrollerthatkeptthe

    temperaturebetweentwofixedlimits. Thisdistributionmightbereasonablywellmodeledasuniform.

  • 7/31/2019 Baldwin 2010

    8/20

    Figure6. DiameterMeasurementwith3lobeFormError

    Figure6showsthesizemeasurementdistributionproducedbyinteractionoftheprobingpatternwitha

    3lobeformerroronacylindricalhole. ItexhibitstheclassicalUshapeexpectedfromthissource.

    Finally,Figure7showsthemeasurementdensityforaflatnessmeasurement,madeunderthesame

    conditionsasthelengthmeasurementofFigure4.

    Figure7.

    Flatness

    Measurement

    with

    predominantly

    Random

    Errors

    Evidently,properrepresentationofthemeasurementprobabilitydensityisarathermorecomplex

    problemthanmodelingtheproductiondensity. Assuggestedintheprevioussection,measurement

    variabilitycanbedeterminedbyrepeatedmeasurementofastableartifact. Alternatively,

    measurementvariabilitycanbeestimatedbysimulationtechniquessuchasthosedescribedin[1]. The

    effortrequiredisconsiderablylessandthisis,infact,howthedistributionsinFigures47were

    determined.

  • 7/31/2019 Baldwin 2010

    9/20

    Giventhevarietyofshapesthatcanbeobservedformeasurementdistributions,analysisrequiresa

    versatilerepresentation. Whitehousehassuggestedthebetadistributionprovidesasuitably

    comprehensivecapability[15]. Thebetaprobabilitydensityisgivenby

    ( )( )

    ( ) ( )( )111

    , , 1

    ,

    baf a b y y y

    a b

    =

    where

    ( ) ( ) ( )( )

    111

    0

    , 1ba

    a b y y dy=

    and a and b areadjustableparameters. Theabilityofthisdistributiontorepresentmanyofthe

    observedmeasurementdistributionsisillustratedinFigure8.

    Anotherworkablealternativeistousethehistogramdatadirectly,performinganumericalintegration

    overtheappropriateinterval.

    Figure8. ExamplesoftheBetaProbabilityDistribution

    Insummary,theconsumersandproducersrisksdependontheproductionandmeasurement

    probabilitydensities,andtheacceptancelimits. Knowingandunderstandingtheserisksprovide

  • 7/31/2019 Baldwin 2010

    10/20

    solutionstothetechnicalquestionsabouttheconsequencesofbaddecisions. Theyareofvalueinand

    ofthemselvesifthetechnicalrequirementsofanacceptanceprocessareknownanditisnecessaryto

    determineifaspecificCMMisuptothemeasurementchoreathand. Theyare,aswell,aprerequisite

    todealingwithbusinessconcernsaboutproductprofitability.

    CMMCostAnalysisInordertounderstandtheeconomicimplicationsofmeasurementdecisionsandtooptimizethisfacet

    ofthemanufacturingoperationitisrequiredtoreducethetechnicalrisksofmeasurementdecisionsto

    theirimpactonproductprofitability. TypeIandTypeIImeasurementerrorswillbothincurcosts.

    Rejectionofapartthatis,infact,good(TypeIerror)resultsinlossoftheentireamountinvestedin

    productionofthatitem. Thesecostsshouldbereadilyaccessibleandwellknown. Theywillinclude,for

    example,thecostsofmanufactureandinspectionaswellasofmaterials,scrapdisposaland,perhaps,

    unnecessaryrework. Someofthecostsarisingfromacceptanceofapartthatis,infact,bad(TypeII

    error)areequallyaccessible. Examplesmightbewarrantyandfailureanalysiscosts. Othercost

    consequencesof

    aType

    IIerror

    may

    be

    more

    difficult

    to

    quantify

    but

    can

    easily

    exceed

    the

    readily

    documentedcosts. Examplesincludedamagedcustomerperceptionofproductquality,lossoffuture

    salesandcostoflawsuits.

    LossFunctionsInordertoquantifythecostofincorrectdecisionsaboutproductconformance,itisnecessaryto

    associatedeviationofthequalitycharacteristicfromtheidealwithaneconomicloss. Thisassociationis

    generallyexpressedasalossfunction. Realisticassessmentofproductioneconomicsanddevelopment

    ofoptimummeasurementstrategieswilldependcriticallyonchoiceofanappropriatelossfunction.

