brain imaging with a coded pinhole mask - diva portal549833/fulltext01.pdf · brain imaging with a...

46
Brain Imaging with a Coded Pinhole Mask WUWEI REN Master of Science Thesis in Medical Engineering Stockholm, Sweden 2012

Upload: others

Post on 20-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

Brain Imaging with a Coded

Pinhole Mask  

 WUWEI  REN  

Master of Science Thesis in Medical Engineering Stockholm, Sweden 2012

Page 2: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

2  

       

       

 Brain  Imaging  with  a  Coded  Pinhole  Mask  

 

 Wuwei  Ren  

       

Supervisor:  Massimiliano  Colarieti  Tosti  Examiner:  Andras  Kerek  

       

     

TRITA  2012:34    

School  of  Technology  and  Health  Royal  Institute  of  Technology  Stockholm,  Sweden,  2012  

Page 3: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

3  

Abstract  

In   this   study,   we   present   a   novel   design   of   Multi-­‐Layer   Pinhole   Collimator  (MLPC),   which   is   a   pre-­‐requisite   for   the   development   of   a   mobile   stationary  SPECT   with   large   field   of   view   (FOV).   The   4-­‐layer   MLPC   structure   consists   of  three   mask-­‐detector   groups.   All   three   groups   have   different   focal   points   but  share   similar   hexagonal   pattern  with   a   phase   difference   of  π/6.   For   a   specific  group  of  detector  and  pinhole  mask,  it  is  assumed  that  an  optimal  imaging  area  exists,  where  a  good  balance  between  sensitivity  and  resolution  is  achieved.  Both  resolution  measurement   and  Derenzo   phantom   test   are   performed   in   GATE,   a  Monte  Carlo  simulator.  The  raw  data  is  processed  using  NORA  decoding  method,  a   fast   and   non-­‐iterative   reconstruction   method,   based   on   Matlab.   After  evaluating  the  reconstruction  results,  we  find  that  MLPC  is  able  to  diminish  the  resolution  variation  in  large  FOV  with  improved  sensitivity  of  86,0  cps/MBq,  and  decent   image   resolution   of   5   mm   compared   with   parallel-­‐hole   collimator   and  classic   7-­‐pinhole   mask.   A   three-­‐dimensional   object   is   reconstructed   without  rotating  a  gantry.  

   

Page 4: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

4  

Content  

Abstract  .........................................................................................................................................  3  Content  ..........................................................................................................................................  4  Abbreviations  .............................................................................................................................  5  1.   Introduction  .......................................................................................................................  6  

1.1  Nuclear  Imaging  .......................................................................................................  6  1.2  Collimation  of  Gamma  Camera  ..........................................................................  8  1.3  Scope  of  the  thesis  .................................................................................................  13  

2   Monte  Carlo  simulation  in  GATE  ..............................................................................  15  2.1  Geant4  Application  for  Tomographic  Emission  (GATE)  .......................  15  2.2  Physics  process  of  gamma  radiation  .............................................................  15  2.3  Basic  Setup  for  Physics  in  GATE  ......................................................................  16  2.4  Structure  of  simulation  files  .............................................................................  17  

3   Geometry  description  of  MLPC  .................................................................................  19  3.1  Individual  Pinhole  Collimator  ..........................................................................  19  3.2  Multi-­‐Layer  Pinhole  Collimator  .......................................................................  20  

4   Image  Reconstruction  and  Analysis  ........................................................................  24  4.1  Development  of  PinholeViewer  ........................................................................  24  4.2  Digitization  ...............................................................................................................  25  4.3  Reconstruction  .......................................................................................................  25  4.4  Deblurring  ................................................................................................................  27  4.5  Visualization  ............................................................................................................  28  

5   System  Optimization  ......................................................................................................  29  5.1  Energy  Window  ......................................................................................................  29  5.2  Collimator  Thickness  ...........................................................................................  29  5.3  Pinhole  Shape  ..........................................................................................................  30  5.4  Layer  Positioning  ...................................................................................................  31  

6   Imaging  with  MLPC  ........................................................................................................  35  6.1  Reconstruction  resolution  without  scattering  ..........................................  35  6.2  System  volume  sensitivity  .................................................................................  37  6.3  Derenzo  Phantom  study  .....................................................................................  38  

7   Conclusion  and  Future  work  ......................................................................................  41  7.1  Conclusion  ................................................................................................................  41  7.2  Future  work  .............................................................................................................  42  

8   Reference  ............................................................................................................................  43  Appendix  I:  Paper  submitted  ..............................................................................................  45  

   

Page 5: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

5  

Abbreviations  

ACD:  Annihilation  Coincidence  Detection  FDG:  Fluorodeoxyglucose  FOV:  Field  of  View  FWHM:  Full  width  at  half  maximum  GATE:  Geant4  Application  for  Tomographic  Emission  GUI:  Graphical  User  Interface  ICU:  Intensive  Care  Unit  LEP:  Low  Energy  Electromagnetic  Processes  MF:  Magnification  Factor  MLPC:  Multi-­‐Layer  Pinhole  Collimator  MPA:  Multiple  Pinhole  Array  NORA:  Non-­‐overlapping  Redundant  Array  PET:  Positron  Emission  Tomography  PSF:  Point  Spread  Function  SEP:  Standard  Energy  Electromagnetic  Processes  SNR:  Signal  to  Noise  Ratio  SPECT:  Single  Photon  Emission  Computed  Tomography  Tc-­‐99m:  Technetium  99m      

   

Page 6: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

6  

1. Introduction  

Modern   nuclear   imaging   technology   including   Positron   Emission   Tomography  (PET)  and  Single  Photon  Emission  Computer  Tomography  (SPECT)  plays  a  vital  role  in  both  clinical  practice  and  biomedical  research.  Nuclear  imaging  visualizes  the   distribution   of   radioactive   compounds   in   the   subjects,   patients   or  experimental   animal.   Balancing   factors   such   as   equipment   costs,   resolution  requirement,  infrastructure,  sensitivity  and  availability  of  the  radioactive  agents,  PET  and  SPECT  are  considered  to  be  complementary  for  various  purposes[1].  In  spite   of   relatively   low   sensitivity   and   limited   resolution,   SPECT   has   several  advantages   over   PET.   Most   SPECT   radionuclides   have   lower   production   costs  than  PET.  Besides,  spatial  resolution  of  PET  is  limited  by  the  inevitable  positron  range  and  non-­‐collinearity  of  annihilation  photons,  which  are  not  seen  in  SPECT.      In   SPECT,   a   collimator   is   designed   to   permit   photons   following   certain  trajectories  to  reach  the  detector.  The  collimator  design  has  been  an   important  issue   for   two   reasons:   first,   the   geometry   of   collimator   controls   the   trade-­‐off  between   sensitivity   and   resolution;   second,   some   special   collimation   patterns  introduce  additional  tomographic  information.  These  will  be  discussed  further  in  section  1.2.    In  this  study,  we  investigated  the  theoretical  feasibility  of  Multiple  Pinhole  Array  (MPA)   collimators   for   developing   a   SPECT   system  without   rotating   or  moving  elements.  A  four-­‐layer  arrangement  is  proposed  and  the  system  performance  is  evaluated  using   the  simulation   toolkit  GATE[2].  We  are  able   to   image  a   field  of  view   (FOV)   of   the   order   of   a   human   brain   (a   sphere   of   radius   100  mm).   The  system  sensitivity  is  86,0  cps/MBq  while  the  overall  resolution  is  estimated  as  5  mm.   The   Performance   of   the   MPA   collimator   is   comparable   with   traditional  parallel-­‐hole  collimator.    

1.1  Nuclear  Imaging  

Nuclear   imaging   produces   images   of   the   distribution   of   radionuclides   in  experimental  subjects.  Gamma  rays,  characteristic  x-­‐rays  or  annihilation  photons  are   used   to   form   images.   A   typical   radiopharmaceutical   consists   of   carrier  molecules,   such   as   ligands   or   antibodies   and   its   coupled   radioactive   moieties.  When   the   radiotracer   is   injected   into   a   patient’s   body,   gamma   photons   are  emitted  proportional  to  the  distribution  of  the  in  vivo  tracers.  These  photons  are  thus   recorded  and  a   two-­‐dimensional   (2D)  or   three-­‐dimensional   (3D)   image   is  obtained  via  various  imaging  modalities.      The  functional  information  provided  by  PET  or  SPECT  makes  nuclear  imaging  a  diagnostic  tool  in  clinical  practice.  The  body  handles  substances  differently  when  

Page 7: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

7  

there   is   pathology.   Some   good   examples   include   myocardial   perfusion   scan,  parathyroid  scan  and  pulmonary  ventilation  scan.  Thanks  to  the  high  sensitivity  of  PET,  early  tumor  prediction  is  possible  using  18F-­‐FDG[3].    Nuclear   imaging   can   be   subdivided   into   two   categories:   planar   imaging   and  tomography.  Planar  imaging  provides  a  2D  projection  of  the  real  3D  distribution  of  tracers.  In  this  way,  the  3D  information  is  lost  since  planar  imaging  adds  up  all  the   radioactivity   values   along   the   projection   direction.   Tomography   provides  solution   to   reconstruct   the   3D   volume   by   sampling   numerous   projection   data  from  different  angles  around  the  object.  SPECT  and  PET  are  distinguished  by  the  different   radionuclides   and   collimation   methods.   The   following   explains   the  detailed  principles  for  these  two  modalities.    Positron   Emission   Tomography   (PET):   The   basic  mechanism   behind   PET   is  annihilation   coincidence   detection   (ACD).  When   the   radioisotope,   such   as   11C,  13N,  15O  and  18F,  decays,  a  positron  particle  (β+)  is  generated  and  annihilates  with  an   electron   (e)   in   the   surround   material   after   travelling   a   certain   distance  ranging   from  0.5  mm   to   3  mm.   The   annihilation   event   results   in   two   511   keV  photons  that  are  emitted  in  early  opposite  directions.  When  the  pair  of  photons  is  detected  simultaneously  within  a  ring  of  detectors  surrounding  the  target,  it  is  presumed  that  this  annihilation  occurred  on  the  line  between  the  two  registered  positions  in  the  ring.    

 Figure  1:  Annihilation  event  happens  to  the  radionuclides  in  subjects  (left);  Schematic  diagram  of  PET  

ring  detector  shows  how  the  coincidence  is  detected  (right)  [1]  

.    

 Single   Photon   Emission   Computed   Tomography   (SPECT):   In   SPECT   the  gamma   rays   emitted   by   radionuclides,   such   as   99mTc,   123I   and   201Tl,   obey   a  uniform   angular   probability   distribution.   To   create   a   correspondence   between  points  of  target  and  those  of  detector  plane,  a  mechanical  collimator  is  needed.  A  SPECT   system   samples   projections   from   various   angles.   The   most   commonly  used  collimator  is  the  parallel-­‐hole  collimator.  Other  specialized  collimators  such  as  fan-­‐beam  collimator  find  their  application  mainly  in  brain  imaging.      

27

(a) (b)

Nucleus

e-E+

511 keV

511 keV

J

J

object

ring detector

coincidencecircuitry

Figure 1-1. (a) Annihilation reaction. (b) Schematic diagram of PET ring detector.

addition, positron-emitting isotopes of carbon, nitrogen, oxygen, and fluorine occur

naturally in many biological systems and pharmaceutical compounds; this permits

incorporation of positron emitters into a wide variety of useful radiopharmaceuticals to

investigate specific physiological functions (Ollinger and Fessler, 1997). For example,

18F-FDG (fluorodeoxyglucose) is a commonly used PET radiopharmaceutical, which is a

chemical analog of glucose with replacement of the oxygen at the C-2 position with 18-

fluorine. When 18F-FDG is introduced into blood stream, it localizes through glucose

metabolism and thus can be used to study the metabolic process of glucose in the organ

of interest (Opie and Hesse, 1997).

The major disadvantages of PET are its equipment and radiopharmaceutical costs.

Since the half-lives of positron emitters are generally short, an on-site or nearby cyclotron

is required to produce the necessary radioisotopes. PET scanners are also significantly

more expensive than SPECT instruments in general. In addition, the spatial resolution of

PET has some fundamental physical limitations, such as non-zero positron range after

Page 8: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

8  

 Figure  2:  Planar  imaging  with  a  parallel-­‐hole  collimator  (left);  Schematic  diagram  of  a  triple-­‐head  

SPECT  scanner  (right)  [1].    

 PET   vs.   SPECT:   We   compare   these   two   imaging   modalities   from   several  perspectives:  sensitivity,  resolution  and  cost.      First  of  all,  PET  has  a  higher  sensitivity  than  SPECT  due  to  different  collimation  methods.   The   ACD   applies   electronic   collimation,   which   avoids   much   loss   of  events   during   detection.   However,   SPECT   uses   a   mechanical   way   to   find   the  correspondence.   This   method   is   less   efficient   since   only   small   fraction   of  emitting   gamma   particles   arrive   in   the   scintillator.   The   improvement   of  sensitivity   for   SPECT   depends   largely   on   the   optimization   of   collimator  geometry.    Secondly,   the  resolution  of  PET  is   limited  by  two  factor,  namely  positron  range  and  photon  non-­‐collinearity.  Positron  range   is   the  distance  the  positron  travels  before  it  can  reach  thermal  energies  in  order  to  be  annihilated.  This  range  differs  from   isotope   to   isotope   due   to   different   energy   distribution.   Non-­‐collinearity  means  deviation  from  180o  between  the  trajectories  of  the  two  emitted  photons  due   to  conservation  of  momentum.  On   the  contrary,   the  resolution  of  SPECT   is  mainly   limited   by   technology,   mainly   collimator   design.   For   example,   some   of  small  animal  SPECT  systems  achieve  sub-­‐millimeter  resolution  using  specialized  pinhole  collimator  [10].      Finally,  high  cost  to  build  an  on-­‐site  cyclotron  for  generating  PET  radionuclides  has  limited  the  widespread  of  this  efficient  technique.  The  average  cost  to  do  PET  scan  in  Sweden  scan  is  over  10,000  SEK[4],  which  is  more  expensive  than  SPECT.  The  radionuclides  in  SPECT  have  relatively  longer  life  and  make  transporting  to  hospitals  easier.    From   what   we   have   discussed   above,   it   is   convincing   that   the   study   in   the  collimation  of  SPECT  is  salient.  

