canard-controlled missile at -supersonic mach numbers · 2013-08-31 · summary an experimental...

87
June 1983 NASA : TP ' 2157 I c.1 I I Canard-Controlled Missile at -Supersonic Mach Numbers A. B. Blair, Jr., Jerry M. Allen, and Gloria Hernandez LOAN COPY: RETURN TO AFWL TECHT-4ICAL LIBRARY K!RTLAND ,433, N.M. 87117 25th Anniversary 1958-1983 https://ntrs.nasa.gov/search.jsp?R=19830019688 2020-04-12T06:53:46+00:00Z

Upload: others

Post on 06-Apr-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

June 1983

NASA : TP ' 2157 I c.1 I I

Canard-Controlled Missile at -Supersonic Mach Numbers

A. B. Blair, Jr., Jerry M. Allen, and Gloria Hernandez

LOAN COPY: RETURN TO AFWL TECHT-4ICAL LIBRARY K!RTLAND ,433, N.M. 87117

25th Anniversary 1958-1983

https://ntrs.nasa.gov/search.jsp?R=19830019688 2020-04-12T06:53:46+00:00Z

Page 2: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

TECH LIBRARY KAFB, NM

NASA Technical Paper 21 57

1983

National Aeronautics and Space Administration

Scientific and Technical Information Branch

Effect of Tail-Fin Span on Stability and Control Characteristics of a Canard-Controlled Missile at Supersonic Mach Numbers

A. B. Blair, Jr., Jerry M. Allen, and Gloria Hernandez Langley Research Center Hampton, Virginia

I

Page 3: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

SUMMARY

A n experimental wind-tunnel invest igat ion has been conducted a t Mach numbers from 1.60 t o 3.50 to ob ta in t he l ong i tud ina l and l a t e ra l -d i r ec t iona l ae rodynamic c h a r a c t e r i s t i c s of a c i r cu la r , c ruc i fo rm, cana rd -con t ro l l ed missile w i t h v a r i a t i o n s i n t a i l - f i n s p a n . I n a d d i t i o n , c o m p a r i s o n s were made wi th the exper imenta l aero- dynamic c h a r a c t e r i s t i c s u s i n g t h r e e missile aeropredict ion programs: MISSILEl, MISSILE2, and NSWCDM. The r e s u l t s o f t h e i n v e s t i g a t i o n i n d i c a t e t h a t f o r t h e test Mach number range, canard roll c o n t r o l a t low a n g l e s o f a t t a c k is f e a s i b l e on t a i l - f in con f igu ra t ions w i th t a i l - t o -cana rd span ratios of less than or equa l t o 0.75. The canards are e f f e c t i v e p i t c h and yaw con t ro l dev ices on each ta i l - f in span config- u r a t i o n t e s t e d . Programs MISSILE1 and MISSILE2 provide very good p r e d i c t i o n s of long i tud ina l ae rodynamic cha rac t e r i s t i c s and f a i r p red ic t ions o f l a t e ra l -d i r ec t iona l aerodynamic charac te r i s t ics a t low ang les o f a t t ack , w i th MISSILE2 p r e d i c t i o n s gen- e r a l l y i n b e t t e r a g r e e m e n t w i t h tes t da t a . Program NSWCDM provides good l o n g i t u d i n a l and la te ra l -d i rec t iona l aerodynamic p red ic t ions tha t improve wi th increases in t a i l - f i n span. Estimates of roll ing-moment coefficient are i n good agreement with t e s t d a t a a t l o w ang le s of a t t a c k . Programs MISSILEl, MISSILE2, and NSWCDM a p p e a r t o be acceptab le engineer ing des ign tools f o r a e r o p r e d i c t i o n a n d , i n g e n e r a l , make rea- sonab le e s t ima tes of t h e t es t da t a ; however, these programs need t o be modified i n o r d e r t o bet ter p r e d i c t t h e l a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s a t h ighe r ang le s of a t tack (grea te r than 12O) .

INTRODUCTION

It is w e l l documented t h a t missile conf igu ra t ions u t i l i z ing fo rward -con t ro l surfaces experience the problem of induced rol l ing moments a t s u p e r s o n i c Mach num- bers. (See r e f s . 1 t o 3. ) For these forward-control led configurat ions, the need i s e i t h e r t o r e d u c e o r e l i m i n a t e t h e i n d u c e d r o l l i n g moments o r t o p r o v i d e a n e f f i c i e n t sys t em fo r t he i r con t ro l .