    SomepossiblechoicesareshowninFigure9forthecaseofabilateraltolerancewhere,generally,the

    nominalvalue

    of

    the

    quality

    characteristic

    is

    optimum.

  • 7/31/2019 Baldwin 2010

    11/20

    Figure9. QualityLossFunctions;BilateralToleranceor"NominaltheBest"

    Theclassicallossfunctionhasoftenbeenastepfunction,whichstatesthatcostsdonotdependonthe

    actualvalueofthequalitycharacteristicaslongasitiswithinspecification. Althoughthestepfunction

    hasbeen

    widely

    used

    in

    the

    past

    and

    is

    mathematically

    convenient,

    it

    is

    now

    generally

    acknowledged

    thatthequadraticlossfunction,

    ( ) ( )2

    2

    IIT

    kL x x T=

    originallyproposedbyTaguchi[16],isabetterexpressionofthecostconsequencesoflesstangible

    factorssuchasthecustomersqualityperception. Here,II

    k isthecostofaTypeIIerror, isthe

    tolerancewidthandT isthenominalortargetvalue. Inthismodel,anydeviationfromthenominal

    valueincursacostpenalty. TheTaguchilossfunctionisalsorecognizedtoembodysomedegreeof

    unrealism,in

    that

    increases

    without

    limit.

    More

    realistically,

    there

    will

    generally

    be

    adegree

    of

    nonconformancebeyondwhichthefulllosswillhavebeenrealized. Thisrealitycouldbe

    accommodatedbychoosingadeviationatwhichthelossfunctionundergoesatransitionfroma

    quadraticexpressiontoaconstantvalueofmaximumloss. This,too,presentssomedifficultyinthatthe

    suddentransitiontoconstantlossseemsunrealisticandhasledtoproposalofavarietyoflossfunctions

    basedoninvertedprobabilitydistributions. Theearliestoftheseistheinvertednormalloss,originally

    suggestedbySpiring[17]andhavingtheform

  • 7/31/2019 Baldwin 2010

    12/20

    ( )( )

    2

    21 exp

    2S

    x TL x K

    =

    where KisthemaximumlossduetoaTypeIIerror,T isthetargetvalueand isashapeparameter

    suchthat

    if

    / 4 = thelossatT willbeveryclose(within0.9997of) K.

    OneoftheinterestingandproblematicfeaturesofCMMevaluationsofGD&Tparametersisthat,

    contrarytothemoregeneralqualityenvironment,wherethemajorityofqualitycharacteristicsareof

    thebilateraltoleranceornominalthebesttype,manyGD&Tparametersarelessthebetteror

    singlesidedvariety. Analogouslossfunctionscanbegeneratedforthesinglesidedtolerancecase,

    Figure10,ascanmorecomplicatedfunctionstodealwithinstanceswheredeviationsinonedirection

    shouldbepenalizeddifferentlythanthoseintheother,seeforexampleFigure11. Unfortunatelyfor

    theCMMmetrologists,theliteratureonthiscategoryoflossfunctionsisrelativelysparse.

    Figure10. LossFunctionsforaUnilateralTolerance

    Figure11. NonsymmetricLossFunctionExample

  • 7/31/2019 Baldwin 2010

    13/20

    Choiceoftheappropriatelossfunctionforaparticularproductisgenerallybeyondtheexpertiseand

    knowledgebaseoftheCMMmetrologist;heretheneedforcollaborationafinancialanalystfamiliar

    withthecustomerbaseandsalesenvironmentisindicated. Themeasurementspecialistwillalmost

    certainlyfindfinancialandsalespersonnellackinginunderstandingofthebusinessofmeasurement. A

    mutualeducationalexchangewillalmostcertainlyberequired.

    ProfitCalculationMethodsofmeasurementcostcomputationcanvaryconsiderablyincomplexityandsophistication. At

    oneextreme,elaborateandhighlydetailedmodelshavebeendevelopedforanalyzingthecostto

    benefittradeoffsofsemiconductormeasurement;forexample,see[18]. Ontheotherhand,

    significantlysimplermodelsareusefulinmostinstances,especiallyforapplicationtoestablished

    metrologyfacilitieswherethereisalonghistoryofmeasurementcostdata. Suchasimplemodelis

    usedintheexampleprofitcalculationsthatfollow. Specifically,weusehereamodelderivedfromone

    originallyproposedbyWilliamsandHawkins[19,20]todealwithGaussianerrordistributionsandthe

    Taguchilossfunction,andexpandedbyustocovertherangeoferrordistributionsandlossfunctions

    describedabove.