1.2  Collimation  of  Gamma  Camera  

Classification  of  collimators:    

32

(a) (b)

object detector

parallel-holecollimator

object

detector

rotationorbit

Figure 1-2. (a) Gamma-ray imaging with a parallel-hole collimator. (b) Schematic diagram of a triple-head SPECT scanner.

To accomplish SPECT imaging, sufficient projections from different views must be

collected to allow tomographic reconstruction. This can be done by rotating the object in

front of the detector or by rotating the collimator-detector combination around the object.

SPECT systems usually comprise a gantry with one or more movable camera heads or

multiple detectors in a closed ring or polygon. More detectors lead to higher system

sensitivity but also higher cost. A triple-head SPECT system design is shown in Fig. 1-

2(b) and the dotted circle indicates the rotation orbit of detectors. Each head needs to

cover 120° in this system.

In contrast to the flourishing developments of dedicated small-animal PET scanners,

most of the early small-animal SPECT studies were accomplished with clinical gamma

cameras. Conventional clinical gamma cameras with parallel-hole collimators only

provide spatial resolution around 6 to 10 mm, which is too low for small-animal imaging.

However, high-resolution imaging can be achieved by using specialized pinhole apertures.

Page 9: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

9  

The  purpose  of   introducing  mechanical  collimators   in  gamma  camera   is   to   find  the   point-­‐to-­‐point   correspondence   between   object   and   image.   The   collimators  are  made  of  high  atomic  number  materials,  usually   lead  or  tungsten.  According  to  their  geometry,  we  can  generally  classify  collimators   into   four  types,  namely  parallel-­‐hole,  pinhole,  converging  and  diverging.      The   parallel-­‐hole   collimators   are   the   most   commonly   used.   This   type   of  collimators   contains   thousands   of   parallel   holes.   The   shape   of   individual   hole  varies.   Most   of   parallel-­‐hole   collimators   use   hexagonal   holes.   The   partitions  between  the  neighboring  holes  are  called  septa.  The  septa  must  be  thick  enough  to  stop  the  photons  from  neighboring  holes.  The  size  of  image  is  the  same  as  the  object.      Generally  speaking,  the  pinhole  collimator  is  only  suitable  for  small  FOV  because  the   variation   of   both   sensitivity   and   resolution   can   be   large   in   a   big   FOV.   A  magnification  factor  is  defined  as  the  ratio  between  image  and  its  corresponding  object.   This   factor   is   determined   by   the   relative   positions   of   object,   collimator  and  detector.  A  large  magnification  factor  is  always  applied  in  order  complement  the   detector   resolution.   Today,   most   small   animal   SPECT   systems   are   using  pinhole  collimation.    A  converging  collimator  induces  magnification  of  the  object  and  thus  is  useful  in  imaging  small  object.  On  the  contrary,  the  diverging  type  minifies  the  object  on  the   image  plane  and  can  be  used  in  developing  a  mobile  scintillation  camera  in  Intensive  Care  Unit  (ICU)  in  hospitals.  

 Figure  3:  There  are  four  types  of  collimators:  Parallel-­‐hole  (upper  left),  Pinhole  (upper  right),  

converging  (lower  left)  and  diverging  (lower  right)[4].    

 

Image in crystal

LTtTTTlT1llT1TT. .

. .

Parallelhole

Image in crystal

~,,\\ \ \ ITTIII hJ//)/~/ Im.jge in c~stal

S;1777j/lnn\~\\\\'\~, \,

/1 \\~\

the-art collimators have hexagonal holes and are usually made from lead foil,although some are cast. The partitions between the holes are called septa. The septamust be thick enough to absorb most of the photons incident upon them. For thisreason, collimators designed for use with radionuclides that emit higher-energyphotons have thicker septa. There is an inherent compromise between the spatialresolution and efficiency (sensitivity) of collimators. Modifying a collimator toimprove its spatial resolution (e.g., by reducing the size of the holes or lengtheningthe collimator) reduces its efficiency. Most scintillation cameras are provided with aselection of parallel-hole collimators. These may include "low-energy, high-sensitiv-ity," "low-energy, all-purpose" (LEAP), "low-energy, high-resolution", "medium-energy" (suitable for Ga-67 and In-Ill), "high-energy" (for 1-131), and "ultra-high-energy" (for F 18) collimators. The size of the image produced by a parallel-hole collimator is not affected by the distance of the object from the collimator.However, its spatial resolution degrades rapidly with increasing collimator-to-objectdistance.

A pinhole collimator (Fig. 21-6) is commonly used to produce magnified viewsof small objects, such as the thyroid or a hip joint. It consists of a small (typically3- to 5-mm diameter) hole in a piece of lead or tungsten mounted at the apex of aleaded cone. Its function is identical to the pinhole in a pinhole photographic cam-era. As shown in the figure, the pinhole collimator produces a magnified imagewhose orientation is reversed. The magnification of the pinhole collimator decreasesas an object is moved away from the pinhole. If an object is as far from the pinhole

as the pinhole is from the crystal of the camera, the object is not magnified and, if

Page 10: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

10  

Pinhole  collimator:    As   we   mentioned   above,   pinhole   collimation   brings   two   major   benefits:   (1)  control   of   trade-­‐off   between   resolution   and   sensitivity   and   (2)   Additional  tomographic  information.      According  to  the  theory  of  photon  quantum  noise,  a  large  pinhole  size  improves  the   signal   to   noise   ratio   (SNR)   and   sensitivity,   but   blurs   the   image;   On   the  contrary,   with   a   small   pinhole,   the   SNR   declines   because   fewer   photons   are  detected,   but   higher   resolution   is   achieved.   To  maintain   both   good   resolution  and  high   sensitivity,   the   concept   of  Multiple   Pinhole  Array   (MPA)   is   proposed.  Each  hole  in  MPA  generates  a  projection  with  high  fidelity  and  the  total  amount  of   photons   from   all   the   holes   contributes   to   the   decent   improvement   of  sensitivity.      The   MPA   also   makes   3D   reconstruction   possible.   Every   pinhole   provides   a  unique   pattern   of   projection   from   a   certain   angle.   Therefore,   it   is   feasible   to  reconstruct  the  object  according  to  the  central  slice  theory.      

   

                             Figure  4:  A  tradeoff  between  spatial  resolution  and  sensitivity  can  be  controlled  by  the  diameter  of  a  

pinhole  (upper).  The  concept  of  Multiple  Pinhole  Array  is  proposed  to  maintain  both  good  resolution  

and  high  sensitivity  (lower)[5].  

 

Page 11: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

11  

The  idea  of  using  MPA  dates  back  to  very  early  years  of  planar  scintigraphy.   In  1974,   Chang   suggested   a   method   using   an   aperture   of   multiple   pinholes   to  produce  a  coded  image  and  decoded  it  with  a  diffuse  light  source  and  the  original  aperture   to   produce   the   image[15].   Vogel   and   his   colleagues   proposed   a  7-­‐pinhole   mask   coupled   with   an   Anger   scintillation   camera.   The   lateral  resolution  is  1.0  cm  and  depth  resolution  is  1.5  cm[16][17].      

     Figure  5:  Chang  used  an  early  MPA  and  a  corresponding  optical  decoding  method  (left).  Vogel  and  his  

colleagues  proposed  a  7-­‐pinhole  collimator  for  heart  imaging  (right).  

 A   stationary   SPECT   using   pinhole   collimation   is   built   at   the   University   of  Arizona[6].   In   Barrett’s   group,   a   hemispherical   SPECT   imager   is   proposed   to  produce   three-­‐dimensional   images   of   the   brain.   The   system   constitutes   a  hemispherical   MPA   and   20   modular   cameras.   The   system   sensitivity   is   36  cps/μCi  and  the  resolution  is  4.8  mm.    

CHANG, KAPLAN, MACDONALD, PEREZ-MENDEZ, AND SHIRAISHI

properly aligned, the decoded image comes intosharp focus at an image plane where it can be directlyobserved on a second ground-glass screen and subsequently photographically recorded.

RESULTS AND DISCUSSION

An image of a Picker thyroid phantom taken withthe 27 nonredundant pinhole-coded aperture isshown in Fig. 1A. The shadowgram consisting of540,000 dots was recorded on Kodak Ektapan film.The reconstructed image as shown in Fig. lB wasprinted on high-contrast paper to reduce the background of light and enhance the contrast. The rightand left lobes differed in activity and this differencecan be seen in the reconstruction. The smallest ofthe cold nodules is 5 mm in diameter and is clearlyimaged.The tomographic capability of this coded aperture

is shown in Fig. 2. Figure 2A shows the shadowgram of a radioactive phantom consisting of threegeometric patterns labeled with 1251 (a cross, a tnangle, and a circle) which were separated by a distance of 2.5 cm in depth. A total of I million gammaswas recorded on the shadowgram. Figures 2B, C,and D are the reconstructions of each of the patternsobtained by adjusting the mask-to-image plane distance in the reconstructions so as to bring eachpattern into sharp focus. Each of the in-focus imagesis superimposed on a background arising from theplanes at other depths in the phantom. Since nomovement of the detector is necessary and all theinformation of the shape and size of the object isrecorded in a single picture, dynamic studies arepossible.

CODEDP1510LIAPEITSIE[

OBJECT @-@ â€w,'@pp.7v/st

IMAGEPLANE

PINNatEMASK

A

[lOUTSOUUCE

B

COPED55*5000kM

DIFFUSINCSCUllS

FIG. 1. (A)Compositediagramof imagingsystemshowsspatial placement of various components depicting 27 nonredundantpinhole array and actual shadowgram of Picker thyroid phantom.(B) Composite diagram of reconstruction system shows decodedimage of shadowgram.

a single pinhole, and is given by S = d( 1 + S,/S2)where d is the diameter of the pinhole and S and S@are as shown in Fig. IA. The depth resolution isgiven by@ = 2(d/D) S@(l + S1/S2) where D isthe largest lateral distance between any two pinholesof the array. This calculation for the depth resolutionassumes that 50% of the light from the out-of-focusplanes overlaps the light from the in-focus plane.The coded aperture consists of 27 2-mm-diam

pinholes drilled into a flat sheet of lead 2 mm thickand was designed to work with gammas up to 140-keV energy. In this application, the radiation wasthe 28-keV x-rays emitted by a â€25I-filledthyroidphantom. The resolution of the system is limited bythe 2-mm-diam size of the individual pinholes and,thus, for a typical imaging geometry in which S@=52, the overall lateral resolution is 4 mm.The reconstruction system is shown in Fig. IB.

An intense, uniform, and diffuse light source is madeby focusing the light from a slide projector onto aground-glass screen. The rays of light emitted fromthe screen are further transmitted through the transparency of the shadowgram and through a maskthat is a duplicate of the original nonredundant pinhole array. When the shadowgram and mask are

cJ..S@ . , ..

;@-@:@@@@@ @-.@

C

FIG.2. (A)CodedshadowgramofPatterns were spaced 2.5 cm in depthReconstructedimagesof each pattern.

cross, triangle, and circle.from one another. (B,C,D)

1064 JOURNAL OF NUCLEAR MEDICINE

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. MI-4, NO. 2, JUNE 1985

Improved Tomographic Reconstruction inSeven-Pinhole Imaging

JOHN W. VAN GIESSEN, MAX A. VIERGEVER, AND CORNELIS N. DE GRAAF, MEMBER, IEEE

Abstract-Cardiac emission tomography using a seven-pinhole colli-mator has received only little appreciation as a diagnostic imaging tech-nique. The main reasons are the limited angular sampling of the seven-

pinhole device and the difficulties encountered in properly positioningthe patient relative to the collimator/camera system. In order to over-

come these problems, we have developed a modified ART3 algorithmfor reconstruction of the radioactivity distribution in the heart. Themethod is very appropriate for seven-pinhole tomography, as demon-strated by the quality of the reconstructions, by the excellent point sourceresolution of the system response, and by a comparison to two othersuitable reconstruction techniques, viz., SMART and SIRT.

I. INTRODUCTION

EVEN-pinhole (7P) tomography is a method of my-ocardial perfusion imaging introduced by Vogel and

co-workers [1]. It is a low-cost method because it onlyrequires a simple collimator in addition to a conventionalgamma camera system. Yet, seven-pinhole imaging hasnot gained wide appreciation in nuclear cardiology prac-tice. The limited angular samipling of the device has pre-vented reconstructed images from having a quality com-parable to full angle tomography [2]. Also, positioning ofthe patient relative to the collimator is critical for success-ful reconstructions.The purpose of this paper is to discuss whether the po-

tentialities of 7P tomography have been fully investigated.We start by formulating the reconstruction problem inmathematical terms; both a continuous version and a dis-crete version of the problem are presented. We then arguethat feasible reconstruction methods should be sought inthe class of discrete iterative techniques. Up to now, re-construction of 7P images has been performed almost ex-clusively on the basis of the SMART algorithm, which hasbeen proposed by the designers of the 7P device [3]. Toanswer the question as to whether this algorithm is the bestreconstruction method for this application, we compare itto two other iterative techniques, namely SIRT (to whichSMART bears some similarities) and a modified versionof ART3. Furthermore, we introduce a new operator topostprocess the reconstructed tomograms.Our intention is to convey that the ART3-based recon-

struction algorithm, extended with the postreconstruction

Manuscript received November 29, 1984; revised February 25, 1985.J. W. van Giessen and M. A. Viergever are with the Department of

Mathematics and Informatics, Delft University of Technology, 2628 BLDelft, The Netherlands.