A p r e l i m i n a r y a n a l y t i c a l s t u d y ( r e f . 4 ) f o r a class of canard-controlled-missile conf igu ra t ions s imi l a r t o t he S idewinde r missile has indicated that aerodynamic improvements can be made with the implementation of a canard ro l l -cont ro l sys tem. Such a system requires a r e d u c t i o n i n t a i l - f i n s p a n a n d e l i m i n a t e s t h e need f o r r o l l - erons which are cur ren t ly be ing used to p roduce airframe damping i n ro l l . In an e f f o r t to complement and v e r i f y t h e p r e d i c t i o n s f r o m t h i s s t u d y , a coopera t ive NASA/ Motorola missile research program w a s e s t a b l i s h e d .

This jo in t research program cons is ted of a parametr ic supersonic wind-tunnel i nves t iga t ion o f a canard-cont ro l led missile w i t h s y s t e m a t i c v a r i a t i o n s i n t a i l - f i n span for the purpose o f es tab l i sh ing a comprehensive experimental aerodynamic data base. The p r e s e n t p a p e r p r e s e n t s t h e r e s u l t s of t h a t i n v e s t i g a t i o n . A summary of t he s ign i f i can t f i nd ings , a long w i th l imi t ed compar i sons of experimental and ana- l y t i c a l aerodynamic charac te r i s t ics , has been repor ted in re fe rences 5 t o 7. The p resen t s tudy i nc ludes t a i l - f in span op t imiza t ions for s t a b i l i t y , l o n g i t u d i n a l a n d d i r ec t iona l con t ro l , i nduced ro l l and r o l l con t ro l , and t he e f f ec t s o f missile roll o r i e n t a t i o n . I n a d d i t i o n , t h r e e missile aerodynamic predict ion programs are eval- ua ted by comparison with the test da ta . The prediction programs are d e s c r i b e d i n d e t a i l i n r e f e r e n c e s 8 to 12 and include MISSILEl, MISSILE2, and NSWCDM.

Page 4: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

The t e s t s were conducted i n the Langley Unitary Plan Wind Tunnel a t Mach numbers from 1.60 t o 3.50 f o r a Reynolds number of 6.6 X 10 per meter ( 2 . 0 x l o 6 p e r f o o t ) . The nominal angle-of-attack range was from - 4 O t o 18' a t model r o l l a n g l e s of Oo , 26.6O, and 45'.

6

SYMBOLS

The aerodynamic coef f ic ien t da ta a re re fe r red to the body-axis system which i s f i x e d i n t he ve r t i ca l -ho r i zon ta l p l anes r ega rd le s s of the model r o l l a n g l e . The moment re ference cen ter i s l o c a t e d a f t of the model nose a t 45.0 percent of the body length .

Values are given i n both S I and U.S. Customary U n i t s . The measurements and c a l c u l a t i o n s were made i n U.S. Customary Uni t s . Fac to r s r e l a t ing t he two systems are given

A

AR

cA

'A,c

C~~

C~~

C I6

'm

% CN

C~~

'n

6

d

2

i n r e f e rence 13.

reference area (based on body diameter) I 14.081313 c m 2 (2.182608 i n 2 )

a s p e c t r a t i o of aerodynamic surface based on t o t a l exposed planform area

r a t i o of exposed t a i l span to exposed canard span (body excluded)

ax ia l - force coef f ic ien t , Axia l force /qA

chamber a x i a l - f o r c e c o e f f i c i e n t , Chamber axial force/qA

c o e f f i c i e n t of canard root bending moment, Canard root bending moment/qAd ( see f i g . 18 )

c o e f f i c i e n t of canard hinge moment, Canard hinge moment/qAd ( s e e f i g . 1 8 )

rol l ing-moment coeff ic ient , Rol l ing moment/qAd

r o l l - c o n t r o l e f f e c t i v e n e s s of two c a n a r d s a t a = Oo, Acl /Asro l l , per degree of d e f l e c t i o n

pitching-moment c o e f f i c i e n t , P i t c h i n g moment/qAd

p i t c h - c o n t r o l e f f e c t i v e n e s s of two c a n a r d s a t a = Oo, ACm/A6pitch' per degree of d e f l e c t i o n

normal-force coeff ic ient , Normal force/qA

c o e f f i c i e n t of canard normal force, Canard normal force/qA (see f ig. 1 8 )

yawing-moment c o e f f i c i e n t , Yawing moment/qAd

yaw-control effect iveness of two canards a t a = Oo, ACn/hGyawI per degree of d e f l e c t i o n

s ide- force coef f ic ien t , S ide force /qA

re fe rence body diameter, 4.234 cm (1.667 i n . )

