bin$packing$with$linear$usage$costs$$€¦ · outline$ 1. the$energetic$project(problem$formulaon)$...

36
Bin Packing with Linear Usage Costs An applica)on to Energy Management in Data Centres Hadrien Cambazard GSCOP, Université de Grenoble Deepak Mehta, Barry O’Sullivan, Helmut Simonis Cork Constraint ComputaAon Centre, Cork, Ireland

Upload: others

Post on 21-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Bin  Packing  with  Linear  Usage  Costs    An  applica)on  to  Energy  Management  in  Data  

Centres  

Hadrien  Cambazard  G-­‐SCOP,  Université  de  Grenoble  

Deepak  Mehta,  Barry  O’Sullivan,  Helmut  Simonis  Cork  Constraint  ComputaAon  Centre,  Cork,  Ireland  

Page 2: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Outline  1.  The  EnergeTIC  Project  (Problem  FormulaAon)  

2.  A  key  sub-­‐problem  BPUC  (Bin  Packing  with  Usage  Costs)  –  Lower  bounds  based  on  LP  –  A  Constraint  Programming  view-­‐point  

3.  Back  to  the  applicaAon  –  A  Lower  bound  by  column  generaAon  relying  on  BPUC  –  Upper  bound  via  Large  Neighborhood  Search  

4.  Overview  of  experimental  results  

Page 3: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

The  EnergeTIC  Project  

•  Interest  increased  by  the  Roadef  Challenge  with  google  •  EnergeTIC  is  a  project  located  in  Grenoble  •  Companies  involved:    

Schneider,  Bull,  Eolas  Business  &  Decision,  UXP      

Design  of  energy  efficient  data  centres  

•  Permanent  increase  of  energy  price  (50  %  by  2020)  •  Growing  market  for  cloud  compuAng  

Page 4: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

The  EnergeTIC  Project  

Problem  formulaAon  Assign  virtual  machines  to  servers  

over  mulAple  Ame-­‐periods  

Energy  models    Characterize    

each  component  

Demand  predicAon    Forecast  the    cpu  needs  

Energy  indicators  -­‐  Usage  -­‐  Energy  

ExploitaAon  constraints  

Solver  Plan  

Page 5: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

The  EnergeTIC  Project  

Problem  formulaAon  Assign  virtual  machines  to  servers  

over  mulAple  Ame-­‐periods  

Energy  models    Characterize    

each  component  

Demand  predicAon    Forecast  the    cpu  needs  

Energy  indicators  -­‐  Usage  -­‐  Energy  

ExploitaAon  constraints  

Solver  Plan  

Page 6: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

EnergeTIC:  Modeling  Equipment  

•  Characterize  energy  consumpAon  of  heterogeneous  servers  – Measures  performed  on  Bull  equipment  –  Linear  model  of  energy  consumpAon    

Fixed  cost  Usage  cost  

Page 7: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

The  EnergeTIC  Project  

Problem  formulaAon  Assign  virtual  machines  to  servers  

over  mulAple  Ame-­‐periods  

Energy  models    Characterize    

each  component  

Demand  predicAon    Forecast  the    cpu  needs  

Energy  indicators  -­‐  Usage  -­‐  Energy  

ExploitaAon  constraints  

Solver  Plan  

Page 8: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Problem  formulaAon  

1 migration

   

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

•  A  server  has  a  CPU,  MEMORY  and  CARDINALITY  capaciAes  •  A  virtual  machine  has  a  CPU  consumpAon  changing  over  Ame  and  a  

fixed  MEMORY  consumpAon  •  The  number  of  migraAons  is  limited  from  one  period  to  the  next  •  ObjecAve  :  state  (ON/STAND_BY)  and  load  of  servers  

             changes  of  state                migraAons  

Page 9: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Problem  formulaAon  

1 migration

   

… …

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

A  series  of  consecuAve  “cost  aware”  mulAdimensional  Bin-­‐Packing  problems  (linked  by  a  limited  number  of  changes)  

Page 10: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Problem  formulaAon  

1 migration

   

… …

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

A  series  of  consecuAve  “cost  aware”  mulAdimensional  Bin-­‐Packing  problems  (linked  by  a  limited  number  of  changes)  

Coupling  constraints  

Page 11: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Problem  formulaAon  

1 migration

   

… …

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

A  series  of  consecuAve  “cost  aware”  mulAdimensional  Bin-­‐Packing  problems  (linked  by  a  limited  number  of  changes)  

 Coupling  constraints  

Page 12: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

•  A  set  of  items  

•  A  set  of  bins  

Bin  Packing  with  Usage  Costs  S = {w1, . . . , wn}

B = {{C1, f1, c1}, . . . , {Cm, fm, cm}}

w1 w2. . .