    Intheiroriginaltreatment,WilliamsandHawkinsdevelopedanexpressionfortheperunitprofitunder

    conditionsofmeasurementerror:

    ( )( ) ( )222UnitProfit IIs Ik

    k T P F k

    = +

    whereSk isthesellingpriceperunit, Ik isthecostofmanufacturingandtestingoneproductunit(also

    equaltothecostofaTypeIerror),II

    k istheestimatedcostofaTypeIIerror,T isthenominalortarget

    value, isthetolerancebandwidth, and arethemeanandstandarddeviation,respectively,of

    thequalitycharacteristicasseenbythecustomer(thatis,afteracceptance)and ( )P F istheprobability

    ofaunitpassingitsinspectiontest. Thisexpressionincludestheeffectsofsaleprice,TypeIandTypeII

    errors,andcustomerperceptionofquality. Analogousexpressionshavebeendevelopedforotherloss

    functionsanddistributions.

    MultipleparametersAcomplicationuniquetocoordinatemeasurement,ascomparedtomostotherdimensional

    measurementtechnologies,arisesfromthefactthatitisusualformultiplecharacteristicstobe

    evaluatedonthesamemeasurementapparatusinasingleinspectionoperation. Itismostusefulto

    endupwithasinglelossparameterthatexpressestheneteconomiceffectofallproductnonidealities,

    whichleadstotheconsiderationofhowtomostappropriatelycombinethelossesarisingfromthe

    variousdimensionalrequirements. Ithasbeensuggestedthatthelossfunctionsfortheindividual

    parameterscanbeaddedtoformanetmultivariatelossfunction[21],butthisseemsintuitively

    extremeforacasewherethecasewhereacommonmeasurementapparatus,acommonenvironment

    andinsomecasesagainstcommondatumsandcommonproductionmachinerymakelikelysome

    degreeofcorrelationamongthevariousGD&Tparameterevaluations. Forthisreason,wepreferthe

  • 7/31/2019 Baldwin 2010

    14/20

    recommendationofWilliamsandHawkins[20]thatthelossfunctionsbecombinedastheirrootsumof

    squares,

    ( )( )2

    T i

    i

    L E L=

    whichtendstolessentheseverityofthepenaltyformeasurementsysteminducedcorrelation. Finally,

    itshouldberecognizedthatthedevelopmentofmultivariatelossfunctionsforcorrelatedcharacteristics

    remainsanactivefieldofresearchandthatnewdevelopmentsaretobeexpected.

    ExamplesInthissectionwepresentafewspecificexamplesoftheeffectsofvariousmeasurementvariableson

    productprofitability,asillustrationsofthevalueofperforminglosscalculations.

    MeasurementUncertaintyandGuardBandsItiscommonpracticetoguardbandmeasurementstoreducetheincidenceandcostofmeasurement

    errors. Mostcommonly,itisthecostofTypeIIerrorsthatisofmajorconcern;hencetheacceptance

    zoneisreducedbysomeamount(knownasstringentacceptance)andanincreasedprobabilityof

    rejectingagoodpartisacceptedintheinterestofnotexposingthecustomertobadparts. Itisusefulto

    know,foragivenmeasurementuncertainty,theguardbandchoicethatwillmaximizeprofit. Inthis

    example,weareconsideringthemeasurementofa100mmdiametershaftwithtolerancelimitsof1

    mm. Theproductionprocessiscentered;thatisitproducespartswithameansizeof100mm. The

    productionstandarddeviationis0.33mm. Themeasurementprocessisunbiased. Thesellingpriceof

    onepartis$30,thecostofproducingapartis$7.50,andthecostofshippingabadpartistakentobe

    $300. Thisistypicalofwhatmightberegardedasacriticalorhighconsequencepart,wheretheratio

    ofTypeIIerrorcosttosellingpriceisoftenfoundtobe 10.

    Guardbandingisrequiredinordertoachieveprofitability,withtheoptimumguardbandmultiplierbeing

    ontheorderof0.65. Thereisasignificanteffectofmeasurementuncertainty,withtheprofit

    approachingzeroatthehighendoftherangestudied.