Page 5: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

1

M

q

x /I ac

a

'i

'pitch

' r o l l

'yaw

+

model length, 102.319 c m (40.283 in.)

f ree-s trearn Mach number

f ree-s t ream dynamic p r e s s u r e

aerodynamic-center location as f r a c t i o n of model length, measured from nose apex

angle of a t t ack , deg

a n g u l a r c o n t r o l d e f l e c t i o n of canard panel where subscr ipt i denotes panel 1 , 2, 3, o r 4 shown i n ske tch A

pi tch-cont ro l def lec t ion of canards 2 and 4 ( ske tch A ) , p o s i t i v e l e a d i n g edge up, (6, + 64)/2, deg

r o l l - c o n t r o l d e f l e c t i o n ( a i l e r o n ) ; t o t a l d i f f e r e n t i a l a n g l e of canards 2 and 4 ( s k e t c h A ) , pos i t i ve a i l e ron p rov id ing c lockwise model r o t a t i o n when viewed from rear; h4 - 6,, deg

yaw-control deflection of canards I and 3 ( s k e t c h A ) , p o s i t i v e f o r l e a d i n g edge r i gh t when viewed from t h e rear, ( 6 , + h 3 ) / 2 , deg

model roll a n g l e ; p o s i t i v e f o r c l o c k w i s e r o l l when viewed from rear ( f o r = Oo, canards and t a i l f i n s are i n v e r t i c a l and h o r i z o n t a l p l anes ) , deg

Canard panels

1

3

4 = 0" Rear view

Sketch A

3

Page 6: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

Subscr ip ts :

AB af terbody viscous crossf l o w

0 eva lua ted a t a = Oo

vs E s ide-edge vor tex

APPARATUS AND TESTS

Wind Tunnel

Tes t s were conducted i n b o t h t h e low and high Mach number test s e c t i o n s of the Langley Unitary Plan Wind Tunnel, which is a var iab le-pressure cont inuous- f low tun- ne l . The t e s t s e c t i o n s are approximately 2.13 m ( 7 f t ) long and 1.22 m ( 4 f t ) square. The nozz les l ead ing t o t h e t es t s e c t i o n s c o n s i s t o f asymmetric s l i d i n g b locks which permi t cont inuous var ia t ions in Mach number from about 1.5 t o 2.9 i n the l o w Mach number t es t section and from about 2.3 t o 4.7 i n t h e h i g h Mach number t es t sec t ion . (See r e f . 14 fo r more comple t e de t a i l s abou t t he t unne l . )

Mode 1

Dimens iona l de ta i l s of t h e model are shown i n f i g u r e 1 , and photographs of the model a r e shown i n f i g u r e 2. The model had a pointed tangent ogive nose of f i n e n e s s r a t i o 2.25, a smooth c i r cu la r h igh - f ineness - r a t io body with no launch straps or hanger lugs, and cruciform canards and a f t t a i l f i n s . The model conf igu ra t ions w e r e b a s i c a l l y v a r i a t i o n s of the Sidewinder missile tha t inc luded reduced-aspec t - ra t io canards and four sets of interchangeable t a i l f i n s w i t h t h e same roo t cho rds . The t a i l f ins approximated greater , equal , and reduced-span configurat ions of the S idewinde r t a i l - f in p l an fo rms w i thou t ro l l e rons ( t ab le I ) . Canard d e f l e c t i o n s included pi tch- , roll- , and yaw-control se t t ings.