Cj

Fixed  cost  for  opening  a  bin  

Usage  cost    depending    on  the  load  

Cost  

Load  

Load  

{Cj , fj , cj }

cjfj

•  Minimize    

costj = fj + Loadjcj

Pm

j=1|Loadj>0 costj

Page 13: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Bin  Packing  with  Usage  Costs  

3

9

{9,0,1} {3,0,2} {3,0,2} {3,0,2} {3,0,2}3

2

Items   Bins  

•  A  set  of  items  •  A  set  of  bins  •  Minimize  the  sum  of  the  costs  of  the  used  bins    

S = {w1, . . . , wn}B = {{C1, f1, c1}, . . . , {Cm, fm, cm}}

Page 14: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Bin  Packing  with  Usage  Costs  •  A  set  of  items  •  A  set  of  bins  •  Minimize  the  sum  of  the  costs  of  the  used  bins    

S = {w1, . . . , wn}B = {{C1, f1, c1}, . . . , {Cm, fm, cm}}

3

2

3

9

{9,0,1} {3,0,2} {3,0,2} {3,0,2} {3,0,2}

(P1) (P2)

{9,0,1} {3,0,2} {3,0,2} {3,0,2} {3,0,2}

8x1  +  3x2  +  3x2  +  3x2  =  26   9x1  +  2x2  +  2x2  +  2x2  +  2x2  =  25  

Page 15: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Lower  bounds  for  BPUC  

Bin  j  is  open  Item  i  is  placed  on  bin  j   Load  of  bin  j  

“Standard”  LP  formulaCon:  

Page 16: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Lower  bounds  for  BPUC  

Bin  j  is  open  Item  i  is  placed  on  bin  j   Load  of  bin  j  

“Standard”  LP  formulaCon:  

Linear  relaxaCon  easy  to  characterize:  •  A  unit  of  space  on  bin  j  will  cost  at  least:  •  Sort  the  bins  by  non-­‐decreasing  •  Fill  the  “cheapest”  bins  first  

rj = fj/Cj + cjrj

Page 17: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Lower  bounds  for  BPUC  

rj = fj/Cj + cj

9

f1 =c1 =

9  5  

r1 = 6  

14  3  

7

f3 =c3 =r3 = 5  

1  

5

f4 =c4 =10  r4 =10.2  

3

f2 =c2 =r2 =

1  5  5.33  

12

f5 =c5 =r5 =

12  10  11  

Cj =

3

5

Page 18: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Lower  bounds  for  BPUC  

rj = fj/Cj + cj

9

f1 =c1 =

9  5  

r1 = 6  

14  3  

7

f3 =c3 =r3 = 5  

1  

5

f4 =c4 =10  r4 =10.2  

3

f2 =c2 =r2 =

1  5  5.33  

12

f5 =c5 =r5 =

12  10  11  

9

r1 = 6  

7

r3 = 5  

5

r4 =10.2  

3

r2 =5.33  

12

r5 = 11  

3

5

Page 19: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

3  

Lower  bounds  for  BPUC  

rj = fj/Cj + cj

9

f1 =c1 =

9  5  

r1 = 6  

14  3  

7

f3 =c3 =r3 = 5  

1  

5

f4 =c4 =10  r4 =10.2  

3

f2 =c2 =r2 =

1  5  5.33  

12

f5 =c5 =r5 =

12  10  11  

Total  Load  =  18  Lower  bound  =  7x5  +  3x5.33  +  6x8  =  99  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  O(mlog(m) + n)

7   8  

3

5

Page 20: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

3  

Lower  bounds  for  BPUC  

Total  Load  =  18  

Lower  bound  =  99  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  

OpAmal  soluAon  

Opt  =  129  

7   8  

3

5

Page 21: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Lower  bounds  for  BPUC  based  on  LP  