C. N. de Graaf is with the Institute of Nuclear Medicine, UniversityHospital Utrecht, 3511 GV Utrecht, The Netherlands.

optical axLs(z-axis)

*-z=O

Fig. 1. Schematic representation of the imaging system and the reconstruc-tion volume. Dimensions are given in the text. The division of the re-construction volume into slices parallel to the detector face, which ischaracteristic of longitudinal tomography, is also outlined. For simplici-ty's sake we show here a division into three slices; in the computationseight slices are used.

operator, renders it worthwhile to reconsider the use of 7Ptomography as a standard clinical imaging technique forthe heart.

II. IMAGING SYSTEM AND PROCESSING SYSTEMThe collimator consists of a lead pinhole plate, located

at 127 mm from the camera crystal, with seven pinholesof 7 mm diameter. The center of the central pinhole issituated on the optical axis of the system (see Fig. 1). Thispinhole has a conical 530 field of view, perpendicular tothe crystal face. The six peripheral pinholes are spacedevenly at 63.5 mm from the axis; they have a conical 450field of view, converging inwards at 26.50. The seven-pin-hole collimator is used in combination with a wide-field(380 mm effective diameter) Anger camera with an intrin-sic resolution of 4.0 mm. Following intravenous injectionof a suitable radionuclide (i.e., 201T1), this configurationrecords seven projected images of the radioactivity distri-

0278-0062/85/0600-0091$01.00 1985 IEEE

91

Page 12: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

12  

   Figure   6:   The   hemispherical   multiple-­‐pinhole   SPECT   at   University   of   Arizona   (left)   and   its  

reconstruction  result  in  simulation  (right).  

 However,   the  hemispherical  suffers  a  series  of  problems  such  as   the  resolution  variation  and  low  sensitivity.  During  the  last  decade,  most  studies  regarding  MPA  concentrate   on   small   animal   imaging.   Most   small   animal   multiple-­‐pinhole  SPECTs  can  be  classified  as  trans-­‐axial  computer  tomography,  which  contains  a  cylindrical   cavity   and   ring-­‐shaped   detectors.   Several   small   animal   pinhole  SPECTs  are  described  in  the  reference  ([9]-­‐[14]).  The  resolution  can  be  less  than  0,5  mm  and  the  FOV  is  large  enough  for  small  animals,  such  as  rodents,  but  is  too  small  for  bigger  human  organs  like  brain.  If  one  wants  to  achieve  an  equally  high  image   quality   for   human   body   using   the   same   principle,   the   size   of   the  whole  machine  will  be  extremely  huge  and  thus  not  practical.      

 Figure  7:  The  design  of  a  typical  pinhole  SPECT,  U-­‐SPECT-­‐I[10],  contains  75  gold  pinhole  apertures.  15  

pinholes  are  distributed  in  each  ring  (left)  with  a  total  of  nine  rings  (right).  

 Our   design   is   mainly   based   on   the   early   7-­‐pinhole   collimator.   However,   this  7-­‐pinhole   design   has   several   drawbacks:   firstly,   the   geometric   efficiency   of  pinhole   collimators   deteriorates   with   increasing   source-­‐to-­‐aperture   distance;  secondly,   spatial   resolution   varies   with   the   changed   distance   between   source  

the N-element vector f. The corresponding SPEC!' data set isassumed to consist of M discrete picture elements (pixels) withcounts given by the elements of the M-element vector g. Thesystem is modeled by the M x N-element H matrix, whichrepresents the spatially variant response function of the system.The simulation routine used a numerical model of the imaging

system to generate independently the system matrix H and datavector g for each system configuration studied. Both sets of dataincluded effects due to radiometry, photon noise, finite pinholesize, object attenuation and the spatial resolution of the detector. Scatteranddetectorenergyresolutionwere not modeledbythe simulation. The system matrix was produced by simulatinga calibration procedure whereby a small point source wasmoved to each of the voxels within the FOV. The response ofthe imaging system to each of these source positions was recorded as a single column of the H matrix. The FOV used in allof the simulations was a 40 x 30 x 20voxel region in which eachvoxel was a 5 mm cube.The simulated data vector g was synthesized by a weighted

sum of the projection data produced by each of the voxelscontained in a three-dimensional digital phantom, where theweighting factor was proportional to the activity level of eachvoxel. A coarsely-sampled version of the digital brain phantomused during the simulation study is shown in Figure 2A. Thisversion consists of 24,000 voxels, each a 5-mm cube, and isrepresented in the figure as 20 slices of 40 x 30 pixels. In orderto better approximate a realistic, continuous object, the phantom that was actually used in the simulations was more finelysampled, consisting of 68 x 51 x 34 voxels with a voxel spacing

Eq.1

In this formulation, the object is modeled as N discrete volumeelements (voxels) with activity levels given by the elements of

@40:4@$.Iâ€*II•

,@:•*4*l@

*

FIGURE 1. Conceptualsketchof the UAbrainimagerdesigned to perform three-dimensionalSPECT imaging with nosystemmotion.The imager consists of a lead-alloyhemispherical multiple-pinhole coded aperture and 20 modular gammacameras.

SimulationStudy of the Brain ImagerThe imaging characteristics of the three-dimensional brain

imager can be described by a linear-systems model of the following form:

g = Hf.

—@—@.“ --@-.

@ â€@ *@ @â€@ , @@.-

p@&@I,

@ @-@h@―

r@,_ @F,@

$ , ,-:@râ€@

@@w:

i

FIGURE 2. (A)Twenty slices through adigital brain phantomsimilarto the oneusedfor the simulationstudies.Eachsliceconsists of 40 x 30 voxels, each 5 x 5 x 5mm. The base of the brain phantom isshownintheupperleftcornerandconsecutive slices are arrangedIna rasterpatternwith the apex of the brain shown in thelower right corner of the Image. (B) Projection data of the digital brain phantom ascollectedby the 20 modularcamerasIn asimulated imagingsystemsimilar to FigureI . The aperturehemispherehada radiusof15 cm and contained 100 pinholes, each1.4 mm square. The cameras were axranged tangent to a 22-cm radius hemisphere. (C) Reconstruction of the digitalbrain phantomthat was producedusingtheprojection data described in (B). Both theprojection data and the system matrix Included effectsdue to photon noise and attenuation.

I•::@@

@;

Three-DimensionalSPECT,CodedAperturesandBrainImaging•Roweetal. 475

!@

the N-element vector f. The corresponding SPEC!' data set isassumed to consist of M discrete picture elements (pixels) withcounts given by the elements of the M-element vector g. Thesystem is modeled by the M x N-element H matrix, whichrepresents the spatially variant response function of the system.The simulation routine used a numerical model of the imaging

system to generate independently the system matrix H and datavector g for each system configuration studied. Both sets of dataincluded effects due to radiometry, photon noise, finite pinholesize, object attenuation and the spatial resolution of the detector. Scatteranddetectorenergyresolutionwere not modeledbythe simulation. The system matrix was produced by simulatinga calibration procedure whereby a small point source wasmoved to each of the voxels within the FOV. The response ofthe imaging system to each of these source positions was recorded as a single column of the H matrix. The FOV used in allof the simulations was a 40 x 30 x 20voxel region in which eachvoxel was a 5 mm cube.The simulated data vector g was synthesized by a weighted

sum of the projection data produced by each of the voxelscontained in a three-dimensional digital phantom, where theweighting factor was proportional to the activity level of eachvoxel. A coarsely-sampled version of the digital brain phantomused during the simulation study is shown in Figure 2A. Thisversion consists of 24,000 voxels, each a 5-mm cube, and isrepresented in the figure as 20 slices of 40 x 30 pixels. In orderto better approximate a realistic, continuous object, the phantom that was actually used in the simulations was more finelysampled, consisting of 68 x 51 x 34 voxels with a voxel spacing

Eq.1

In this formulation, the object is modeled as N discrete volumeelements (voxels) with activity levels given by the elements of

@40:4@$.Iâ€*II•

,@:•*4*l@

*

FIGURE 1. Conceptualsketchof the UAbrainimagerdesigned to perform three-dimensionalSPECT imaging with nosystemmotion.The imager consists of a lead-alloyhemispherical multiple-pinhole coded aperture and 20 modular gammacameras.

SimulationStudy of the Brain ImagerThe imaging characteristics of the three-dimensional brain

imager can be described by a linear-systems model of the following form:

g = Hf.

—@—@.“ --@-.

@ â€@ *@ @â€@ , @@.-

p@&@I,

@ @-@h@―

r@,_ @F,@

$ , ,-:@râ€@

@@w:

i

FIGURE 2. (A)Twenty slices through adigital brain phantomsimilarto the oneusedfor the simulationstudies.Eachsliceconsists of 40 x 30 voxels, each 5 x 5 x 5mm. The base of the brain phantom isshownintheupperleftcornerandconsecutive slices are arrangedIna rasterpatternwith the apex of the brain shown in thelower right corner of the Image. (B) Projection data of the digital brain phantom ascollectedby the 20 modularcamerasIn asimulated imagingsystemsimilar to FigureI . The aperturehemispherehada radiusof15 cm and contained 100 pinholes, each1.4 mm square. The cameras were axranged tangent to a 22-cm radius hemisphere. (C) Reconstruction of the digitalbrain phantomthat was producedusingtheprojection data described in (B). Both theprojection data and the system matrix Included effectsdue to photon noise and attenuation.

I•::@@

@;

Three-DimensionalSPECT,CodedAperturesandBrainImaging•Roweetal. 475

!@

multi-pinhole SPECT imaging using dedicated detectorsprovides a combination (and not trade-off) of highresolution and high sensitivity, and furthermore, con-siderably enhances possibilities of dynamic imaging.However, one may add that these systems would stilllikely require axial translation schemes since they cover avery limited FoV.

Finite resolution effects in SPECTIn SPECT, the image generated from a point source isdegraded by a number of factors related to collimatorsand detectors in gamma cameras, thus referred to as thecollimator–detector response (CDR). Therefore, for anyparticular SPECT camera, the CDR can be a measure ofthe image resolution; however, this is valid only if nofurther compensation is included. In recent years, a greatdeal of work has gone into developing methods tocompensate for the CDR [33].

The CDR is determined by the following four factors:

(1) Intrinsic response Aside from the effect of collimators,the detector system itself demonstrates an intrinsicuncertainty in position estimation of incident gammarays. This is caused by two factors: (a) the statisticalsignal variation (noise) in signal output of PMTs usedfor position estimation, and (b) change/spread insignal energy deposition in the detector due toscattering (especially for higher energy isotopes, e.g.,111In).

(2) Geometric response Collimator dimensions define theacceptance angle within which incident photons areaccepted. Subsequently, the geometric responsefunction becomes wider with increasing distancefrom the collimator surface, and strongly depends onthe particular design of each collimator.

(3) Septal penetration The CDR is further degraded owingto the penetration of some photons through thecollimator septa. No analytical treatment of thiseffect appears to exist in the literature, and MonteCarlo simulation techniques have been used instead(e.g., Cot et al. [34], Du et al. [35] and Staelens et al.[36]).

(4) Septal scatter This effect is caused by photons thatscatter in the collimator septa and still remain withinthe detection energy window. Similar to septalpenetration, this effect may also be computed usingMonte Carlo simulation techniques.

Analytical methods taking into account the distancedependence of the CDR function (CDRF) have beenproposed in the literature (see Frey and Tsui [37] for areview of both related analytical and statistical methods).However, compared to statistical methods, analyticalmethods suffer from (1) a general lack of ability to treatstatistical noise in the data, and (2) making specificapproximations, for instance with regards to the shapeand/or distance dependence of the CDRF, in order toarrive at analytical solutions.

With the increasing realization of the power of statisticalmethods in nuclear medicine, and particularly with thedevelopment of convenient and fast rotation-basedprojectors in SPECT [38–40], as shown in Fig. 3, iterativereconstruction methods incorporating distance-depen-dent CDRFs are increasing in popularity. The use ofGaussian diffusion methods [41,42] can further increasethe speed of rotation-based projectors.

Incorporation of CDR modelling in reconstruction algo-rithms (especially statistical methods) has been shown toresult in improvements in spatial resolution [41], noise

Fig. 3

Rotate

CDRFs

Rotation-based projector methods incorporating distant-dependentCDRFs make use of the fact that, for parallel-beam geometries, theCDRF is spatially invariant in rows (planes) parallel to the collimatorface. Thus, each row (plane) may be convolved with the appropriatedistance-dependent CDRF.

Fig. 2

The design of U-SPECT-I contains a total of 75 gold pinhole apertures:15 pinholes in each ring (left) with a total of nine rings (right). Notshown here is that pinhole positions in adjacent rings are rotatedtransaxially with respect to each other by 81 in order to increase thevariety of angles at which each voxel is observed. Reprinted withpermission from Beekman and Vastenhouw [31].

196 Nuclear Medicine Communications 2008, Vol 29 No 3

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

Page 13: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

13  

and  pinhole  along  central  axis;  finally,  the  whole  system  resolution  is  limited  by  the   resolution  of  detectors  besides   the  geometry  of  pinhole  aperture.  A  proper  magnification   factor   should   be   chosen   which   means   the   distance   between  collimators  and  scintillators  should  be   large  enough   in  order   to  achieve  decent  resolution  of  projection,  which  in  turn  results   in  an  uncompact  and  less  mobile  system.   In   the   new   design   of   our   project,   we   are   able   to   eliminate   almost   all  drawbacks  in  the  old  7-­‐pinhole  collimator.  