Tes ts were performed a t the fo l lowing t unne l cond i t ions :

r

Mach number

1 .60 1.75 2 .oo 2.50 3 .OO 3.50

~ "

Stagnat ion S tagnat ion temperature p r e s s u r e

( a b s o l u t e )

Per meter

325 125 51 .7

2083 99.7 1600 76.6 1253 60 .O 1133 54.3 1079 6.6 x lo6

129.4 2703

P e r f o o t ~ "" "

2.0 x 106

4

Page 7: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

The d e w point temperature measured a t s t a g n a t i o n p r e s s u r e w a s maintained below 239 K (-30OF) t o a s s u r e n e g l i g i b l e c o n d e n s a t i o n e f f e c t s . A l l tests were performed with boundary-layer t ransi t ion strips 1.02 c m (0.40 in.) a f t of the leading edges which were measured streamwise on both s ides of the canards and. t a i l f i n s and l oca t ed 3.05 c m (1.20 in.) a f t of the body nose. The t r a n s i t i o n s t r i p s were approximately 0.157 c m (0.062 in.) wide and were composed of No . 50 s a n d g r a i n s s p r i n k l e d i n a c r y l i c p las t ic f o r t h e tests a t M = 1.60 t o M = 2.00. For the tests a t h ighe r Mach numbers, t r a n s i t i o n s t r i p s were composed o f i nd iv idua l g ra ins o f N o . 40 sand g r a i n s w i t h a nominal height of 0.046 c m (0.018 in.) and were spaced about 0.183 c m (0.072 in.) between centers measured perpendicular t o t h e airstream ( r e f . 1 5 ) .

Measurements and Corrections

Aerodynamic forces and moments on t h e model were measured by means of a s i x - component e lec t r ica l s t ra in-gage balance which was housed within the model. The balance w a s a t t ached t o a s t i n g which w a s , i n t u r n , r i g i d l y f a s t e n e d t o t h e model support system. Balance-chamber pressure w a s measured by means of a p re s su re o r i f ice l o c a t e d i n t h e b a l a n c e chamber. The model base was f e a t h e r e d t o t h e o u t e r d i a m e t e r so t h a t no base area e x i s t e d . I n a d d i t i o n , l i m i t e d tests were made i n which canard panel 2 w a s inst rumented to measure canard normal force, h inge moment, and root bend- i n g moment. (See ske tch A i n Symbols.)

Model ang le o f a t t ack has been co r rec t ed fo r de f l ec t ion of t he ba l ance and s t i ng due t o aerodynamic loads and tunnel-flow misalignment. The a x i a l - f o r c e c o e f f i c i e n t d a t a have been adjusted t o cor respond to f ree-s t ream s t a t i c p res su re ac t ing ove r t he model base. Typical measured values of chamber axial-force coefficient are presented i n f i g u r e 3.

PRESENTATION OF RESULTS

The r e s u l t s of t h i s i n v e s t i g a t i o n are shown i n t h e f o l l o w i n g f i g u r e s :

Figure Experimental data:

Longi tudina l aerodynamic charac te r i s t ics : E f f e c t o f t a i l - f i n s p a n a t

Q = oo ................................................................. 4 Q = 45O ................................................................ 5

E f f e c t o f t a i l - f i n s p a n on p i t c h c o n t r o l a t 4 = Oo ...................... 6 Summary of e a c h t a i l - f i n c o n f i g u r a t i o n ................................... 7

E f f e c t of t a i l - f i n s p a n on r o l l c o n t r o l a t La te ra l -d i r ec t iona l ae rodynamic cha rac t e r i s t i c s :

Q = oo ................................................................. 8

Q = 45O ................................................................ 10 @ = 26.57O ............................................................. 9

E f f e c t o f t a i l - f i n s p a n on yaw c o n t r o l a t Q = Oo ........................ 11 E f f e c t o f t a i l - f i n s p a n f o r a n asymmetric r o l l o r i e n t a t i o n a t

Summary of c a n a r d c o n t r o l e f f e c t i v e n e s s of e a c h t a i l - f i n Q = 26.57O ............................................................. 12

conf igu ra t ion a t 4 = Oo ............................................... 1 3

5

Page 8: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

Figure Comparison of experimental data and theory:

Long i tud ina l ae rodynamic cha rac t e r i s t i c s o f each t a i l - f in conf igu ra t ion a t 0 = 0" ................................................................... 4 = 45O .................................................................. 4 = oo ................................................................... conf igu ra t ion a t 4 = 0" ................................................. Canard alone i n p r e s e n c e of body (one panel) ............................. Tai l a lone i n p re sence o f body ( t w o t a i l - f i n p a n e l s ) ..................... Complete model with bt/bc = 0.47 and 1.25 ............................... c o n f i g u r a t i o n f o r

Yaw c o n t r o l a t 4 = Oo ................................................... Asymmetric r o l l o r i e n t a t i o n a t 0 = 26.57" ............................... c o n f i g u r a t i o n f o r R o l l c o n t r o l ............................................................. Yaw c o n t r o l .............................................................. a t I$ = O o ; 6 = -5" ..................................................