2 3 4 5 70

F

0 5 9 7 6 15 18 2400 5 12 7

S = {2, 2, 3, 5} B = {{3,1,2},{4,3,1},{7,3,3}}

z3:  Arc-­‐Flow  Model  of  Carvalho  

z1:  Standard  LP  formulaAon   z2:  Gilmore  and  Gomory    

i-­‐th  cuing  pajern  of  bin  j  

C C z2  z3  z1  

Page 22: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Solving  BPUC  exactly  

Arc-­‐Flow  Model  Standard  LP  formulaAon  

Gilmore  and  Gomory    

BPUC  in  the  applicaAon  domain  goes  with:  1.  Large  scale    2.  Side  constraints  (ex:  cardinality  constraints,  2D,  …)  

MIP  

Page 23: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Solving  BPUC  exactly  

Arc-­‐Flow  Model  Standard  LP  formulaAon  

Gilmore  and  Gomory    

BPUC  in  the  applicaAon  domain  goes  with:  1.  Large  scale    2.  Side  constraints  (ex:  cardinality  constraints,  2D,  …)  

MIP  

Not  so  easy  to  extend    with  side  constraints  

Page 24: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Solving  BPUC  exactly  

Arc-­‐Flow  Model  Standard  LP  formulaAon  

Gilmore  and  Gomory    

BPUC  in  the  applicaAon  domain  goes  with:  1.  Large  scale    2.  Side  constraints  (ex:  cardinality  constraints,  2D,  …)  

MIP  

Page 25: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Solving  BPUC  exactly  

Arc-­‐Flow  Model  Standard  LP  formulaAon  

Gilmore  and  Gomory    

Bin-­‐Packing  global  constraint    +  

Cost  propagaAon  using  bound  of  LP  

 

MIP   CP  

BPUC  in  the  applicaAon  domain  goes  with:  1.  Large  scale    2.  Side  constraints  (ex:  cardinality  constraints,  2D,  …)  

Page 26: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Cost  propagaAon  for  BPUC  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  

7  3  

8  

Idea:  Use  LP  bound  to  compute  the  minimum/maximum  possible  filling  of  each  bin  due  to  cost  

LB  =  99    

Page 27: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Cost  propagaAon  for  BPUC  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  

Suppose  a  UB=130,  load  on  bin  3  (cheapest  bin)  must  be  >=  1  (if  not  LB  =  132  >  130)    

7  3  

8  1  

Idea:  Use  LP  bound  to  compute  the  minimum/maximum  possible  filling  of  each  bin  due  to  cost  

LB  =  99    

Page 28: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Cost  propagaAon  for  BPUC  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  

7  3  

8  1  

Idea:  Use  LP  bound  to  compute  the  minimum/maximum  possible  filling  of  each  bin  due  to  cost  

1  

UB  =  130    

We  know  now  that  3  and  1  must  be  open  so:  •  Count  their  fixed  costs  in  the  bound  •  Apply  the  same  reasoning  on  restricted  problem  unAl  a  fixed  point  is  reached  

Page 29: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Cost  propagaAon  for  BPUC  

r1 = 6  r3 = 5   r4 =10.2  r2 =5.33   r5 = 11  

7  3  

8  3  

0  

3  3  

5  

Idea:  Use  LP  bound  to  compute  the  minimum/maximum  possible  filling  of  each  bin  due  to  cost  

UB  =  130    

9  

Update  upper  bounds  Update  lower  bounds  

O(m)

Page 30: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Cost  propagaAon  for  BPUC  

r1 = 6  r3 = 5   r4 = 10.2  r2 = 5.33   r5 = 11  

7  

3  

8  3  

0  

3  3  

5  

UB  =  130     9  

Update  upper  bounds  Update  lower  bounds  

•  Lower  bound  in                      and  filtering  in                for  each  bin  •  Upper/lower  bounds  can  also  be  Aghtened  by  Dynamic  Programming  

(during  search  for  CP,  iniAally  for  MIP)  •  On  the  example,  the  bound  at  the  root  node  (with  UB  =  130):  

