black hole entropy and su(2) chern simons theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfentropy...

20
Black Hole Entropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille, France Based on joint work with Jonathan Engle and Karim Noui

Upload: others

Post on 25-Jul-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Black HoleEntropy and SU(2) Chern

Simons Theory

Alejandro Perez Centre de Physique Théorique, Marseille, France

Based on joint work with Jonathan Engle and Karim Noui

Page 2: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The plan

• Brief motivation and introduction

• The main idea in Ashtekar-Krasnov-Corichi treatment of the problem

• Isolated horizons (in the ACK formulation)

• Connection variables (the SU(2) invariant canonical formulation)

• Quantization

• Relation between the U(1) and SU(2)

• Counting

(1)

Page 3: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Black Hole Thermodynamics

stationarystate (1)M, J, Q

stationary state (2)M , J , Q 0th law: the surface gravity κ

is constant on the horizon.

1st law:δM = κ

8π δA + ΩδJ + ΦδQ work terms

2nd law:δA ≥ 0

3rd law: the surface gravity value κ = 0

(extremal BH) cannot be reached by any

physical process.

Ω ≡ horizon angular velocityκ ≡surface gravity (‘grav. force’ at horizon)If a =killing generator, then a∇ab = κb.

Φ ≡electromagnetic potential.

Some definitions

Introduction and motivation

(3)

Page 4: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Hawking Radiation

0th law: the surface gravity κis constant on the horizon.

1st law:δM = κ

8π δA + ΩδJ + ΦδQ work terms

2nd law:δA ≥ 0

3rd law: the surface gravity value κ = 0

(extremal BH) cannot be reached by any

physical process.

T =κ

S = 14A

dynamicalphase

(4)

Page 5: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Black Holes EvaporateQuestions for Quantum GravityT =

κ

S = 14A

dynamicalphase

?

1) Microscopic origing of the entropy.

2) Dynamics of black hole evaporation.

3) What replaces the classical singularity.

4) What happens when a BH completely

evaporates.

Black Hole ThermodynamicsIntroduction and motivation

(5)

Page 6: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Quasilocal definition of BHFrom the Characteristic formulation of GR to isolated

horizons

D(M)

ioMFree Char

acteri

stic D

ataFree Characteristic Data

+

Initial Cauchy Data

D(M)

ioMFree Char

acteri

stic D

ataFree Characteristic Data

+

Initial Cauchy Data

o

Free data

M1

2

IH bo

undar

y con

dition

iradiat

ion

M

(6)

ACK IH boundary condition

• ∆ = S2 ×R

• Einstein’s equations hold on ∆

• For a the null normal ρ = 0 and σ = 0.

• For na (such that · n = 1) ρ = 0 and σ = 0.• For the null vector field na, such that n · = 1,σ = 0 and ρ = −f(v)

Page 7: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

ACK isolated horizonsImplications in terms of connection variables

The main equations:equations below are valid on the appropriate

thermal slicingwhere 0th and 1st laws hold.

Σi = −a

πF i(Γ) Ki = −

aei

Ai = Γi + γKi

Fabi(A) = −π(1− γ2)

aΣab

i

Va = 2Γ1, dV = −2π

aΣ1 = −2π

a2

Σ2 = Σ3 = 0

Free data

ioM1

2

Schwarz

shild

data

M

radiat

ionr =

a

In the gauge normal gauge (where is normal to H) the

main equation can be written in AKC form, plus two additional

conditions on Σi

e1

=⇒

(7)

Page 8: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Surface gravity and the value of !0

In IH there is no unique notion of !"a!a"b = ! "b

Lorentz Transf. above"a " "a = exp(#(#(x)))"a

na " na = exp((#(x)))na

normal " normal

M1

2

H

!

M

Can fix freedom by demanding ! to take the Schwarzshild value

! =1

4M=

!$

aH

fixes %0 = #1$2.

Indeed this choice is the one that makes the zero, and first lawof IH look just as the corresponding laws of stationary black holemechanics [ACK, Ashtekar-Beetle-Fairhurst-Krishnan].

qabrarb = 1

A preferred normal direction to H: the allowed histories must satisfy (Ashtekar)

⇐⇒

δijEai Eb

jrarb =√

q

Fixing of the null generator(8)

Kia = −f(v)√

2eia → Ki

a = −

aeia

(a)

(b)

Page 9: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Isolated horizon dynamical systemCovariant phase space formulation

o

Free data

M1

2

IH bo

undar

y con

dition

iradiat

ion

M

In Ashtekar variables, due to the IH boundary condition, no additional boundary term need to be included.