P i t c h - c o n t r o l c h a r a c t e r i s t i c s of e a c h t a i l - f i n c o n f i g u r a t i o n a t

Summary o f cana rd p i t ch -con t ro l e f f ec t iveness o f each t a i l - f in

Longi tudina l aerodynamic charac te r i s t ics a t 4 = 0" f o r

L a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s o f e a c h t a i l - f i n

R o l l c o n t r o l a t 0 = 0" .................................................. Summary o f cana rd con t ro l e f f ec t iveness of e a c h t a i l - f i n

Schl ieren photographs bt/bc = 0.47, 0.75, and 1.07

Yaw

14 15

1 6

17

1 8 19 20

21 22 23

24 25

26

EXPERIMENTAL RESULTS

Longi tudina l Aerodynamic C h a r a c t e r i s t i c s

The e f f e c t s o f t a i l - f i n s p a n on the long i tud ina l ae rodynamic cha rac t e r i s t i c s of the model a t r o l l angles o f 0" and 45" are p r e s e n t e d i n f i g u r e s 4 and 5 , respec- t i v e l y . A s would be expected, t h e r e is an i nc rease i n no rma l - fo rce -coe f f i c i en t s lope

( ), s t a b i l i t y l e v e l (-C ), and ax ia l - fo rce coe f f i c i en t w i t h a n i n c r e a s e i n t a i l -

f i n span. When lower s t a b i l i t y l e v e l s are r equ i r ed t o a t t a i n more maneuverabi l i ty (e .g . , Relaxed Stat ic Stabi l i ty Concept) , the reduced ta i l -span configurat ions may be i d e a l c a n d i d a t e s .

% Q ma

p i t c h - c o n t r o l c h a r a c t e r i s t i c s f o r e a c h t a i l - f i n c o n f i g u r a t i o n are p r e s e n t e d i n f igure 6 . A comparison of f igure 6 w i t h f i g u r e 4 = 0 " ) i n d i c a t e s t h a t t h e canards are e f f e c t i v e i n p r o d u c i n g p i t c h i n g moments accompanied by small r educ t ions i n normal - force coef f ic ien t ( a = 0 " ) w i t h i n c r e a s e s i n t a i l - f i n s p a n . These e f f e c t s a r e d u e t o t h e c a n a r d downwash f i e l d which induces greater t a i l loads as t a i l span increases , thus reducing the t o t a l model normal-force coefficient. The n e t e f f e c t i s a f a v o r a b l e c a n a r d - t a i l i n t e r f e r e n c e that produces a pitching-moment couple on the model i n t h e d i r e c t i o n of the d e s i r e d maneuver.

The summary o f l ong i tud ina l ae rodynamic cha rac t e r i s t i c s o f each t a i l - f in con f ig - u r a t i o n t h a t i n c l u d e s a c r o s s p lo t of bt/bc i s p r e s e n t e d i n f i g u r e 7. The d a t a f o r M = 1.75 are taken from unpublished NASA d a t a . I n g e n e r a l , w i t h i n c r e a s e s i n t a i l span, there are i n c r e a s e s i n

Cm6 and 'A,o and a rearward movement of

6

Page 9: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

aerodynamic-center locat ions. AS would be expected for the complete model, the t a i l configurations of larger span (e.g. , bt/bc _> 1.07) have less t rave l in aerodynamic center th roughout the tes t Mach number range.

