c1: chapter 1 – algebraic manipulation dr j frost ([email protected]) last modified: 2...

28
C1: Chapter 1 – Algebraic Manipulation Dr J Frost ([email protected]) Last modified: 2 nd September 2013

Upload: waylon-blasdell

Post on 01-Apr-2015

220 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

C1: Chapter 1 – Algebraic Manipulation

Dr J Frost ([email protected])

Last modified: 2nd September 2013

Page 2: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Starter

Expand the following.

?

?

?

?

?

Page 3: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Recap: Basic Laws of Indices

𝑎3×𝑎8=𝑎11 (𝑎3 )8=𝑎24

71=7 𝑎0=1

2− 3=1

23=18 64

13= 3√64=4

? ?

??

? ?

√𝑎=𝑎12 𝑏4

𝑏−1=𝑏5? ?

Page 4: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

‘Flip Root Power’ method

32− 35 �⃗�𝑙𝑖𝑝 1

3235

�⃗�𝑜𝑜𝑡 123�⃗�𝑜𝑤𝑒𝑟 1

8? ? ?

Page 5: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

More examples

?

?

?

Page 6: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Textbook Fail

Example 7d on page 9 is wrong:

25− 32= 1125

?

Whenever you have fractional powers where the denominator is even, by DEFINITION, you only consider the positive solution.

Page 7: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Exercises

3𝑎6×𝑎7=3𝑎13

2𝑏7×3𝑏−2=6𝑏51

2

3

𝝅

4

2 (𝑐3 )2=2𝑐6

𝑑7

𝑑3=𝑑4

𝑓 4

𝑓 −2= 𝑓 6

5 ( (𝑚2 )3 )4=𝑚24

6 𝑎√𝑎=𝑎32

7𝑎2

√𝑎=𝑎

32

8(𝑏3 )4

(√𝑏)20=𝑏2

9

Simplify:

Evaluate:

90.5=3810.25=33−3=

127

10

11

12 2− 0.5=

1

√213 8

23=4

14 432=8

15 9− 32= 127

16 8− 13=12

17 64− 23= 116

?

?

?

?

?

?

?

?

?

?

?

?

?

??

?

?

?

Page 8: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Skill 2: Power of a product

(2𝑎𝑏 )5=32𝑎5𝑏5

(𝑎3𝑏2𝑐 )2=𝑎6𝑏4𝑐2

?

?

Page 9: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Skill 2b: Power of a fraction

( 38 )2

= 964

( 75 )−1

=57

?

?

( 23 )−2

= 94

?

Page 10: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

‘Flip Root Power’ method

( 278 )−23 �⃗�𝑙𝑖𝑝( 827 )

23 �⃗�𝑜𝑜𝑡 ( 23 )

2

�⃗�𝑜𝑤𝑒𝑟 49

? ? ?

Page 11: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Exercises

(2𝑎𝑏2 )3=8 𝑎3𝑏6

(9𝑎2 )12=3𝑎

1

2

3

4

5

(16 𝑎4𝑏3 )12=4 𝑎2𝑏

32

(27 𝑎9𝑏4 )13=3 𝑎3𝑏

43

Simplify:

?

?

?

?

(8𝑎6𝑏12)23=4𝑎4𝑏8

6 (16 𝑎6𝑏12)32=64 𝑎9𝑏18

?

?

7

( 56 )−1

=65

9 ( 23 )−3

=278

10

( 94 )12=32

11 ( 6427 )−13=34

Evaluate:

( 916 )−32=6427

12

8 ( 23 )3

= 827??

?

?

?

?

Page 12: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Skill 3: Changing Base

Express in the form , stating in terms of .

Solve

Express in the form , stating in terms of .

? ?

?

Page 13: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

FactorisingSKILL 1

Taking out a single factorSKILL 2

SKILL 3Difference of two squares

SKILL 4

(Use ‘commando method’ or ‘splitting the middle term’ method)

𝑥2−7 𝑥−30=(𝑥+3 ) (𝑥−10 )??

?

??

??

?

?

?

?

Page 14: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Exercises

Page 7 – Exercise 1EEvens

Page 9 – Exercise 1F1g,h,i , 2

Page 15: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Recap

?

?

?

?

Page 16: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

?

?

And that’s it!

Laws of Surds

Page 17: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Using these laws, simplify the following:

? ?

? ?

?

Laws of Surds

Page 18: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

?

?

?

Work these out with neighbour. Simplify as much as possible.We’ll feed back in a few minutes.

?

Expansion involving Surds

(2+√8 ) (7−√2 )=10+12√2?

Page 19: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

It’s convention that the number inside the surd is as small as possible, or the expression as simple as possible. This sometimes helps us to further manipulate larger expressions.

? ?

? ?

Simplifying Surds

Page 20: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

This sometimes helps us to further manipulate larger expressions.

? ?

?

Simplifying Surds

Page 21: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Here’s a surd. What could we multiply it by such that it’s no longer an irrational number?

? ?

Rationalising Denominators

Page 22: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

In this fraction, the denominator is irrational. ‘Rationalising the denominator’ means making the denominator a rational number.

What could we multiply this fraction by to both rationalise the denominator, but leave the value of the fraction unchanged?

? ?

There’s two reasons why we might want to do this:1. For aesthetic reasons, it makes more sense to say “half of root 2” rather

than “one root two-th of 1”. It’s nice to divide by something whole!2. It makes it easier for us to add expressions involving surds.

Rationalising Denominators

Page 23: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

? ?

?

Rationalising Denominators

Page 24: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

What is the value of the following. What is significant about the result?

This would suggest we can use the difference of two squares to rationalise certain expressions.

What would we multiply the following by to make it rational?

?

?

Rationalising Denominators

Page 25: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Quickfire DO2S!

??????

Page 26: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

5√6−2

=5√6−52

2√7+√3

=2√5−2√34

Rationalise the denominator. Think what we need to multiply the fraction by, without changing the value of the fraction.

?

?

Rationalising Denominators

Page 27: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

√2√5−√3

=√10+√62

√5−3√2+3

=− √10−3√5−3√2+97

Rationalise the denominator. Think what we need to multiply the fraction by, without changing the value of the fraction.

?

?

Rationalising Denominators

Page 28: C1: Chapter 1 – Algebraic Manipulation Dr J Frost (jfrost@tiffin.kingston.sch.uk) Last modified: 2 nd September 2013

Exercises

Page 12 – Exercise 1HOdds