S[e, A+] = − i

κ

MΣi(e) ∧ F i(A+) +

i

κ

τ∞

Σi(e) ∧Ai+

J(δ1, δ2) = −2i

κδ[1Σi ∧ δ2]A

i+ ∀ δ1, δ2 ∈ TpΓ

dJ(δ1, δ2) = 0

The presymplectic current:

Einsteins Equations imply:

0 =iκ

2

∂BJ(δ1, δ2) =

∆δ[1Σi ∧ δ2]A

i+

+

M1

δ[1Σi ∧ δ2]Ai+ −

M2

δ[1Σi ∧ δ2]Ai+

aH

H2

δ[1A+i ∧ δ2]Ai

+ −aH

H1

δ[1A+i ∧ δ2]Ai

+

(a)

(b)

(c)

(9)

Page 10: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

o

Free data

M1

2

IH bo

undar

y con

dition

iradiat

ion

M

The conserved presymplectic

form:iκ ΩM (δ1, δ2) =

M

2δ[1Σi ∧ δ2]Ai

+ −aH

H

δ[1A+i ∧ δ2]Ai

+

ΩM1(δ1, δ2) = ΩM2(δ1, δ2)

Reality conditions:

The conserved presymplectic form:

(a)

(b)

Ai+ = Γi + iKi =⇒ Im[ΩM (δ1, δ2)] = 0

κΩM (δ1, δ2) = κRe[ΩM (δ1, δ2)] =

M2δ[1Σi ∧ δ2]K

i

(c)

(d)

Isolated horizon dynamical systemCovariant phase space formulation

(10)

Page 11: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Connection variables for GR

S[e, A] =1κ

M

√−g R[g]The Einstein

Hilbert Action

The (pre) Symplectic Form

Ω(δ1, δ2) =1κ

M

(δ1qab δ2Πab − δ2qab δ1Πab) ∀ δ1, δ2 ∈ T (ΓIH)

qab = eiaej

bδij

Introduce a triad (SU(2) gauge symm.)

New Canonical Variables

Σi = ijk(ej ∧ ek)Ki

a = ebjKabδ

ij

New ConnectionVariables

Σi = ijk(ej ∧ ek)

Ai = γKi + Γ(e)i

Torsion free connectionSecond fundamental form

Ω(δ1, δ2) =1

8πG

Mδ[1Σi ∧ δ2]K

i =1

8πGγ

Mδ[1Σi ∧ δ2]A

i,

The Symplectic Potential

8πGγΘ(δ) =

MΣi ∧ (γδKi) =

MΣi ∧ δ(Γi + γKi)−

MΣi ∧ δΓi

t

=

ab

abP

q

1/2q (K Kq )ab ab

Σi ∧ δΓi = −d(ei ∧ δei)

M

(a)

(11)

Page 12: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The conserved presymplectic

form:

The Symplectic Potential:

8πγΦ(δ) =

M

Σi ∧ δ(γKi + Γi)−

M

Σi ∧ δΓi

=

M

Σi ∧ δA +

H

ei ∧ δei

ΩM (δ1, δ2) =1κγ

M

[δ1Σi ∧ δ2Ai− δ2Σi ∧ δ1Ai

] +1κγ

H

δ1ei ∧ δ2ei

The presymplectic form in connection

variables:

Rewriting the Symplectic Potential:

8πγΦ(δ) =

MΣi ∧ δ(γKi) +

MΣi ∧ δΓi −

MΣi ∧ δΓi

ΩM (δ1, δ2) =1κ

M[δ1Σi ∧ δ2Ki − δ2Σi ∧ δ1Ki] ∀ δ1, δ2 ∈ T (Γcov)

(a)

(b)

(c)

Isolated horizon dynamical systemCovariant phase space formulation

(12)

Σ(α, S) ≡

S⊂H

Tr[αΣ] Σ(α, S),Σ(β, S) = Σ([α,β], S)

Page 13: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

S[e, A] =1κ

M

√−g R[g] Due to the IH boundary condition no additional boundary

term need to be included in the action

No boundary term here either

The Symplectic Potential

ΩM (δ1, δ2) =1κ

M[δ1Σi ∧ δ2Ki − δ2Σi ∧ δ1Ki] ∀ δ1, δ2 ∈ T (Γcov)

8πγΦ(δ) =

M

Σi ∧ δ(γKi + Γi)− a

2π(1− γ2)

H

Ai ∧ δAi

=

M

Σi ∧ δ(γKi)−

H

ei ∧ δei +a

2π(1− γ2)Ai ∧ δAi

closed one form in ΓcovFab

i(A) = −π(1− γ2)a

Σabi

ΩM (δ1, δ2) =1κγ

M

[δ1Σi ∧ δ2Ai− δ2Σi ∧ δ1Ai

] +a

π(1− γ2)κγ

H

δ1Ai ∧ δ2Ai

Isolated horizon dynamical systemCovariant phase space formulation

(13)

Page 14: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The quantum Soup! !