1.3 Scope  of  the  thesis  

The  focus  of  the  thesis  work  is  development  of  a  new  type  of  collimation  method,  namely  Multi-­‐Layer  Pinhole  Collimator  (MLPC)  based  on  Monte  Carlo  Simulation  using   GATE.   Generally,   the   computer   aided   design   cycle   includes  mainly   three  stages:  (1)  Monte  Carlo  simulation,  (2)  Image  reconstruction  and  analysis  and  (3)  Evaluation  and  optimization,  as  shown  in  the  following  figure.      

 Figure  8:  the  design  process  for  developing  MLPC.  

 Monte   Carlo   simulation:   The   design   process   initiates   with   creation   of  collimation   in   GATE   (Chapter   2).   The   geometry   of   collimator   plays   a   key   role  herein,  which  consists  of  many  aspects,  such  as  arrangement,  shapes  and  titled  angles  of  pinholes  (Chapter  3).  A  virtual  experiment  is  established  in  addition  to  the  collimator.  At  the  end  of  simulation,  raw  data  is  obtained.    Image   reconstruction   and   analysis:   the   raw   data   from   GATE   simulation   is  digitized   for   further   analysis,   similar   with   the   process   of   peripheral   circuit  

GATE Simulation

��������������������������

�������������������������

���������������������

������������������

�� ������ ����

����������

�������������������

����������

MATLAB

������������

Page 14: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

14  

readout.   After   digitization,   reconstruction   is   performed.   The   last   two   steps  include  deblurring  and  3D  visualization  of  the  reconstructed  volume.  The  whole  decoding  procedure  is  done  in  Matlab.  (Chapter  4)    Evaluation  and  optimization:  we  analyze  the  performance  of  the  testing  setup  from   several   perspectives,   namely   system   sensitivity,   resolution,   mobility   and  feasibility.  We  try  to  alter  the  geometry  of  collimator  if  any  improvement  needed  after  each  experiment.  (Chapter  5)    In  the  end,  we  use  the  optimized  collimator  to  do  phantom  studies,  such  as  point  response  and  Derenzo  phantom  (Chapter  6).  Conclusion  and  discussion  are  given  in  the  last  chapter  (Chapter  7).      

   

Page 15: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

15  

2 Monte  Carlo  simulation  in  GATE  

When  we  want   to   test   certain   geometry  of   collimator,   it   is   both  expensive   and  time   consuming   to   build   a   real   system.   The   inaccuracy   of   manufacturing   new  collimators  and  measurement  errors  of  readout  components  both  complicate  the  problem  of   trying  a  new  geometry.   In   the  very  early  stage  of  developing  a  new  method  of  collimation,  we  use  computer  simulation.  In  this  case,  we  choose  the  Monte  Carlo  method  in  the  platform  of  GATE[2],  a  simulation  toolkit.  The  central  idea  behind  Monte  Carlo  method   is   repeated  random  sampling.  Several   related  physics  processes   are   introduced  here   and   these  processes   are   simulated  with  Monte  Carlo  method.  The  basic  parameter  settings  regarding  the  physics  are  also  given   in   this   chapter.   Finally   we   show   the   structure   of   our   simulation   files   in  GATE.  

2.1  Geant4  Application  for  Tomographic  Emission  (GATE)  

GATE   is   a   worldwide   used   Monte   Carlo   toolkit   for   performing   Emission  Computer  Tomography  including  SPECT  and  PET.  In  GATE,  the  validated  physics  modeling,   geometry   description   and   3D   rendering   are   well   combined   with  unique  features  in  medical  imaging.  It  is  able  to  synchronize  all  time-­‐dependent  components   during   the   acquisition   process.   GEANT4   interaction   histories   can  mimic   realistic   detector   output   and   thus   it   is   possible   to   get   an   output   file   for  further   utilization.   The   application   of   GATE   has   gained   validations   for   several  PET  and  SPECT  scanners.      The  simulations  involved  in  the  project  need  strong  calculation  power  and  thus  we  used  a  cluster  of  24  dual-­‐core  PCs  to  accelerate  the  process.  The  tasks  were  distributed   between   the   nodes   using   Sun   Grid   Engine   software.[24]   We   use  Scientific  Linux  system  as  the  platform.    

2.2  Physics  process  of  gamma  radiation  

For  gamma  radiation  interactions  in  this  project,  there  are  three  major  types  of  interactions  of  photons  with  surrounding  materials:  (1)  Rayleigh  scattering,  (2)  Compton  scattering  and  (3)  photoelectric  absorption[4].    (1)   Rayleigh   scattering:   there   is   no   energy   loss   and   only   a   slight   change   in  direction  occurs  during  Rayleigh  scattering.  Less  than  5%  of  interactions  belong  to  this  category  and  thus  it  is  infrequent  in  gamma  radiation.    (2)  Compton  scattering:  it  is  also  called  inelastic  scattering,  which  implies  energy  loss   in   the   process.  When   an   outer   shell   electron   absorbs   part   of   the   incident  photon   energy,   the   electron   is   ejected   from   the   atom   while   the   photon   is  

Page 16: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

16  

scattered  with  some  reduction  in  energy.  Compton  scattering  is  predominant  for  gamma  photons.    (3)   Photoelectric   absorption:   a   photon   may   interact   by   transferring   all   of   its  energy  to  an  inner  shell  electron.  This  results  in  an  ejection  from  the  atom.  

2.3  Basic  Setup  for  Physics  in  GATE  

In  GATE,  there  are  two  types  of  packages  to  simulate  electromagnetic  processes,  namely   Standard   Energy   Electromagnetic   Processes   (SEP)   and   Low   Energy  Electromagnetic   Processes   (LEP).   Since   the   gamma   rays   in   our   case   have   the  power  of  140  keV  and  SEP   is  used   to   simulate   interactions  with  energy  higher  than  10  keV,  we  choose  SEP  here.      As   we   have   mentioned   above,   the   interactions   in   our   project   are   Rayleigh  scattering,   Compton   scattering   and   photoelectric   absorption.   Since   Rayleigh  scattering  only  counts  for  less  than  5%,  we  omit  this  interaction  to  speed  up  our  simulation.  Thus  we  have  the  process  list  below:    

/gate/physics/gamma/selectPhotoelectric  standard  /gate/physics/gamma/selectCompton  standard  /gate/physics/gamma/selectRayleigh  inactive  /gate/physics/gamma/selectPhotoelectric  standard  /gate/physics/gamma/selectGammaConversion  inactive  

 Besides,   we   also   set   the   cut   for   the   electrons,   X-­‐ray   and   Delta-­‐ray.   Since   the  dimension   of   our   camera   is   about   0.8m×0.8m×0.8m,   we   set   the   range   of  electron  to  1m.  The  gamma  rays   in   the  case  have  the  energy  of  about  140  keV,  the  energy  cut  of  X-­‐ray  and  Delta-­‐ray  is  typically  set  as  1  GeV.  Therefore,  we  have  the  following  list:    

/gate/physics/setElectronCut  1.  m  /gate/physics/setXRayCut  1.  GeV  /gate/physics/setDeltaRayCut  1.  GeV  

 Technetium  99m  (Tc-­‐99m)  is  the  major  radionuclide  used  in  SPECT.  The  gamma  rays   emitted   from   Tc-­‐99m   have   a   characteristic   energy   of   140,5   keV.   In   the  macro  file  regarding  the  radioactive  source,  we  set  the  particle  type  as  “gamma”.  The  energy  mode  is  “Mono”,  which  only  contains  energy  of  140  keV.  The  source  emits  isotropic  rays  and  the  half-­‐life  time  is  21600  seconds  that  is  the  real  value  for  Tc-­‐99m.  The  energy  window  for  detector  is  20%.  The  crystal  selected  is  NaI.  

Page 17: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

17  

2.4  Structure  of  simulation  files  

Since  our  simulation  contains  too  many  components,  it  is  not  wise  to  run  it  under  the   interactive   mode   although   this   mode   provides   convenient   communication  between  users  and  computer.  One  practical  way  to  conduct  our  experiment  is  to  choose  a  Batch  mode  with  parameterized  Macros  [2].  All  the  files  are  divided  into  three  levels.  We  list  the  structure  of  files  herein.  Level  I  only  contains  a  Main.mac  file  which  acts  like  a  main  function  in  most  programing  languages,  such  as  C  or  C++.  In  Level  II,  all  the  steps  mentioned  are  crystalized  into  specific  files.  These  files  can  also  be  divided  into  “PerInit>mode”  and  “IBLE>mode”.  Level  III  provides  selections  of  different  phantoms  and  4  detailed  layer  geometries  in  the  scanner  considering  its  complexity.          

Page 18: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

18  

 Level   File  Name   Description  of  functions  

I   Main.mac   Manage  all  macro  files  and  parameters  needed  for  a  complete  simulation.  

II  

Initialization  Setup  

Visualization.mac   Visualize   detector   geometry,   source   distribution  and  phantom  shapes  before  running  a  simulation.  

SetWorld.mac   Set   a   suitable   size   for   the   “world”,   which   is   the  boundary  of  the  experiment.  

Scanner.mac  Construct   a   multiple-­‐layer   pinhole   collimator.   It  contains   four   layers   and   for   each   layer  we   build   a  separate  file  due  to  its  complicated  structure.  

Phantom.mac  Create   a   spherical   phantom   with   a   radius   of   100  mm.   The  material   is   set   as   air,   which   neglects   the  attenuation  correction  problem  in  the  project.  

Physics.mac   Set   the   physics   parameters   such   as   the   interaction  types  needed.  

Ran_Gen.mac   Generate  random  seeds  to  trigger  a  simulation.  Running  Setup  

Source.mac  Define   the   distribution,   shape   and   radioactivity   of  the   source.   There   are   four   kinds   of   sources   to  choose  from.  

Digitizer.mac   Simulate   the   behavior   of   the   scanner’s   detectors  and  signal  processing.  

Output.mac   Specify   the  output   format.   In   this  case.  ASCII   file   is  chosen  for  further  analysis.  

Start.mac   Start   the   acquisition   with   a   proper   time   slice  parameter.  

III    

Source  selections  Point_Source.mac   Define  a  point  source.  Point_Array.mac   Define  an  11-­‐point  one-­‐dimensional  array.  Derenzo.mac   Define  a  Derenzo  Phantom.  

Round_Matrix.mac   Define  a   three-­‐dimensional  matrix  with  a  spherical  boundary.  Scanner  layers  

Layer_1.mac   Define  the  geometry  of  Layer  1.  Layer_2.mac   Define  the  geometry  of  Layer  2.  Layer_3.mac   Define  the  geometry  of  Layer  3.  Layer_4.mac   Define  the  geometry  of  Layer  4.  

Table  1:  Structure  of  simulation  files.  

 

Page 19: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

19  

3 Geometry  description  of  MLPC  

To   avoid   resolution   variation   in   large   FOV,   we   use   multiple   layers   of  mask-­‐detector  groups  instead  of  a  single  mask-­‐detector  combination.  The  basic  principle  of  MLPC  is  that  a  specific  volume  in  FOV  can  be  optimally  reconstructed  if   a   proper   combination   of   pinhole   mask   and   detector   is   selected.   Before   the  mechanism  of  MLPC,  a  single  pinhole  mask   involved   in  the  system  is  described  below.  

3.1  Individual  Pinhole  Collimator  

As   we   mentioned   in   Section   1.2,   for   each   pinhole   the   magnification   factor   is  crucial  for  pinhole  collimator.  This  factor  is  determined  by  the  ratio  between  the  detector-­‐collimator   distance   (d1)   and   the   collimator-­‐object   distance   (d2).  Magnification  Factor  (MF)  is  given  by  d1/d2.  When  MF  is  larger  than  1,  the  image  on   the   detector   plane   is   bigger   than   the   original   object.   On   the   contrary,   the  image  is  zoomed  out.  A  large  MF  compensates  the  low  resolution  of  detector  but  also   sacrifice   the   FOV   for   a   given   size   of   detector.   Controlling   MF   value   is  important  in  this  project.  In  our  case,  MF  ranges  from  0,3  to  1,0.      

 Figure  9:  magnification  for  pinhole  collimator.  MF  is  given  by  d1/d2.  

 The   individual   pinhole   mask   has   a   similar   pattern   as   a   classic   7-­‐pinhole  mask[16].   Though   different   layers   in   our   system   vary,   they   share   almost   the  same  pattern.  Generally  speaking,  6  or  7  pinholes  are  distributed  hexagonally  on  a   round   lead   collimator.   Each   pinhole   is   keel-­‐shaped  with   a   tilting   angle  θ.   All  pinholes  have   the  same   focal  point  and   the   length   is  denoted  as   f.  The  opening  angle   α   determines   how   large   the   detector   can   see   through   the   pinhole.   The  thickness  of  collimator  is  4  mm.  Last  but  not  least,  r,  the  radius  of  pinhole,  affects  the   final   resolution   mostly.   We   will   explain   the   optimization   of   designing   the  pinhole  shape  and  collimator  thickness  later  in  Chapter  5.  

D1 D2

NaI Detector Pinhole Collimator

Object

DetectorSingle pinhole

Detector

�� ��

Page 20: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

20  

 Figure  10:  Frontal  and  side  views  of  one  MPA  (left  and  middle)  and  individual  pinhole  geometry  

(right).    