La te ra l -Di rec t iona l Aerodynamic C h a r a c t e r i s t i c s

The e f f e c t s of t a i l - f i n s p a n on t h e c a n a r d r o l l - c o n t r o l c h a r a c t e r i s t i c s of t he model a t 4 = Oo, 26.57O, and 45O are p r e s e n t e d i n f i g u r e s 8 t o I O . Limited t a i l - o f f d a t a are a l s o shown. The canards are e f f e c t i v e r o l l - c o n t r o l d e v i c e s t h r o u g h o u t t he test Mach number and model angle-of-at tack and rol l -angle ranges for the reduced- t a i l - s p a n c o n f i g u r a t i o n s (e .g. , bt/bc 0.75) . In gene ra l , t he re i s a r educ t ion of c a n a r d r o l l c o n t r o l w i t h i n c r e a s e s i n t a i l span a t low ang les of a t t a c k . The complex f low f ie lds p roduced by the de f l ec t ed cana rd pane l s pas s ve ry c lose t o t he t a i l f i n s and induce ro l l ing moments of o p p o s i t e d i r e c t i o n t o t h o s e c r e a t e d by the canards . For ta i l -span configurat ions with bt /bc > 1.07, t h i s i n d u c e d r o l l is l a r g e enough t o c o u n t e r a c t t h e c a n a r d r o l l , i n e f f e c t p r o d u c i n g a t o t a l model r o l l i n g moment which i s n e g l i g i b l e , o r , i n some cases o p p o s i t e t o t h a t d e s i r e d ( r o l l r e v e r s a l ) . However, f o r I$ = Oo, i n c r e a s e s i n r o l l c o n t r o l o c c u r w i t h i n c r e a s e s i n t a i l - f i n s p a n a t t he h ighe r ang le s of a t t a c k .

The e f f e c t s of t a i l - f i n s p a n on yaw-con t ro l cha rac t e r i s t i c s of t he model a t 4 = Oo are p r e s e n t e d i n f i g u r e 1 1 . In genera l , fo r b t /bc 5 1 .07, i n c r e a s e s i n t a i l span a t low ang les o f a t t ack p roduce i nc reases i n cana rd yaw c o n t r o l and induced ro l l ing-moment coef f ic ien ts . For values of bt/bc grea te r than 1 .07 , the da ta ind i - cate t h a t a r e d u c t i o n i n yaw con t ro l occu r s .

The e f f e c t s of t a i l - f i n s p a n on l a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s of the model a t 41 = 26.57O f o r z e r o c o n t r o l s e t t i n g s are shown i n f i g u r e 1 2 . The magnitude of induced rolling-moment coefficient, and yawing-moment c o e f f i c i e n t due t o model r o l l asymmetry i n c r e a s e s a t the low Mach numbers w i t h i n c r e a s e s i n t a i l - f i n span.

A summary of c a n a r d c o n t r o l e f f e c t i v e n e s s of each t a i l - f i n c o n f i g u r a t i o n a t a = Oo is p resen ted i n f i gu re 13 . In gene ra l , t he re is a n i n c r e a s e i n C and

m6

Cn6 w i t h i n c r e a s e s i n t a i l s p a n ( b t / b c 5 1.07) t ha t r ep resen t s f avorab le cana rd

downwash and sidewash t a i l loadings on t h e l a r g e r t a i l - f i n s p a n c o n f i g u r a t i o n s . For a c o n s t a n t t a i l - s p a n c o n f i g u r a t i o n t h e r e is the expec ted dec rease i n e f f ec t iveness w i t h i n c r e a s e s i n Mach number. For t h e test Mach number r ange , t he da t a i nd ica t e t h a t c a n a r d r o l l c o n t r o l a t low ang les of a t t a c k is f e a s i b l e on reduced ta i l - f in span conf igura t ions (b t /bc < - 0.75).

COMPARISON OF EXPERIMENTAL DATA AND THEORY

Theore t i ca l Methods

In r e f e rences 5 t o 7, two d i f f e r e n t classes of missile aeroprediction programs f o r c i r c u l a r b o d i e s were exe rc i sed by comparisons with tes t d a t a . I n a n e f f o r t t o expand and complement these data comparisons for missile c o n f i g u r a t i o n s i n t h e Sidewinder class, t es t data and theory comparisons are p r e s e n t e d i n t h i s paper. The

7

Page 10: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

aeropredict ion programs appl ied were developed by Nielsen Engineering and Research, Inc. (NEAR) under government contract and are d e s c r i b e d i n d e t a i l i n r e f e r e n c e s 8 t o 12.