!

!

QuantumSoup

(1) Quantize and solve theIH boundary conditionQuantum SU(2) Chern-Simons theorywith defects[Witten, Smolin]!

aH

!(1!"2) F + !"

|"! = 0

jh

(2) Count states using Witten’s results: S = log(N ) withN =

#

n;(j)n1

dim[H CS(j1· · ·jn)] [Kaul-Majumdar (first), (then)Carlip]

with labels j1 · · · jp of the punctures constrained by the condition#n

p=1

$

jp(jp + 1) " aH

8!#$2p# k0 (precise counting done resently)

[Agullo-Barbero-Borja-Diaz-Polo-Villasenor]

, Krasnov]

(14)

[Noui et al. (new ideas)]

Page 15: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The single intertwiner BH model

dim[H CS(j1· · ·jn)] ! dim[Inv(j1 " · · ·" jn)]

The area constraint!n

p=1

"

jp(jp + 1) ! aH

8!"#2p#

dim[H CS(j1· · ·jn)] = dim[Inv(j1 " · · ·" jn)]

We can model the IH system by a single SU(2)intertwiner [Livine-Terno, Rovelli-Krasnov]

(15)

Page 16: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The single intertwiner BH model

dim[H CS(j1· · ·jn)] ! dim[Inv(j1 " · · ·" jn)]

The area constraint!n

p=1

"

jp(jp + 1) ! aH

8!"#2p#

dim[H CS(j1· · ·jn)] = dim[Inv(j1 " · · ·" jn)]

We can model the IH system by a single SU(2)intertwiner [Livine-Terno, Rovelli-Krasnov]

(16)

Page 17: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Relation to U(1) treatment

Domagala-Lewandowski counting

Ghosh-Mitra counting

jhjh

jhjh

(j,m)

(j, m)(j,m)

(j, m)

Density matrix constructed by tracing out “bulk” degrees of freedom where only the

connection is a surface observable

Density matrix constructed by tracing out “bulk” degrees

of freedom where bothconnection and the area

density are a surface observables

(17)

k

4πF − Σiri

|Ψ = 0 Ψ|Σi(δij − rirj)|Ψ = 0

k

4πF − Σiri

|Ψ = 0 Ψ|Σi(δij − rirj)|Ψ = 0

(see Ashtekar-Engle-Van den Broeck)

k

4πF − Σiri

|Ψ = 0 Ψ|Σi(δij − rirj)|Ψ = 0

Page 18: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

The issue of fixing the null generatorin the SU(2) treatment

counting remains unchanged after imposing the condition in the quantum theory

jhjh

(j, m)(j,m)

Counting: Density matrix constructed by tracing out “bulk” degrees of freedom

where bothconnection and the area

density are a surface observables

δijEa

i Ebjrarb =

√q

Assuming there is at least one solution to equation (a) per surface state the counting is

unaffected as (a) only restricts bulk d.o.f.

(a)

(18)

(k

4πF i + Σi)|Ψ >= 0

( √h−√q)|Ψ = 0

Page 19: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Conclusions• IH’s [Ashtekar et al.] admits an SU(2) invariant treatment.

The d.o.f. of the horizon are described in terms of an SU(2)Chern-Simons theory with level k = aH

2!"2p#(1!#2) [meets old ideas

by Smolin].

• For |!| !"

3, k0 ! k: S = #0aH

4"2p# # 32 log(aH) with !0 = 0.274067...

[Agullo-Barbero-Borja-Diaz-Polo-Villasenor, Kaul-Majumdar (for#3/2 log)].

• Leading term in entropy coinsides with the U(1) treatment withGhosh-Mitra counting.

• Can model black hole as a single intertwiner! Vindicates Rovelli-Krasnov’s arguments for computting BH entropy in full theory.

• BH entropy from topological limit of GR [Liu-Montesinos-Perez]

(19)

(number of physical states smaller than U(1) case)

(done in the ACK definition, more work needed for general IH)

Page 20: Black Hole Entropy and SU(2) Chern Simons Theoryrelativity.phys.lsu.edu/ilqgs/perez050410.pdfEntropy and SU(2) Chern Simons Theory Alejandro Perez Centre de Physique Théorique, Marseille,

Future

• Put our long paper on the arxiv. (ENP).

• Extend to general IHs (avoid the fixing of the null generators).

• Treat distorted and rotating case.

• Dynamics, dynamics.