3.2  Multi-­‐Layer  Pinhole  Collimator  

In  MLPC  system,   the   large  FOV   is  divided   into  several  small  subsets  by  specific  layer  of  pinhole  mask  and  detector.  These  sub-­‐FOVs  also  have  smaller  resolution  variation   compared   with   the   original   one.   In   our   system,   the   structure   has   4  layers   making   up   3   detector-­‐mask   groups   with   different   patterns   and   focal  points.    The  four  layers  are  round  and  have  the  same  radius  of  400  mm.  The  whole  MLPC  has  a   length  of  300mm.  This   size  of  our  MLPC  system   is   smaller   than  common  clinical  SPECT  systems.  The  distances  between  layer  1  and  2,  2  and  3,  3  and  4  are  denoted  as  D1,  D2  and  D3  respectively.  They  will  be  optimized  later  in  Chapter  5.  The  detectors  are  distributed  in  layer  2,  3,  4  while  the  pinholes  are  in  layer  1,  2.  If  pinholes  exist  in  a  layer,  they  follow  the  same  pattern  and  tilting-­‐hole  design  as  mentioned  above.    Grouping  is  crucial  for  improving  the  image  quality  within  FOV.  Group  I  consists  of   6   pinholes   in   peripheral   of   the   first   layer   and   6   separate   detectors   in   the  second   layer.  They   focus  on  the  backside  of  object  with  a   focal  point   located   in  the  tail  of  FOV;  Group  II  is  composed  of  6  pinholes  in  the  layer  2  and  6  separate  detectors  in  the  third  layer.  The  photons  passing  through  the  central   large  hole  of  the  first  layer  will  be  partially  captured;  Group  III  is  made  up  of  7  pinholes  in  the  middle  of  the  second  layer  and  the  whole  forth  layer,  which  is  a  pure  detector  without  pinholes.    

θα

tr

d

Page 21: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

21  

 Figure  11:  Two-­‐dimensional  sketch  of  MLPC  system  (upper)  and  cross-­‐sectional  structures  of  different  

layers  (from  middle  to  lower).  

         

Mask

Detector

Group I II III

4 3 2 1

1 2

3 4

30cm

4 3 2 1

Mask

Detector

FOV

80cm 20cm

D3 D2 D1

Page 22: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

22  

 

 Figure  12:  building  up  procedure  in  GATE  simulation.  

 Group   n   r/mm   z/mm   f/mm   θ/deg   α/deg   d/mm  I   6   1   D1   200   48,4   23   225  II   6   1   D2   D1+100   45   23   200  III   7   1   D2+D3   100   36,9   45   75  

Table  2:  important  parameters  of  mask-­‐detector  groups  (n,  the  number  of  pinholes;  r,  radius  of  

pinhole;  z,  the  distance  between  detector  and  pinhole  mask;  f,  the  distance  between  pinhole  mask  

and  focal  point;  θ,  tilting  angle  of  pinhole;  α:  opening  angle  of  pinhole;  d,  the  distance  between  two  

adjacent  pinholes).  

Page 23: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

23  

 We   removed   all   unnecessary   components   including   detector   sections   and   lead  protection  in  the  MLPC  structure  in  order  to  reduce  the  weight  and  increase  the  mobility   considering   its   clinical   application.  Within   a  mask-­‐detector   group   the  pattern  of  detectors  is  always  determined  by  the  distribution  of  pinholes  in  the  front   layer.  This  results   in  a  same  hexagonal  pattern  of  detector  distribution  as  pinholes.   Since   we   create   the   pinhole   masks   with   a   phase   difference   of   π/6  between  layer  1  and  layer  2,  the  arrangement  of  detectors  in  layer  2  and  layer  3  are  thus  effected  which  means  they  also  have  the  same  phase  difference.    

 Figure  13:  Phase  difference  between  Layer  2  (left)  and  Layer  3  (right)  

   

Detector Pinhole Shielding

Page 24: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

24  

4 Image  Reconstruction  and  Analysis  

Data  decoding   is  done  after  we  get  raw  data   from  every  simulation.  Four  steps  are  done  here  as  we  mentioned  in  figure  8.  They  are  digitization,  reconstruction,  deblurring   and   visualization.   A   software   called   PinholeViewer   is   developed   to  integrate  all  the  steps  needed  in  image  reconstruction  and  analysis.    

4.1  Development  of  PinholeViewer  

PinholeViewer  is  designed  to  integrate  the  four  major  steps  and  also  some  other  useful  functions  such  as  calculation  of  sensitivity  during  the  decoding  procedure.  It  is  based  on  Matlab  Graphical  User  Interface  (GUI).  The  GUI  style  facilitates  the  evaluation  of  the  each  MLPC  design.  We  can  get  better  and  faster  feedback  from  the  results  of  each  simulation.  We  list  the  functions  of  PinholeViewer  below.  l Digitization  from  raw  data  towards  matrix    l Switch  among  different  color  maps  (JET,  HOT,  GREY)    l Switch  among  different  detectors    l Display  and  Output    l Sensitivity  calculation    l Reconstruction    

 Figure  14:  GUI  design  of  PinholeViewer,  the  image  shown  here  is  the  result  of  9-­‐pinhole  collimator  in  

JET  scale.  

 

Page 25: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

25  

4.2  Digitization  

The  output   file   generated   after   each   simulation   is   in   the   format   of   ‘dat’,  which  only   contains   4   columns   of   data.   The   first   column   stands   for   energy   of   the  captured  photons.  The  rest  three  mean  x,  y  and  z  coordinate  values  respectively.  We   screened   other   unrelated   information   such   as   time   in   order   to   reduce  redundancy  and  speed  up  simulation.  This  “ASCII”  table   is  not   interpretable  for  reconstruction,   thus   a   digitization   process   must   be   done   in   the   beginning   of  decoding.  We  first  assume  that  the  pixel  size  is  1  mm�1  mm  considering  the  fact  that  the  pinhole  radius  is  1  mm  and  the  PSF  should  be  larger  than  2  mm.  Hence  the   pixel   size   will   not   limit   the   performance   of   our   collimator.   We   count   the  number  of  photons  registered  within  the  pixel  size  and  map  the  whole  FOV.  After  counting   the   photons   in   each   pixel,  we   get   a  matrix  with   the   same   size   as   the  detector   plane.   Different   color   maps   can   be   applied   here.   In   the   following  example  of  a  circle  plane  source  response,  we  used  the  grey  scale.      

 Figure  15:  Registered  photons  in  side  view  (left).  The  digitized  result  in  grey  scale  (right).  

 

4.3  Reconstruction  

The   tomographic   reconstruction   algorithm   we   choose   here   is   called  Non-­‐overlapping   Redundant   Array   (NORA)   decoding   method[21].   As   will   be  showed   in  what   follows,   this   simple,   direct,   and   non-­‐iterative  method,   initially  designed  for  x-­‐ray  imaging  system,  is  very  suitable  for  our  MLPC  system.  During  each  time  of  decoding,  the  algorithm  is  applied  to  only  one  pinhole  mask  and  its  coupled  detectors.  That  is  to  say,  the  same  algorithm  with  different  parameters  will  be  used  for  three  times  since  we  have  3  groups  and  finally  three  objects  will  be  reconstructed  and  merged  in  the  end  assigned  with  weighting  factors.    

After digitization

0 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 0 0 0 1 0

0 2 1 2 2 0 1

3 0 3 4 2 1 0

3 7 28 74 26 7 1

2 27 167 216 177 27 1

1 81 211 226 209 72 6

3 27 182 184 177 17 1

0 1 25 66 23 1 6

2 2 0 1 3 3 0

0 0 2 0 3 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 0

1 1 0 0 1 0 0

The data in the center

x (mm) y (mm)

z (mm)

Whole image

Magnified image

For a larger object

We put a larger object, whose radius is 5mm.

Parameters:

Radioactivity of 0.2 mm diameter circle is 0.00005Ci. 180 degree emission angle (all possible

directions) in front of the pinhole.

Exposure time: 10s

Pinhole size: 2-mm-diameter&1-mm-diameter.

Distance: Detector-50mm-mask-50mm-object

Detector size: 400mm diameter.

Pixel size: 1mm*1mm

Page 26: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

26  

 Figure  16:  a  scheme  for  Reconstruction  

   

 Figure  17:  Projections  from  Group  I  (left),  II  (middle)  and  III  (right).  

 Basic  principles:  The  basic  principles  of  NORA  algorithm  can  be  explained  using  a  simplified  1-­‐D  sketch  with  three  infinitely  small  pinholes  and  two  point  sources  denoted  as  S1  and  S2  in  the  following  figure.  For  each  coupled  array  and  detector,  we   can   apply   correlation   process   to   gain   tomograms.   When   reconstructing   a  specific   plane   z1,   we   simply   correlate   the   magnified   NORA   with   the   detected  image.   The   magnification   factor   of   the   template   is   m1=(z1+f)/z1.   During   the  correlation  we  use  a  single  operator,  which  is  generated  from  two  constraints[21]  and   takes   the   smallest   count,   including  zero  among   the   template  pinholes.  The  same  process  is  applied  to  z2  plane  with  a  different  magnification  parameter  m2.      

NORA Decoding

����������� ������������

����������� ������������

����������� ������������

��������

��������

��������

����������

Optimization and Merging

Page 27: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

27  

 Figure  18:  1-­‐D  sketch  for  explaining  NORA  algorithm.  

   In   real   situations,   each   pinhole   has   a   finite   size   and   one   ideal   point   source  corresponds  to  a  round  area  with  radius  of  r�m.  Therefore  during  correlation,  we  should  zoom  not  only  the  adjacent  distance  between  pinholes  but  also  their  sizes  on   the   template.   Besides,   due   to   photon   statistics   and   scattering,   background  counts  always  exist  on  real  detector  plane.  These  background  counts  will  cause  both  degradation  and  artifacts  in  the  final  image.  To  eliminate  the  effect,  we  will  sample   a   quiet   region   and   subtract   the   average   from   all   pixels   before   NORA  decoding.  Another  subtle  assumption  in  NORA  decoding  is  that  each  point  in  the  source   contributes   equally   through   all   pinholes.   Thus   an   obliquity   factor   of  (z+f)-­‐2cos3θ  should  be  assigned   to  all   the  pixels  on   the  detector,  where  θ   is   the  angle  between  the  normal  to  the  detector  and  the  direction  of  ray.      

4.4  Deblurring  

Since  we   know   the   shape   of   each   pinhole   and   the  magnification   factor   during  reconstruction   at   specific   depth,   The  PSF   can  be   estimated.   The   estimated  PSF  can  be  used  as  a  further  step  to  improve  the  image  quality.  This  process  is  called  deconvolution,  which  is  used  for  reversing  the  effect  of  convolution  on  recorded  data.  If  we  treat  the  detected  image  as  the  result  of  convolution  between  PSF  and  the  object,  namely  the  distribution  of  Tc-­‐99m,  with  the  influence  of  noise,  we  can  present  the  formula  below.  

Obj*PSF+Noise=Img    (convolution  is  denoted  as  *  )  

 Obj   is  denoted  as  object  and  Img   is  the  image  detected.  PSF  is  can  be  estimated  

Plane 2 Plane 1 Collimator Detector

Z1

Z2 f

Plane 1

S2

S1 Reconstruction

Page 28: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

28  

with  the  pinhole  radius  and  magnification  factor,  while  the  noise  can  be  derived  by   measuring   a   quiet   detector   area   where   background   noise   can   be   sampled  properly.      In  our  case,  we  chose  Richardson-­‐Lucy  Deconvolution  method  to  store  each  slice.  This   algorithm   is   an   iterative   procedure   for   restoring   the   image   that   has   been  affected   by   a   known   PSF.   The   basic   idea   is   to   maximize   the   likelihood   of   the  resulting  image  being  an  instance  of  the  original  image  under  Poisson  statistics.    

 Figure  19:  Reconstructed  slice  before  (left)  and  after  deblurring  (right).  

4.5  Visualization  

After   reconstruction  with  NORA  decoding  method,   all   the   slices   are   saved   and  stacked   in   a   3D   matrix.   This   3D   matrix   represents   the   final   result.   We   can  visualize  the  matrix  slice  by  slice  in  2D  form.  Alternatively,  3D  visualization  can  be   used.   In   this   case,   we   choose   to   show   the   surface   information   of   a  reconstructed  volume  by  setting  a  threshold,  which  eliminates  the  effect  of  noise.      

   

Decoding in Matlab

● Deblurring

– Estimate the PSF

– Apply Richardson–Lucy algorithm

Before deblurring After deblurring

Decoding in Matlab

● Deblurring

– Estimate the PSF

– Apply Richardson–Lucy algorithm

Before deblurring After deblurring

Page 29: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

29  

5 System  Optimization    

When  we  have  the  initial  geometry  of  MLPC  system,  it  is  necessary  to  make  slight  changes  to  achieve  better  efficiency  and  accuracy.  This  chapter  is  viewed  as  the  additional   part   for   Chapter   3.   We   optimize   our   camera   by   adjusting   the   four  aspects:   energy   window,   collimator   thickness,   pinhole   shape   and   layer  positioning.  The  optimization  procedure  contains  several  experiments,  which  are  different  from  imaging  experiments  using  an  optimized  MLPC  system  in  Chapter  6.  

5.1  Energy  Window    

After  setting  the  material  for  the  detector,  we  need  to  choose  the  energy  window  since  not  all  the  registered  photons  represent  the  correct   information.  Here  we  compare  the  windows  of  10%  and  20%.  As  we  can  observe  from  the  figure  below,  there   is   no   big   difference   between   them.  Hence   to   increase   the   sensitivity,  we  choose  the  20%  window.  