–  LP  Bound:  114.4  –  CP  Bound:  119.66  

•  UpdaAng  load  bounds  triggers  the  filtering  of  the  Bin-­‐Packing  global  constraint  commiing/forbidding  items  to  bins  

O(mlog(m) + n) O(m)

Page 31: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Results  on  BPUC  

•  CP  is  good  at  handling  large  BPUC  problems  •  Need  to  implement  branch  and  price  for  the  cuing-­‐

stock  formulaAon  to  compare  with  CP  

Lower  bounds  

Page 32: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Back  to  the  applicaAon  

•  Upper  bounds:    Large  Neighborhood  Search  designed  for  the  ROADEF  Challenge  2012  (Mehta,  O’Sullivan,  Simonis)  

•  Lower  bounds:  Column  generaAon  relying  on  BPUC  

1 migration

   

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

Page 33: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Back  to  the  applicaAon  (Lower  bound)  

•  A  column  is  a  Bin-­‐Packing  (one  Ame  period)  …  •  The  pricing  problem  can  be  well  modeled  with  3  global  

constraints:    –  BinPackingWithUsageCost  (for  cpu  cost  pertubated  by  dual  variables)  –  BinPackingWithUsageCost  (for  cardinality  cost  due  to  dual  variables)  –  BinPacking  (for  memory  limitaAons)  –  GlobalCardinality  (for  limits  on  the  number  of  items  on  each  bin)  

1 migration

   

t-1 t t+1

STAND  BY  

   

STAND  BY  

STAND  BY    

 

Uit

MiUmaxj

Mmaxj

Page 34: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Back  to  the  applicaAon  (Lower  bound)  

•  A  column  is  a  Bin-­‐Packing  (one  Ame  period)  …  

•  The  pricing  problem  can  be  well  modeled  with  3  global  constraints:    –  BinPackingWithUsageCost  (for  cpu  cost  pertubated  by  dual  variables)  –  BinPackingWithUsageCost  (for  cardinality  cost  due  to  dual  variables)  –  BinPacking  (for  memory  limitaAons)  –  GlobalCardinality  (for  limits  on  the  number  of  items  on  each  bin)  

 •  Pricing  is  intractable  but  we  are  only  looking  for  a  lower  bound:  

–  Use  a  lower  bound  of  the  best  reduced  costs  to  get  the  dual  bound  of  the  column  generaAon  

–  Problem  reduced  to  one  Ame  period  are  relaAvely  easy  in  pracAce  

Page 35: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Results  on  the  applicaAon  •  Benchmark:  74  instances  with  at  most  242  virtual  machines,  20  servers,  

287  Ame-­‐periods.  Time-­‐limit  600s.  •  CG  lower  bound  outperforms  the  LP  and  MIP  lower  bounds    

(avg:0.3%,  med:0.1%,  max:7%  of  best  known  upper  bounds)  •  LNS  scales  very  well  in  quality  and  size  

 (avg:0.5%,  med:0%,  max:4.5%  of  the  best  known  lower  bounds)  •  Zoom  on  some  instances:  

Lower  bound   Upper  bound  

Page 36: Bin$Packing$with$Linear$Usage$Costs$$€¦ · Outline$ 1. The$EnergeTIC$Project(Problem$Formulaon)$ 2. A$key$sub5problem$BPUC$(Bin$Packing$with$Usage$Costs)$ – Lower$bounds$based$on$LP$

Conclusion  •  Study  of  a  key  variant  of  Bin-­‐Packing  (BPUC):  

–  Characterize  LP  bound  +  Cost  based  propagaAon  –  Propose  an  extension  of  the  Bin-­‐Packing  global  constraint  with  a  useful  cost-­‐model  for  this  applicaAon  domain  

–  CP  gives  an  effecAve  exact   solver   for  BPUC   specially   to  handle  large-­‐scale  problems  and  side  constraints  

•  Minimizing  energy  in  data  centres:  –  Design   a   lower   bound   based   on   column   generaAon   that   has  some  generality  for  the  applicaAon  domain    

–  Assert  the  quality  of  LNS  on  real  benchmark  –  We  are  currently  tesAng  the  scalability  on  problems  where  the  bin-­‐packings  are  4  Ames  larger:    

1000  vms,  80  servers,  300  Ame-­‐periods