  • 7/31/2019 Baldwin 2010

    15/20

    Figure12.EffectofMeasurementUncertaintyandGuardbandingonProfit

    MeasurementBiasMeasurementbiasisproperlyconsideredtobeafactortobediscoveredandeliminated,howeverits

    completeremoval

    is

    not

    always

    possible

    and

    the

    effect

    of

    bias

    on

    profitability

    can

    be

    significant.

    Here

    is

    anexample,usingthesamegeneralconditionsasthepreviousonethatillustratesthepotential

    magnitudeofbiasdrivenlossofprofit. Themeasurementstandarddeviationwastakenheretobe0.1

    mmandaguardbandclosetotheoptimumindicatedintheearlierexamplewasused. Anundiscovered

    oruncorrectedmeasurementbiasofthesamemagnitudeasthemeasurementuncertaintycancausea

    profitdecrementofalmost7%.

  • 7/31/2019 Baldwin 2010

    16/20

    Figure13. EffectofMeasurementBias

    MeasurementStrategyAsregardsmeasurementpointplacementstrategywithCMMs,thegeneralwisdomismoreisbetter.

    Thisexample

    illustrates

    that

    this

    is

    not

    guaranteed

    to

    be

    the

    case.

    The

    feature

    of

    interest

    is,

    again,

    cylindrical. Figure14showstheeffectonperunitprofitassamplingdensityisincreased,assumingthe

    featureformerrorisrandomoverthefeaturesurface. Thesamplingpatternusedconsistedoftaking

    halfthetotalnumberofpointsoneachoftwocircularsectionsneareachendofthefeature,anot

    unreasonablestrategyiftheformerrorisknowntoberandom. TheupperplotofFigure14showsthat

    theuncertaintyofthediametermeasurementdecreasessteadilywithincreasingpointdensityas

    conventionalwisdomsuggests.

    Figure15illustratestheresultsofthesamesetofmeasurementstrategieswhentheformerrorhasa3

    lobeshapewiththesameamplitudeasthemaximumrandomexcursion. Theuncertaintythenadopts

    anoscillatory

    behavior

    that

    is

    reflected,

    although

    not

    to

    an

    extreme

    degree

    once

    the

    sampling

    density

    risesto7pointsperlevel,intheperunitprofit.

  • 7/31/2019 Baldwin 2010

    17/20

    Figure14. EffectofSamplingStrategyonProfit,RandomFormError

    Figure15. EffectofSamplingStrategyonProfit,3lobeFormError

  • 7/31/2019 Baldwin 2010

    18/20

    AvailableToolsTwocommerciallyavailablesoftwarepackagesforCMMmeasurementuncertaintyevaluationare

    knowntotheauthorsofthisreport;onewasdescribedinanearlierpaperinthissession[1]. Itwas

    usedtosupplythemeasurementuncertaintyevaluationsusedinthispaper. Theotherisavailableasan

    addontotheCMMcontrolanddataanalysissoftwareprovidedbysomespecificCMMvendors. The

    nextreleaseofthefirstmentionedofthesepackageswillmakeavailableatoolkittocomputeproduct

    profitabilityandoptimumguardbandselections.

    Someoftheprofitabilitycalculationspresentedinthispapercanbeperformedwithspreadsheet

    programs. Mostofthem,however,requirenumericalintegrationofprobabilitydensitieswhichare

    difficulttoperforminspreadsheetapplications. Commercialsoftwareintendedfornumerical

    computation(forexampleMATLAB2orMathematica3)ismuchbettersuitedforthecomputationof

    measurementcostsandprofitability. ApackageofMATLABfunctionsdevelopedbyuswasusedto

    preparethedataforthispaper.

    References[1]D.A.Campbell,J.M.Baldwin,K.D.Summerhays,ApplicationsofComputerSimulationtoCMM

    UncertaintyEvaluation,MeasurementScienceConference,Pasadena,CA,March2010.

    [2]DraftTechnicalReport155301,GeometricalProductSpecification(GPS)CoordinateMeasuring

    Machines(CMM):TechniquesforDeterminingtheUncertaintyofMeasurementPart1:Overviewand

    GeneralIssues,InternationalOrganizationforStandardization,Geneva.

    [3]DraftTechnicalReport155302,GeometricalProductSpecification(GPS)CoordinateMeasuring

    Machines(CMM):TechniquesforDeterminingtheUncertaintyofMeasurementPart2:Expert

    Judgment,International

    Organization

    for

    Standardization,

    Geneva.