   Figure  20:  registered  positions  in  three  dimensions  of  the  crystal  and  energy  spectrum  for  energy  

windows  of  10%  and  20%  

 There   is   a   trade-­‐off   between   detector   resolution   and   efficiency  when   deciding  the   thickness   of   the   crystal.   Normally,   the   thickness   in   a   conventional   gamma  camera  is  around  10  mm.  In  our  case,  we  set  this  value  with  12  mm.  

5.2  Collimator  Thickness  

A  pinhole  collimator  is  usually  thinner  than  a  conventional  parallel-­‐hole  one.  The  thickness  of  the  collimator  influences  the  sensitivity  and  its  corresponding  FOV  for   individual  pinholes.  For  example,   if   the  radius  of  pinhole   is  given,  a   thinner  

Page 30: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

30  

collimator  will  allow  more  photons  going  through  but  also  take  a  risk  of  leaking  photons   resulting   in   a   lower   SNR.  To  balance   the   trade-­‐off   between   sensitivity  and  noise  level,  we  should  choose  a  proper  value  for  the  collimator  thickness.      We   conducted   a   simulation,   in  which   1,85�106   photons   are   emitted   towards   a  lead   plate   without   pinholes.   The   detector   records   the   number   of   photons  penetrating  the  plate.  We  tried  a  series  of  thickness  ranging  from  5  mm  to  2  mm  and  compared  the  leakage  rate  with  the  noise  level,  mainly  the  quantum  photon  noise.  Accordingly,  the  noise  is  dominated  by  the  photon  quantum  noise,  which  is   the   square   root   of   the   total   coming   photons.   In   our   case,   the   noise   level   is  7,6�10-­‐2  %.   The   leakage   rate   is   defined   as   the   ratio   between   detected   photons  and   total   emitting   photons.   The   minimum   value   to   control   the   leakage   below  quantum  photon  noise  is  4  mm.    

Thickness  (mm)   Leakage  (counts)   Leakage  rate  (%)  5   4   2,3�10-­‐4  

4   51   2,9�10-­‐3  3   746   4,4�10-­‐2  2   9799   5,8�10-­‐1  

No  mask   1,71�106   92,4  Table  3:  leakage  record  with  changing  thickness.  

5.3 Pinhole  Shape  

The   shape  we   apply   here   is   keel-­‐shaped   instead   of   cylindrical   type.  As  we   can  observe  from  the  figure  below,  two  point  sources  are  emitting  gamma  particles  to   two   detectors   with   different   pinhole   shapes.   For   conventional   cylindrical  shape,  we  can  record  photons  from  S1  but  not  S2.  However,  since  the  keel  shape  has  a  larger  opening  angle,  it  is  able  to  image  both  points  with  similar  PSF.    

                   Figure  21:  cylindrical  pinhole  (left)  and  keel  pinhole  (right)  

Cylindrical shape Keel shape

Detector

S1

S2

Detector

S1

S2

Page 31: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

31  

 Figure  22:  The  performance  with  Cylindrical  (left)  and  Keel  (right)  pinhole  collimators.  

5.4  Layer  Positioning  

At  this  stage,  we  neglect  attenuation  problem  and  set  the  material  of  phantom  as  air.  To  optimize  the  positions  of  layers,  we  put  the  11  equidistant  point  sources  (the  position  is  z=0,  20,  …200  mm)  on  the  central  axis  of  FOV  and  evaluate  the  reconstruction  results.  Each  mask-­‐detector  group  generates  a  unique  responding  profile  to  the  point  sources.  We  initiated  the  layer  position  with  D1=D2=D3=100  mm  and  fixed  both  Layer  1  and  4  while  moving  Layer  2  and  3  simultaneously  towards  Layer  1  until  D1=  60  mm.  The  step  is  5  mm  and  for  each  setup,  all  three  profiles  will  be  recorded.  Intensity  and  resolution  were  evaluated  finally.  

 

Figure  23:  test  to  optimize  the  positions  of  4  layers  

 We  first  reconstruct  all  raw  data  with  different  groups.  All  results  are  presented  in  3D  format  (figure  24).  As  we  observe  below  (figure  25),  curves  with  colors  represent  different  groups.  Each  group  gives  unique  information  regarding  

Experiments & Results

● 2D-Plane5) Pinhole shape: Cylinder Vs Keel(FOV)

Cylinder Keel

x

y

z

Point source

Page 32: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

32  

different  ranges  along  the  11-­‐point  array.  It  is  convincing  to  say  that  D1=75  mm  is  the  optimal  position.  Because  when  you  shorten  the  D1,  the  magnification  factors  of  Group  II  and  III  increase  while  that  of  Group  I  decreases.  Besides,  the  system  sensitivity  will  increase  if  D1  is  shorter.  If  D1  is  large,  Group  II  and  III  provide  almost  same  information  and  the  resolution  in  the  middle  part  is  bad.  In  contrast,  a  small  D1  will  bring  blurring  to  the  Group  I.    

 

 

Figure  24:  3D  reconstruction  results  of  Depth  Resolution  test  from  Group  I  (left),  Group  II  (middle)  and  

Group  III  (right).  

Page 33: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

33  

 

 

D1=60

D1=65

D1=70

D1=75

D1=80

Page 34: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

34  

 

Figure  25:  Depth  Profile  at  D1  (Ranging  from  60  mm  to  100  mm).  

   

       Figure  26:  Optimized  geometry  of  MLPC  visualized  in  GATE:  side  view  (left)  and  frontal  view  (right).  

D1=85

D1=90

D1=95

D1=100

Page 35: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

35  

6 Imaging  with  MLPC  

After  optimization,  we  start  evaluation  of  the  system  performance.  Very  similar  with   what   we   did   in   optimization,   we   simulated   the   camera   responses   to   a  phantom  constituted  of  11  point-­‐sources  in  order  to  test  the  system  resolution.  Both   lateral   and   depth   resolution   results   are   obtained   by   placing   the   11   point  sources   in   two  directions.   The   sensitivity   is   also   estimated   by   putting   a   round  phantom  with  the  same  size  as  the  FOV.  In  the  last  phantom  study,  we  put  two  Derenzo  phantoms  in  different  planes  and  reconstructed  these  two  planes.    

6.1  Reconstruction  resolution  without  scattering    

To  test  the  depth  resolution,  we  designed  a  phantom  made  of  11  point  sources,  20   mm   apart   from   each   other,   positioned   on   the   central   axis   of   the   FOV  perpendicular  to  the  MLPC  system  and  starting  from  layer  1.  Each  point  source  mentioned  has  a  radioactivity  of  1�10-­‐4  Ci  and  exposure  time  of  10  seconds.  The  same  phantom  was  also  positioned  parallel  to  the  MLPC  system  in  the  center  of  the  FOV.  The  phantom  is  shown  below.    

 Figure  27:  the  11-­‐point-­‐source  phantom  is  positioned  in  different  directions  in  order  to  test  both  

depth  and  lateral  resolution  

 We   present   the   results   of   reconstruction   here.   Both   real   positions   of   point  sources  and  reconstruction  profiles  are  shown  in  the  following  figures.  We  also  displayed  the  misplacement  of  the  sources  as  a  function  of  distance  from  Layer  1  in   our   MLPC   system   when   testing   depth   resolution   test.   When   testing   lateral  resolution,  we  obtained  a  function  of  distance  from  the  center  of  FOV.    

x

y

z

Point source

Page 36: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

36  

 

 Figure  28:  Reconstructed  profile  of  11  point  sources,  along  z  through  the  center  of  FOV  (upper,  in  

blue);  Reconstructed  profile  of  11  point  sources,  along  x  through  the  center  of  FOV  (lower,  in  blue);  

The  real  position  of  each  point  source  are  described  as  a  red  circle.  

 

 

 Figure  29:  Depth  resolution  vs  z  (upper)  and  lateral  resolution  vs  x  (lower).  

Page 37: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

37  

As  we  observe   from  above,  we  are  able   to  reconstruct  all   the  points.  For  depth  resolution,  the  minimum  resolution  value  is  3  mm  and  there   is  no  monotonous  trend  with  distance.  The  reason  is  that  the  FOV  is  divided  in  subsets  imaged  by  different   combination   of   pinholes   and   detector   sensitive   areas.   For   the   lateral  resolution,  the  minimum  resolution  is  also  around  3  mm.  The  lateral  resolution  function  is  much  symmetrical  due  to  the  symmetrical  design  of  our  camera.  The  best  lateral  resolution  is  achieved  in  the  central  point  of  FOV.    Besides  the  central  vertical  and  horizontal  line  of  point  sources,  we  also  place  the  11  point   sources  perpendicular   to   the  MLPC  system  but  25  mm  off   the   central  z-­‐axis.  This  setup  is  more  general  case.  We  present  the  results  below.  

 

 Figure  30:  z-­‐axis  profile  and  resolution  function  for  the  point  sources  positioned  20  mm  off  the  central  

axis  of  the  FOV.  

 Here  we   are   still   able   to   reconstruct   the   11   points,   the   general   trend   of   depth  resolution   function   is   almost   the   same  as   the  previous   result   in   figure  29.  One  thing  we  should  point  out  is  that  the  last  two  points,  which  is  furthest  from  the  MLCP,   in   figure   30   have   more   than   8   mm   resolution,   which   is   not   so   good.  However,   those   two   points   is   out   of   FOV.   Therefore,   the   blurring   of   last   two  points  will  not  affect  the  image  quality.  

 

6.2  System  volume  sensitivity  

The  next  step  in  measuring  the  sensitivity  of  our  system.  We  used  a  radioactive  round  ball  to  measure  the  system  sensitivity.  The  most  photons  are  accepted  by  Group  III,  while  Group  I  is  least  sensitive.  Because  the  solid  angle  for  the  third  

Page 38: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

38  

group  is  the  largest  among  all  three  groups.  Another  reason  is  that  the  first  group  is  mainly  responsible  for  the  distal  part  of  object  thus  receives  a  smaller  fraction  of  total  emitting  photons.  

 

Figure  31:  System  volume  sensitivity  test  

   

Group   Counts   Sensitivity/cps�MBq-­‐1   Ratio  to  the  system/%  I   14775   9,1   10,6  II   32976   20,2   23,5  III   92258   56,7   65,9  

Whole  system   140009   86,0   100  Table  4:  System  sensitivity  

6.3 Derenzo  Phantom  study  

Finally,  we  created  a  double  Derenzo  Phantom  with  a  diameter  of  100  mm.  The  two  Derenzo  Phantoms  share  the  same  shape  but  lie  in  different  planes  parallel  to  the  our  MLPC  system.  The  diameters  of  the  rods  are:  2.4  mm,  3.2  mm,  4.8  mm,  6.4  mm,  8  mm,  10  mm.  The  thickness  of  cylinders   is  20  mm.  For  each  cylinder,  the   radioactivity   is   1�10-­‐4   Ci   and   exposure   time   is   10   seconds.   The   Derenzo  planes  were  placed  at  the  depth  of  100  mm  and  50  mm  simultaneously.  

x

y

z

spherical source

Page 39: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

39  

 Figure  32:  Double  Derenzo  Phantom  study  

   

               Figure  33:  Visualization  of  distribution  of  rods  and  double  Derenzo  Phantoms  in  GATE.  The  diameters  

of  rods  in  Derenzo  phantom  are  2.4  mm,  3.2  mm,  4.8  mm,  6.4  mm,  8  mm,  10  mm.  The  first  phantom  

lies  at  50  mm  while  the  second  one  100  mm.  

 The   two   phantoms   are   reconstructed   at   different   levels   and   the   results   are  shown  below.    

 Figure  34:  Results  of  Phantom  reconstruction  at  D1=50mm  (left)  and  100mm  (right)  

   

x

y

z

Derenzo phantom

50 mm50 mm

100 mm

Fig. 3. Derenzo phantoms position (upper). Image of the Derenzo at for50 mm distance (centre). Image of the Derenzo phantom at 100 mm distance(lower).

of the sources is also indicated.

E. Conclusions

Our simulations show that a SPECT system with no movingelements can image a FOV of the size of a human brainwith acceptable resolution and good sensitivity. The resultsare encouraging regarding the possibility of designing a morerealistic system with smaller detectors and realistic read out.

REFERENCES

[1] S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner,R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, V. Breton,P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung,

!

!!"#$%&'$!())&*+,!!

!

!

!!"#$%&'$!())&*+,!!

!

Fig. 4. Point spread function of 11 point sources, 20 mm apart, along z

through the centre of FOV (upper). Point spread function of 11 point sources,20 mm apart, along x through the centre of of FOV (lower) .

!"#$%&#&'()(")(*&)+"',&-&'+&)$.$&-)

!"# /012!$!%&'()(!*+,'!$!)$-+.%!/0!"11!22#! !!34 5&6"%7(8"')(")986(.'+&),7'+(8"'4)

!!3/)!&/%+,+/4!%'+0,!+4!5$,()$5!)(%/5.,+/4!,(%,6!789!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!)+;',!%+-(!/0!,'(!)($5!/4(!+0!</.!/=%()>(!=('+4-!:$2()$6!>+:(!>()%$#!!

!!3/)!&/%+,+/4!%'+0,!+4!-(&,'!)(%/5.,+/4!,(%,6!7?9!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!+44()!%+-(!/0!,'(!)($5!/4(!)(5$,+>(!,/!,'(!:$2()$6!>+:(!>()%$#!!:4 !*.';&6)(")(*&)-&.%)9.(.).'9)-&+"'6(-7+(8"')+"#$.-86"'),8;7-&4)!@+,'!$))/*%A!