The f i r s t class of programs is essent ia l ly p re l iminary des ign programs that ob ta in fo rces and moments to p rov ide r ap id eng inee r ing p red ic t ions . (See r e f s . 8 and 9.) These programs use data bases augmented by analysis and include MISSILE1 and MISSILE2 a p p l i c a b l e t o missile conf igura t ions wi th axisymmetric bodies. Program MISSILE2 is a modified version of MISSILE1 with the major change being the incorpora- t i o n of a vortex-cloud model f o r t h e p r e d i c t i o n of a f t e r b o d y v o r t i c i t y .

The second class of aeropredict ion programs consis ts of the DEMON series which is a more sophis t ica ted research too l than programs MISSILE1 and MISSILE2. The DEMON programs u s e supersonic pane l methods and give detai led pressure loadings a long with fo rces and moments ( r e f . 1 0 ) . I n c l u d e d i n t h e DEMON series i s a s i m p l i f i e d v e r s i o n NSWCDM (derived from DEMON2) designed as a semiproduction missile ae ropred ic t ion program s p e c i a l i z e d t o s u p e r s o n i c missile configurat ions with axisymmetr ic bodies . However, un l ike DEMON2 which could only provide isolated component loads, program NSWCDM is automated to give overal l forces and moments f o r t h e e n t i r e missile conf ig- u ra t ion . For these reasons, program NSWCDM is u s e d i n t h i s paper.

Both classes of aeropredict ion programs provide estimates of s t a t i c l o n g i t u d i n a l and l a t e ra l -d i r ec t iona l ae rodynamic cha rac t e r i s t i c s a t h igh angles of a t tack and a r b i t r a r y r o l l a n g l e s ; t h e y a l s o t r a c k t h e v o r t i c e s from canard or wing s e c t i o n s t o t h e t a i l s ec t ions u s ing t he same vor tex method ( r e f s . 1 1 and 1 2 ) . A summary of t he m a j o r c h a r a c t e r i s t i c s of these programs (NSWCDM, MISSILEI, and MISSILE2) i s p resen ted in the appendix . Regions of Mach number a n d a s p e c t r a t i o of cana rd and t a i l - f in v a l i d i t y f o r t h e c u r r e n t MISSILE1 and MISSILE2 da ta bases are p r e s e n t e d i n f i g u r e A1 i n t he append ix .

Longi tudinal Aerodynamic C h a r a c t e r i s t i c s

Comparisons of expe r imen ta l and ana ly t i ca l l ong i tud ina l ae rodynamic cha rac t e r i s - t ics o f each t a i l - f in con f igu ra t ion a t model r o l l a n g l e s of Oo and 45O a t M = 2.50 are p r e s e n t e d i n f i g u r e s 1 4 and 15, respect ively. (Note that when both MISSILE codes p r e d i c t i d e n t i c a l v a l u e s , o n l y p r e d i c t i o n s from one code is shown.) In general, t he re is good agreement between tes t d a t a and t h e p r e d i c t i o n s of both programs MISSILE1 and MISSILE2, w i th be t t e r ag reemen t occu r r ing fo r t he l a rge r t a i l spans. For the t a i l configurat ion bt /bc = 1.25 ( f i g . 1 5 ( d ) ) , MISSILE1 and MISSILE2 predic- t i ons d ive rge a t the h igher angles of a t tack probably because of d i f f e r e n t a f t e r b o d y vor t i c i ty mode l s . Program NSWCDM p r o v i d e s a c c u r a t e p r e d i c t i o n s f o r t a i l conf igura- t i o n s bt/bc 1.07 but underpredicts both normal-force and pitching-moment coef- f i c i e n t s f o r t h e bt/bc 5 0.75 span ( l onge r t i p cho rds ) con f igu ra t ions a t t he h ighe r angles o f a t tack .

P i t ch -con t ro l compar i sons fo r each t a i l - f in con f igu ra t ion a t 4 = Oo are pre- sen ted i n f i gu re 16 . Again, the codes are i n good agreement with the measured values e x c e p t f o r NSWCDM which underest imates pi tching-moment coeff ic ient for the smaller span configurat ions and overest imates it f o r t a i l conf igu ra t ion bt/bc = 1.25 a t t h e h igher angles of a t t a c k .