    [3]TechnicalReport155303,GeometricalProductSpecification(GPS)CoordinateMeasuringMachines

    (CMM):TechniquesforDeterminingtheUncertaintyofMeasurementPart3:ExperimentalUncertainty

    AssessmentfoetheSubstitutionMethodUsingCalibratedObjects,InternationalOrganizationfor

    Standardization,Geneva,2004.

    [4]TechnicalReport155304,EstimatingGeometricalProductSpecification(GPS)CoordinateMeasuring

    Machines(CMM):TechniquesforDeterminingtheUncertaintyofMeasurementPart4:Uncertainty

    AssessmentusingComputerSimulation,InternationalOrganizationforStandardization,Geneva,2008.

    2MATLABisaregisteredtrademarkofTheMathWorks.

    3MathematicaisatrademarkofWolframResearch,Inc.

  • 7/31/2019 Baldwin 2010

    19/20

    [5]TechnicalReport155305,EstimatingGeometricalProductSpecification(GPS)CoordinateMeasuring

    Machines(CMM):TechniquesforDeterminingtheUncertaintyofMeasurementPart5:Statistical

    EstimationfromMeasurementHistory,InternationalOrganizationforStandardization,Geneva.

    [6]DraftTechnicalReport155306,EstimatingGeometricalProductSpecification(GPS)Coordinate

    MeasuringMachines

    (CMM):

    Techniques

    for

    Determining

    the

    Uncertainty

    of

    Measurement

    Part

    6:

    ExperimentalUncertaintyAssessmentusingUncalibratedObjectsinCombinationwithAnalysisofBias,

    InternationalOrganizationforStandardization,Geneva.

    [7]142531,GeometricalProductSpecifications(GPS) InspectionbyMeasurementof

    WorkpiecesandMeasuringEquipment Part1:DecisionRulesforProvingConformanceor

    NonconformancewithSpecifications,InternationalOrganizationforStandardization,Geneva,1998.

    [8]B89.7.3.12001,GuidelinesforDecisionRules:ConsideringMeasurementUncertaintyDetermining

    ConformancetoSpecifications,ASME,NewYork,2001.

    [9]B89.7.3.3

    2002

    Guidelines

    for

    Assessing

    the

    Reliability

    of

    Dimensional

    Measurement

    Uncertainty

    Statements,ASME,NewYork,2002.

    [10]TechnicalReportB89.7.4.1 2005MeasurementUncertaintyandConformanceTesting:Risk

    Analysis,ASME,NewYork,2005.

    [11]TechnicalReportB89.7.5 2006MetrologicalTraceabilityofDimensionalMeasurementstotheSI

    UnitofLength,ASME,NewYork,2006.

    [12]TechnicalReportB89.7.3.2 2007GuidelinesfortheEvaluationofDimensionalMeasurement

    Uncertainty,ASME,NewYork,2007.

    [13]JCGM100:2008,EvaluationofmeasurementdataGuidetotheexpressionofuncertaintyin

    measurement,BureauInternationaledesPoidsetMeasures,Svres,France,2008.

    [14]JCGM101:2008,EvaluationofMeasurementDataSupplement1totheGuidetotheExpression

    ofUncertaintyinMeasurementPropagationofDistributionsusingaMonteCarloMethod,Bureau

    InternationaledesPoidsetMeasures,Svres,France,2008.

    [15]D.J.Whitehouse,BetaFunctionsforSurfaceTypology,AnnalsoftheCIRP,42(1),4917(1978).

    [16]G.Taguchi,E.A.Elsayed,T.C.Hsiang,QualityEngineeringinProductionSystems,McGrawHill,New

    York,1989.

    [17]F.A.Spiring,TheReflectedNormalLossFunction,CanadianJournalofStatistics,21(3),32130

    (1993).

    [18]S.YSohn,H.U.Moon,CostofOwnershipModelforInspectionofMultipleQualityAttributes,IEEE

    TransactionsonSemiconductorManufacturing,16(3),45671(2003).

  • 7/31/2019 Baldwin 2010

    20/20

    [19]R.H.Williams,C.F. Hawkins,TheEconomicsofGuardbandPlacement,1993InternationalTest

    Conference,21825.

    [20]R.H.Williams,C.F.Hawkins,EconomicConsiderationsinToleranceDesign,1994InternationalTest

    Conference,739.

    [21]Y.Ma,F.Zhao,AnImprovedMultivariateLossFunctionApproachtoOptimization,Journalof

    SystemsScienceandSystemsEngineering,13(3),31825(2004).