!"#$%&#&'()(")(*&)+"',&-&'+&)$.$&-)

!"# /012!$!%&'()(!*+,'!$!)$-+.%!/0!"11!22#! !!34 5&6"%7(8"')(")986(.'+&),7'+(8"'4)

!!3/)!&/%+,+/4!%'+0,!+4!5$,()$5!)(%/5.,+/4!,(%,6!789!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!)+;',!%+-(!/0!,'(!)($5!/4(!+0!</.!/=%()>(!=('+4-!:$2()$6!>+:(!>()%$#!!

!!3/)!&/%+,+/4!%'+0,!+4!-(&,'!)(%/5.,+/4!,(%,6!7?9!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!+44()!%+-(!/0!,'(!)($5!/4(!)(5$,+>(!,/!,'(!:$2()$6!>+:(!>()%$#!!:4 !*.';&6)(")(*&)-&.%)9.(.).'9)-&+"'6(-7+(8"')+"#$.-86"'),8;7-&4)!@+,'!$))/*%A!

Fig. 5. Depth resolution vs z (upper) and lateral resolution vs x (lower).

C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle,D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli,M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron,C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot,C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou,M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song,J.-M. Vieira, D. Visvikis, R. V. de Walle, E. Wieers, and C. Morel,“GATE: a simulation toolkit for PET and SPECT,” Physics in Medicineand Biology, vol. 49, no. 19, p. 4543, 2004. [Online]. Available:http://stacks.iop.org/0031-9155/49/i=19/a=007

[2] L. T. Chang, S. N. Kaplan, B. Macdonald, V. Perez-Mendez, andL. Shiraishi, “A method of tomographic imaging using a multiple pinhole-coded aperture,” Journal of Nuclear Medicine, vol. 15, pp. 1063–1065,1974.

[3] R. K. Rowe, “A system for three-dimensional SPECT without motion,”Ph.D. dissertation, University of Arizona, 1991. [Online]. Available:http://hdl.handle.net/10150/185409

[4] L. I. Yin and S. M. Seltzer, “Tomographic decoding algorithm for anonoverlapping redundant array,” Applied Optics, vol. 32, pp. 3726–3735,1993.

#Figure'8:'Results'of'phantom'test:'cross'section'of'reconstructed'Derenzo'Phantom'

Discussion"and"Conclusion:"

The#depth#response#curve# is#extremely# important# for# the#system.#On#one#hand,# this#curve#does#not#exist#in#traditional#parallel3hole#gamma#cameras.#Fast#3D#reconstruction#is#thus#possible#for#our#system.#On#the#other#hand,#the#previous#73pinhole#camera#actually#has#this#kind#of#curve.#We#can# predict# that# the# shape# is# almost# the# same# as# the# red# curve# provided# by# the# third# group,#because#one#can#treat#the#third#group#as#an#independent#73pinhole#system.#

Acknowledgments:"

References:" "

##

Page 40: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

40  

As  we   see   here,   both   phantoms   are   reconstructed  with   our  MLPC   system.   The  camera  is  able  to  distinguish  phantoms  at  different  distance  from  the  collimator.  This   function   is   impossible   for   a   normal   planar   gamma   camera.   Rods   with  diameter   ranging   from  10  mm   to   3,2  mm   are   resolved   and   2,4  mm   cannot   be  resolved  here.  It  is  convincing  to  say  that  MLPC  system  might  have  a  resolution  of  about  3  mm  at  50  mm  and  100  mm  distance.    

   

Page 41: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

41  

7 Conclusion  and  Future  work  

7.1  Conclusion  

The   thesis  concentrates  on  exploring   the   feasibility  of  developing  MLPC,  a  new  collimator  for  a  small  stationary  SPECT.  The  framework  of  development  contains  three  stages:  (1)  Monte  Carlo  simulation,  (2)  Image  reconstruction  and  analysis  and   (3)   Evaluation   and   optimization.   Optimization   of   collimator   geometry   has  been   done   according   to   the   evaluation   and   several   system   properties,   such   as  system   resolution   and   sensitivity,   have   been   investigated   using   specified  phantoms.    The  MLPC  proposed  here  has  the  following  strength:    1. Both  decent  resolution  and  improved  sensitivity  are  achieved.  An  important  

benefit   of   introducing  pinhole   collimation   is   the   controlling  of   the   trade-­‐off  between   sensitivity   and   resolution.   In   our   setup,   a   sensitivity   of   86,0  cps/MBq  and  an  overall  resolution  of  5  mm  have  been  estimated,  indicating  that  performances  are  expected  to  be  comparable  to  traditional  parallel-­‐hole  collimator.  The  sensitivity  is  improved  due  to  multiple  layers  of  MPA  applied  in   the   system.   The   following   layers   can   detect   more   photons,   which   go  through  previous  layers.    

2. MLPC  is  able  to  reconstruct  3D  volume  instead  of  2D  plane  without  moving  or  rotating  elements.  Another  benefit  of  pinhole  collimation  is  the  additional  projection  data,  which  can  be  used  in  3D  reconstruction.  In  the  MLPC  system,  we  have  19  projections   in   total   for  a  single  object.  These  projections   finally  build   the   3D   volume.   For   parallel-­‐hole   collimator   in   a   single   head   gamma  camera,  for  each  imaging  session,  only  one  projectile  data  is  obtained,  which  is   impossible   to   do   tomography   without   rotation.   In   our   double   Derenzo  Phantom  study,   two  separate  planes  are   reconstructed  at  different  distance  from   MLPC.   This   study   is   hard   to   do   with   a   conventional   parallel-­‐hole  collimator.  

 3. The  small  size  of  MLPC  system  facilitates   its  mobility.  The  dimension  of  our  

MLPC   is   around   800mm�800mm�300m,   which   is   little   bigger   than   normal  gamma   camera   but  much   smaller   than   a   normal   SPECT  machine.   It  will   be  convenient  to  move  the  new  MLPC  camera  as  a  fast  3D  imaging  modality   in  hospitals.  

 4. MLPC   images   a   large   FOV   of   the   order   of   a   human   brain.   The   strategy   of  

dividing   the   FOV   into   sublets   with   multiple   combinations   of   detector   and  collimators  reduces  the  variation  in  both  sensitivity  and  resolution.  The  most  

Page 42: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

42  

obvious   evidence   is   the   trend   of   the   function   of   depth   resolution   with  changing  z.  One  can  find  two  inflection  points  in  that  curve,  which  is  different  from  that  of  using  only  one  MPA.    

 However,   MLPC   has   its   several   drawbacks.   For   example,   the   assumption   of  putting   so  many   layers  of  detectors   together   is   that   the   thickness  of   individual  detector  is  less  20  mm.  The  readout  part  should  also  be  compact.  The  fabrication  is   a   big   problem;  we   did   not   reduce   the   variation   of   lateral   resolution   in   FOV,  although  this  problem  is  not  as  serious  as  the  depth  resolution.  Despite  of  these  shortcomings,   MLPC   still   demonstrates   its   potential   to   be   used   as   a   fast   3D  gamma  imaging  modality.  

7.2  Future  work  

This  new  type  of  tomographic  collimation  method  shows  encouraging  results  in  the  above.  According  to  the  system  drawbacks,  several  works  can  be  done  in  the  future.    More   reconstruction   methods   can   be   applied.   The   NORA   decoding   method  applied  here  is  a  fast  non-­‐iterative  algorithm.  The  result  we  obtained  from  NORA  decoding   can   be   used   as   initial   guess   for   a   more   complex   iterative   algorithm,  such   as   Maximum-­‐Likelihood   Reconstruction,   which   might   provide   more  accurate   results.   Resolution   can   be   improved   and   artifacts   can   be   eliminated.  During  reconstruction,  attenuation  correction  can  be  done.    More  phantom  studies  can  be  done.  We  can  create  more  phantoms  with  different  configurations.   In   this   thesis,   we   neglected   the   attenuation   coefficients   of   the  materials  (the  phantom  is  made  of  air).   In  the  next  step,  we  can  test  a  complex  phantom   filled  with  materials  have   similar  properties   as  human   soft   issue  and  bones.    New  geometries  of  MPA  can  be  designed.  A  curved  collimator  can  be  designed  to  take  place  of  the  planar  type  in  this  project.  A  curved  collimator  might  be  useful  in   sampling   more   projection   with   wider   angles.   Modular   detector-­‐collimator  combination  can  be  tried  to  reduce  the  system  cost.    Realistic  machine  design  and  experiments   can  be   conducted.  We   can   start   real  camera  design   from  building  a  7-­‐pinhole  camera.  The  designs  and  experiments  can   refer   the   simulation   process.   Readout   components   and   the   technology   to  create  titled  pinholes  with  certain  diameters  will  be  very  challenging.    With   its   encouraging   potentials   displayed   above,   the   continuous   research   of  MLPC   system   will   play   an   important   role   in   dynamic   3D   imaging   of   human  organs  in  the  future.  

Page 43: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

43  

8 Reference  

[1] Y.   C.   Chen,   System   calibration   and   image   reconstruction   for   a   new   small-­‐animal   SPECT  system,  PhD  dissertation  from  the  University  of  Arizona,  2006    

[2] S.  Jan,  G.  Santin,  etc.,  GATE:  a  simulation  toolkit  for  PET  and  SPECT,  Physics  in  Medicine  and  Biology,  Vol.  49,  4543-­‐4561,  2004  

[3] M.   Rudin,   Molecular   Imaging:   Basic   Principles   and   Applications   in   Biomedical   Research,  2005  

[4] J.  T.  Bushberg,  J.  A.  Seibert,  The  Essential  Physics  of  Medical  Imaing,  1994  [5] M.  C.  Tosti,  Master  thesis  project  proposal:  brain  imaging  with  a  coded  pinhole  mask,  2010  [6] R.   K.   Rowe,   John   N.   Aarsvold,   etc.,   A   Stationary   Hemispherical   SPECT   Imager   for  

Three-­‐Dimensional   Brain   Imaging,   Journal   of  Nuclear  Medicine,   Vol.   34,  No.   30,   474-­‐480,  1993  

[7] H.  H.  Barrett,  Fresnel  zone  plate  imaging  in  nuclear  medicine,  Journal  of  Nuclear  Medicine,  Vol.  13,  No  6:  382-­‐385,  1972  

[8] R.  K,  Rowe,  A  system  for  three-­‐dimensional  SPECT  without  motion,  PhD  dissertation  from  the  University  of  Arizona,  1991  

[9] A.   Rahmim,   H.   Zaidi,   PET   versus   SPECT:   strengths,   limitations   and   challenges,   Nuclear  Medicine  Communications,  Vol.  29,  193-­‐207,  2008  

[10] F.  J.  Beekman,  B.  Vastenhouw,  Design  and  simulation  of  a  high-­‐resolution  stationary  SPECT  system  for  small  animals,  Physics  in  Medicine  and  Biology.  Vol.  4,  4579-­‐4592,  2004  

[11] F.   J.   Beekman,   F.   V.   Have,   etc.,   U-­‐SPECT-­‐I:   A   Novel   System   for   Submillimeter-­‐Resolution  Tomography  with  Radiolabeled  Molecules  in  Mice,  Journal  of  Nuclear  Medicine,  Vol.  46,  No  7,  1194-­‐1200,  2005  

[12] F.   Have,   B.   Vastenhouw,   etc.,   U-­‐SPECT-­‐II:   An   Ultra-­‐High-­‐Resolution   Device   for   Molecular  Small-­‐Animal  Imaging,  Journal  of  Nuclear  Medicine,  v  50,  No.  4,  599–605,  2008  

[13] N.   U.   Schramm,   G.   Ebel,   etc.,   High-­‐resolution   SPECT   using  multipinhole   collimation,   IEEE  Transactions  on  Nuclear  science,  Vol.  50  No.  3,  315-­‐320,  2003  

[14] T.  Funk,  P.  Despres,  A  Multipinhole  Small  Animal  SPECT  System  with  Submillimeter  Spatial  Resolution,  Medical  Physics.  Vol.  33,  1259-­‐1269,  2006  

[15] L.   T.   Chang,   S.   N.   Kaplan,   etc.,   A   method   of   tomographic   imaging   using   a   multiple  pinhole-­‐coded  aperture,  Journal  of  Nuclear  Medicine,  Vol.  15,  No.  11,  1063-­‐1065,  1974  

[16] R.  A.  Vogel,  D.  Kirch,  etc.,  A  New  Method  of  Multiplanar  Emission  Tomography  using  a  Seven  Pinhole  Collimator  and  an  Anger  Scintillation  Camera,  Journal  of  Nuclear  Medicine,  Vol.  19,  No.  6,  648-­‐654,  1978  

[17] W.   L.   Rogers,   K.   F.   Koral,   etc.,   Coded-­‐Aperture   Imaging   of   the   Heart,   Journal   of   Nuclear  Medicine,  Vol.  21,  No.  4,  371-­‐378,  1979  

[18] M.  T.  LeFree,  R.A.  Vogel,  etc.,  Seven-­‐Pinhole  Tomography:  A  Technical  Description,  Journal  of  Nuclear  Medicine,  Vol.  22,  No.  1,  48-­‐54,  1981  

[19] T.   F.   Budinger,   Physical   attributes   of   Single   Photon   tomography,   Journal   of   Nuclear  Medicine,  Vol  21,  No.  6,  579-­‐592,  1980  

[20] F.  D.  Rollo,  J.  A.  Patton  etc.,  Perspectives  on  Seven  Pinhole  Tomography,  Journal  of  Nuclear  Medicine,  Vol.  21,  No.  9,  888-­‐889,  1980  

Page 44: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

44  

[21] L.  Yin,  S.  M.  Seltzer,  Tomographic  decoding  algorithm  for  a  nonoverlapping  redundant  array,  Applied  optics,  Vol.  32,  No.  20,  3726-­‐3734,  1992  

[22] V.  Giessen,  M.  A.   Viergever,   etc.,   Improved  Tomographic  Reconstruction   in   Seven-­‐Pinhole  Imaging,  IEEE  Transactions  on  Medical  Imaging,  Vol.  MI-­‐4,  No.  2,  91-­‐103,  1985  

[23] P.  Nillius,  M.  Danielsson,  Theoretical  Bounds  and  Optimal  Configurations  for  Multi-­‐Pinhole  SPECT,  Nuclear  Science  Symposium  Conference  Record,  2008  

[24] I.  Valastyan,   Software  Solutions   for  Nuclear   Imaging  Systems   in  Cardiology,   Small  Animal  Research   and   Education,   PhD   dissertation   from   Royal   Institute   of   Technology,   Sweden,  2010  

   

Page 45: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

45  

Appendix  I:  Paper  submitted  

The   paper   ‘Stationary   SPECT   with   Multi-­‐Layer   Multi-­‐Pinhole-­‐Array’   has   been  submitted   to   2012   IEEE   Nuclear   Science   Symposium   and   Medical   Imaging  Conference  (2012  NSS/MIC).    

