biolab

5
Villanea, Marc Jon, B. Epigenetics 1. What is epigenetics 2. Discuss its functions and consequences 3. Discuss how epigenetics affects humans and microorganisms I. Epigenetics E pigenetics is the study of heritable changes in gene activity that are not caused by changes in the DNA sequence; it also can be used to describe the study of stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. Unlike simple genetics based on changes to the DNA sequence (the genotype ), the changes in gene expression or cellular phenotype of epigenetics have other causes Epigenetics involves genetic control by factors other than an individual's DNA sequence. Epigenetic changes can switch genes on or off and determine which proteins are transcribed . Epigenetics is involved in many normal cellular processes. Consider the fact that our cells all have the same DNA, but our bodies contain many different types of cells: neurons, liver cells, pancreatic cells, inflammatory cells, and others. How can this be? In short, cells, tissues, and organs differ because they have certain sets of genes that are "turned on" or expressed, as well as other sets that are "turned off" or inhibited. Epigenetic silencing is one way to turn genes off, and it can contribute to differential expression. Silencing might also explain, in part, why genetic twins are not phenotypically identical. In addition, epigenetics is important for X-chromosome inactivation in

Upload: eros

Post on 18-Nov-2015

215 views

Category:

Documents


1 download

DESCRIPTION

dada

TRANSCRIPT

Villanea, Marc Jon, B.

Villanea, Marc Jon, B.

Epigenetics1. What is epigenetics2. Discuss its functions and consequences3. Discuss how epigenetics affects humans and microorganisms

I. Epigenetics

Epigenetics is the study of heritable changes in gene activity that are not caused by changes in the DNA sequence; it also can be used to describe the study of stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable. Unlike simple genetics based on changes to the DNA sequence (the genotype), the changes in gene expression or cellular phenotype of epigenetics have other causes

Epigenetics involves genetic control by factors other than an individual's DNA sequence. Epigenetic changes can switch genes on or off and determine which proteins are transcribed. Epigenetics is involved in many normal cellular processes. Consider the fact that our cells all have the same DNA, but our bodies contain many different types of cells: neurons, liver cells, pancreatic cells, inflammatory cells, and others. How can this be? In short, cells, tissues, and organs differ because they have certain sets of genes that are "turned on" or expressed, as well as other sets that are "turned off" or inhibited. Epigenetic silencing is one way to turn genes off, and it can contribute to differential expression. Silencing might also explain, in part, why genetic twins are not phenotypically identical. In addition, epigenetics is important for X-chromosome inactivation in female mammals, which is necessary so that females do not have twice the number of X-chromosome gene products as males. Thus, the significance of turning genes off via epigenetic changes is readily apparent.

The term also refers to the changes themselves: functionally relevant changes to the genome that do not involve a change in the nucleotide sequence. Examples of mechanisms that produce such changes are DNA methylation and histone modification, each of which alters how genes are expressed without altering the underlying DNA sequence. Gene expression can be controlled through the action of repressor proteins that attach to silencer regions of the DNA. These epigenetic changes may last through cell divisions for the duration of the cell's life, and may also last for multiple generations even though they do not involve changes in the underlying DNA sequence of the organism; instead, non-genetic factors cause the organism's genes to behave differently.II. Functions and Consequences

Somatic epigenetic inheritance through epigenetic modifications, particularly through DNA methylation and chromatin remodeling, is very important in the development of multicellular eukaryotic organisms. The genome sequence is static (with some notable exceptions), but cells differentiate into many different types, which perform different functions, and respond differently to the environment and intercellular signalling. Thus, as individuals develop, morphogens activate or silence genes in an epigenetically heritable fashion, giving cells a "memory". In mammals, most cells terminally differentiate, with only stem cells retaining the ability to differentiate into several cell types ("totipotency" and "multipotency"). In mammals, some stem cells continue producing new differentiated cells throughout life, such as in neurogenesis, but mammals are not able to respond to loss of some tissues, for example, the inability to regenerate limbs, which some other animals are capable of. Unlike animals, plant cells do not terminally differentiate, remaining totipotent with the ability to give rise to a new individual plant. While plants do utilise many of the same epigenetic mechanisms as animals, such as chromatin remodeling, it has been hypothesised that some kinds of plant cells do not use or require "cellular memories", resetting their gene expression patterns using positional information from the environment and surrounding cells to determine their fate.

In medicine, Epigenetics has many and varied potential medical applications as it tends to be multidimensional in nature.[81] Congenital genetic disease is well understood, and it is also clear that epigenetics can play a role, for example, in the case of Angelman syndrome and Prader-Willi syndrome. These are normal genetic diseases caused by gene deletions or inactivation of the genes, but are unusually common because individuals are essentially hemizygous because of genomic imprinting, and therefore a single gene knock out is sufficient to cause the disease, where most cases would require both copies to be knocked out.III. How epigenetics affects on humans and microorganism

Cancer can occur on human caused by epigenetics; Cancer is caused by failure of checks and balances that control cell numbers in response to the needs of the whole organism. Inappropriate function of genes that promote or inhibit cell growth or survival can be caused by errors introduced into the genetic code itself or by faulty epigenetic mechanisms deciding which genes can and cannot be expressed. Epigenetic lesions and genetic mutations are acquired during the life of an individual and accumulate with aging. Both types of events, either individually or in cooperation, can result in the loss of control over cell growth and development of cancer.

Bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Bacteria make use of DNA adeninemethylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation is important in bacteria virulence in organisms such asEscherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage, transposase activity and regulation of gene expression.The filamentous fungus Neurospora crassa is a prominent model system for understanding the control and function of cytosine methylation. In this organisms, DNA methylation is associated with relics of a genome defense system called RIP (repeat-induced point mutation) and silences gene expression by inhibiting transcription elongation.

Sources:

http://en.wikipedia.org/wiki/Epigenetics#Epigenetics_in_microorganisms http://hmg.oxfordjournals.org/content/16/R1/R28.full http://epigenie.com/epigenetics/