 

Stationary SPECT with Multi-LayerMultiple-Pinhole-Arrays

Wuwei Ren, Student Member, IEEE, Ivan Valastyan and Massimiliano Colarieti-Tosti, Member, IEEE

Abstract—The potential of Multiple Pinhole Arrays (MPA)collimators for developing a Single Photon Emission ComputerTomography (SPECT) system without rotating or moving ele-ments is investigated. A four layer arrangement is proposedand the system performance is evaluated using the simulationtoolkit GATE [1]. For a camera with a field of view (FOV) ofthe order of a human brain (a sphere of radius 100 mm), asensitivity of 86, 0 cps/MBq and a overall resolution of 5 mmhave been estimated, indicating that performances comparableto traditional parallel-hole-collimator cameras can be achieved.

I. SUMMARY

A. Introduction

A SPECT system that does not need moving elements im-plies less maintenance, drift and production costs (no rotationgantry, less bulky), allows for list-mode data acquisition andopens up for the possibility of camera mobility. Pioneeringwork in using stationary Multiple Pinhole Arrays (MPA) forthree-dimensional imaging started already in the ’70 by L-TChang and his collaborators [2] and has recently undergonea renaissance thanks to the excellent work by the group ofH. H. Barret (see ref. [3] and references therein for a review).In this paper we propose a SPECT camera with a 4-layerdetector/MPA structure and investigate its performance inimaging a FOV of size comparable to that of a human brain.

B. Camera Design

Fig. 1 shows schematically our camera design. The leadingstrategy is a divide-et-impera-like approach: The FOV isdivided in subsets, each imaged by a specific combination ofpinholes and sensitive detector areas. This allows keeping thedepth resolution deterioration with distance inside acceptablelimits. In our simulations the sensitive part of the detectoris made of 12 mm thick NaI crystals with ideal read out.The back-side of the NaI crystals is shielded by 4 mm lead.The MPA-layers are made of 4 mm thick lead and the singlepinholes geometry is shown in Fig. 2.

C. Image reconstruction

Image decoding was performed using the algorithm pro-posed by Yin and Seltzer in Ref. [4].

W. R. I. V. and M. C. T. are with the Department of Medical Engineering,School of Technology and Health, Royal Institute of Technology (KTH),Stockholm, Alfred Nobels Alle 10, SE-141 52 Huddinge, Sweden (telephone:+46-8-7904861, e-mail: [email protected]).

I. V. is also with the Institute of Nuclear Research of the HungarianAcademy of Sciences, Bem ter 18/c, H-4026 Debrecen, Hungary and with(e-mail: [email protected]).

Fig. 1. Two-dimensional sketch of FOV subdivision (a) and cross-sectionalstructures of the different layers (b).

!"#$%&'()

!"#"$%&&'()*+"),"-./#)0$12"--)2%#)3"),.4.,",).#*1)*+$"")-*%/"-5)!678)-.9:&%*.1#();67<6=),"21,.#/)%#,)"4%&:%*.1#>)?:$.#/)-.9:&%*.1#)-*%/"()*+"),"-./#)1@)21&&.9%*1$).-)-./#[email protected]%#*>)A*)21#-.-*-)1@)9%#')%-0"2*-5)*+.2B#"--)1@)9%-B()#:93"$()%$$%#/"9"#*()-+%0"-)%#,)*.*&",)%#/&"-)1@)0.#+1&"->)6@*"$)-"**.#/)*+"-")0%$%9"*"$-()%)C+1&")"D0"$.9"#*)-"*:0)C%-)"-*%3&.-+",>)7+"#);67<6=)%2*-)%-)%)*$%#-&%*1$)@1$)*+")$%C),%*%)1@)-.9:&%*.1#>)7+"),"21,.#/)-*%/").#2&:,"-),./.*.E%*.1#()$"21#-*$:2*.1#()%#,)4.-:%&.E%*.1#>)6@*"$);67<6=),"21,.#/()C")"4%&:%*",)*+")0"$@1$9%#2")1@)*+")*"-*",)-"*:0)@$19)-"4"$%&)0"$-0"2*.4"-()#%9"&')-"#-.*.4.*'()$"-1&:*.1#()913.&.*')%#,)@"%-.3.&.*'>)6#)FFG01.#*)%$$%')%&1#/)*+")2"#*$%&)%D.-).-)*"-*",)*1)10*.9.E")*+")/"19"*$')1@);<HI)-'-*"9)3')2+"2B.#/)*+")$"21#-*$:2*.1#)$"-:&*-)@$19),.@@"$"#*)9%-BG,"*"2*1$)/$1:0->)J.#%&&')C"):-")*+")10*.9.E",);H<I)*1)*"-*).*-)$"-1&:*.1#)%#,),1)?"$"#E1)H+%#*19)9"%-:$"9"#*>)

!"#$%&'(%)&%$*"+'

71)%41.,)$"-1&:*.1#)4%$.%*.1#).#)&%$/")JKL()C"):-")9:&*.0&")&%'"$-)1@)9%-BG,"*"2*1$)/$1:0-).#-*"%,)1@)%)-.#/&")9%-BG,"*"2*1$)2193.#%*.1#>)7+")3%-.2)0$.#2.0&")1@)*+.-).-)*+%*)%)-0"[email protected])41&:9").#)JKL)2%#)3")10*.9%&&')$"21#-*$:2*",).@)%)0$10"$)2193.#%*.1#)1@)0.#+1&")9%-B)%#,),"*"2*1$).-)-"&"2*",>)="@1$")*+")9"2+%#.-9)1@);<HI()%)-.#/&")0.#+1&")9%-B).#41&4",).#)*+")-'-*"9).-),"-2$.3",)3"&1C>)

*+&,-,&./0)1,+$%0")2/'3())7+").#,.4.,:%&)0.#+1&")9%-B)+%-)%)-.9.&%$)0.#+1&")0%**"$#)%-)%)2&%--.2)MG0.#+1&")9%-B)NOP>)7+1:/+),.@@"$"#*)&%'"$-).#)1:$)-'-*"9)4%$'()*+"')-+%$")%&91-*)*+")-%9")0%**"$#>)!"#"$%&&')-0"%B.#/()Q)1$)M)0.#+1&"-)%$"),.-*$.3:*",)+"D%/1#%&&')1#)%)$1:#,)&"%,)21&&.9%*1$>)A#)1:$)2%-"()*+")*+.2B#"--)1@)*+")21&&.9%*1$).-)R)99>)J1$)"%2+)0.#+1&"().*).-)B""&G-+%0",)C.*+)%)*.&*.#/)%#/&")S>)6&&)0.#+1&"-)+%4")*+")-%9")@12%&)01.#*)%#,)*+")&"#/*+).-),"#1*",)%-)@>)7+")10"#.#/)%#/&")T),"*"$9.#"-)+1C)&%$/")*+"),"*"2*1$)2%#)-"")*+$1:/+)*+")0.#+1&">)<%-*)3:*)#1*)&"%-*()$()*+")$%,.:-)1@)0.#+1&"()%@@"2*-)*+")@.#%&)$"-1&:*.1#)91-*&'>)

)!"#$%&'()'*&+,&-%.'/&01%"2-"+3'+4'53'"3/"6"/$57'2"38+7&',509:'

��

tr

d

Fig. 2. Frontal and side view of one MPA (left and centre) and individualpinhole geometry (right).

D. Results

1) Sensitivity: The sensitivity of the camera was estimatedby GATE simulations with a spherical source of radius 100mm and an activity of 100 µCi. The camera sensitivity resultedto be of the order of 86,0 cps/MBq.

2) Imaging performance: In Fig. 3 the reconstructed im-ages from data generated when two Derenzo phantoms are putin the camera at distances 50 mm and 100 mm respectivelyare shown. The capability of the proposed system to showthree-dimensionality is evident.

We also simulated the camera response to a phantomconstituted of 11 point sources, 20 mm apart from each other,positioned on the central axis of the FOV perpendicular tothe MPA-plane and starting at layer 1. The camera responseis shown in Fig. 4 (upper). The same phantom was alsopositioned parallel to the MPA-planes in the centre of theFOV. The camera response is shown in Fig. 4 (lower). Fromthe above two simulations the camera resolution has beenestimated and is shown, as a function of distance from the firstlayer in Fig. 5 (upper) and as a function of distance from thecentre of FOV (lower). In the same figures the misplacement

Page 46: Brain Imaging with a Coded Pinhole Mask - DiVA portal549833/FULLTEXT01.pdf · Brain Imaging with a Coded Pinhole Mask!! WUWEI%REN% Master of Science Thesis in Medical Engineering

   

46  

 

   

Fig. 3. Derenzo phantoms position (upper). Image of the Derenzo at for50 mm distance (centre). Image of the Derenzo phantom at 100 mm distance(lower).

of the sources is also indicated.

E. Conclusions

Our simulations show that a SPECT system with no movingelements can image a FOV of the size of a human brainwith acceptable resolution and good sensitivity. The resultsare encouraging regarding the possibility of designing a morerealistic system with smaller detectors and realistic read out.

REFERENCES

[1] S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner,R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, V. Breton,P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung,

!

!!"#$%&'$!())&*+,!!

!

!

!!"#$%&'$!())&*+,!!

!

Fig. 4. Point spread function of 11 point sources, 20 mm apart, along z

through the centre of FOV (upper). Point spread function of 11 point sources,20 mm apart, along x through the centre of of FOV (lower) .

!"#$%&#&'()(")(*&)+"',&-&'+&)$.$&-)

!"# /012!$!%&'()(!*+,'!$!)$-+.%!/0!"11!22#! !!34 5&6"%7(8"')(")986(.'+&),7'+(8"'4)

!!3/)!&/%+,+/4!%'+0,!+4!5$,()$5!)(%/5.,+/4!,(%,6!789!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!)+;',!%+-(!/0!,'(!)($5!/4(!+0!</.!/=%()>(!=('+4-!:$2()$6!>+:(!>()%$#!!

!!3/)!&/%+,+/4!%'+0,!+4!-(&,'!)(%/5.,+/4!,(%,6!7?9!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!+44()!%+-(!/0!,'(!)($5!/4(!)(5$,+>(!,/!,'(!:$2()$6!>+:(!>()%$#!!:4 !*.';&6)(")(*&)-&.%)9.(.).'9)-&+"'6(-7+(8"')+"#$.-86"'),8;7-&4)!@+,'!$))/*%A!

!"#$%&#&'()(")(*&)+"',&-&'+&)$.$&-)

!"# /012!$!%&'()(!*+,'!$!)$-+.%!/0!"11!22#! !!34 5&6"%7(8"')(")986(.'+&),7'+(8"'4)

!!3/)!&/%+,+/4!%'+0,!+4!5$,()$5!)(%/5.,+/4!,(%,6!789!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!)+;',!%+-(!/0!,'(!)($5!/4(!+0!</.!/=%()>(!=('+4-!:$2()$6!>+:(!>()%$#!!

!!3/)!&/%+,+/4!%'+0,!+4!-(&,'!)(%/5.,+/4!,(%,6!7?9!2($4%!,'(!)(:/4%,).:,(-!&/+4,!+%!/4!,'(!+44()!%+-(!/0!,'(!)($5!/4(!)(5$,+>(!,/!,'(!:$2()$6!>+:(!>()%$#!!:4 !*.';&6)(")(*&)-&.%)9.(.).'9)-&+"'6(-7+(8"')+"#$.-86"'),8;7-&4)!@+,'!$))/*%A!

Fig. 5. Depth resolution vs z (upper) and lateral resolution vs x (lower).

C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle,D. Guez, P.-F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli,M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron,C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot,C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou,M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song,J.-M. Vieira, D. Visvikis, R. V. de Walle, E. Wieers, and C. Morel,“GATE: a simulation toolkit for PET and SPECT,” Physics in Medicineand Biology, vol. 49, no. 19, p. 4543, 2004. [Online]. Available:http://stacks.iop.org/0031-9155/49/i=19/a=007

[2] L. T. Chang, S. N. Kaplan, B. Macdonald, V. Perez-Mendez, andL. Shiraishi, “A method of tomographic imaging using a multiple pinhole-coded aperture,” Journal of Nuclear Medicine, vol. 15, pp. 1063–1065,1974.

[3] R. K. Rowe, “A system for three-dimensional SPECT without motion,”Ph.D. dissertation, University of Arizona, 1991. [Online]. Available:http://hdl.handle.net/10150/185409

[4] L. I. Yin and S. M. Seltzer, “Tomographic decoding algorithm for anonoverlapping redundant array,” Applied Optics, vol. 32, pp. 3726–3735,1993.