A summary comparison of experimental and analyt ical canard pi tch-control effec- t i veness of e a c h t a i l - f i n c o n f i g u r a t i o n a t Q = Oo i s shown i n f i g u r e 1 7 . The tes t va lue of f o r M = 1.75 w a s obtained from unpublished NASA data . In genera l ,

c m 6 8

Page 11: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

the code estimates a re r ea sonab ly accu ra t e fo r t he test Mach number range, an excep- t i on be ing fo r MISSILE1 which underestimated for conf igura t ions b t /bc 1 -07 .

c"s In an a t t empt t o isolate and/or improve the load predictions of program NSWCDM

t h a t were underestimated for t a i l configurat ions bt /bc 5 0.75, missile-component l oad ing con t r ibu t ions w e r e eva lua ted . The measured load data for canard panel 2 a lone i n the presence of the body a r e p r e s e n t e d i n f i g u r e 18. Program NSWCDM e s t i - mates a r e i n good agreement with the tes t d a t a a t M = 2.50, b u t t h i s program over- p red ic t s t he measu red va lues a t t he h ighe r ang le s of a t t a c k a t M = 3.50. I n gen- eral, program MISSILE2 u n d e r p r e d i c t s t h e p a n e l l o a d s a t t h e h i g h e r a n g l e s of a t t a c k fo r bo th Mach numbers. It might be pointed out that M = 3.50 f a l l s o u t s i d e t h e v a l i d Mach number range for both predict ion codes. (See the appendix.)

Comparisons between test d a t a and load pred ic t ions for two t a i l - f i n p a n e l s i n the p resence of t h e body a re p re sen ted i n f igure 19 . It should be noted tha t these test d a t a were no t ob ta ined from d i r e c t t a i l - p a n e l measured loads; rather, the tes t d a t a shown are t h e d i f f e r e n c e i n normal-force coefficients between the body-tail and the body-alone configurations and include body upwash and car ryover e f fec ts . The p r e d i c t i o n s a l s o i n c l u d e t h e s e i n t e r f e r e n c e e f f e c t s . I n the upper par t of f igure 19 , program NSWCDM underpredic t s the normal - force coef f ic ien ts for the bt/b, = 0.47 and 0.75 t a i l p a n e l s which have the l onge r t i p cho rds . It is b e l i e v e d t h a t f o r t h e s e l o n g e r t i p - c h o r d p a n e l s , e s p e c i a l l y a t h i g h e r a n g l e s of a t tack , nonl inear s ide-edge suc t ion l oad ing becomes a primary source of normal fo rce . Adding the e s t ima ted normal-force coefficient increment produced by the s ide-edge vortex does br ing the h igh-angle-of -a t tack pred ic t ions up t o t h e t e s t - d a t a l e v e l of the reduced span ta i ls ; however, t h e r e is a s l i g h t o v e r p r e d i c t i o n f o r t h e l a r g e r t a i l s p a n s . I t a p p e a r s t h a t t he ove ra l l pane l l oad p red ic t ions of NSWCDM would be improved by including s ide-edge e f fec ts €or the reduced-span longer - t ip -chord f ins . I n the lower par t of f igure 19 , program MISSILE2 p r e d i c t i o n s a r e i n very good ag reemen t w i th t e s t da t a .

Comparisons of t e s t d a t a w i t h p r e d i c t i o n s from program NSWCDM for the complete model w i th t a i l con f igu ra t ions b t /bc = 0.47 and 1.25 a t M = 2.50 a r e shown i n f i g u r e 20. I n a d d i t i o n t o t h e m i s s i l e component loadings a l ready d i scussed , non- l i nea r a f t e rbody l oads due t o c r o s s f low drag were a l s o e s t i m a t e d . A s imple a lgebra ic equat ion der ived from crossf low theory was used to ob ta in the normal - force coef - f ic ien t increment p roduced by the a f te rbody c ross f low separa t ion . Adding t h e e s t i - mated normal-force coeff ic ient increments due to both the s ide-edge vortex and a f t e r - body v iscous c ross f low separa t ion br ing the p red ic t ions wi th in reasonable agreement t o t h e measured d a t a f o r t a i l - f i n c o n f i g u r a t i o n b t / b c = 0.47. However, wi th the a d d i t i o n of these increments , NSWCDM o v e r p r e d i c t s t h e t e s t d a t a of t a i l - f i n c o n f i g - urat ion bt /bc = 1.25, especially pitching-moment coefficient. These increments are p re sen t ly be lng i nco rpora t ed i n an updated version of NSWCDM t h a t w i l l be c a l l e d program LRCDM2.

La te ra l -Di rec t iona l Aerodynamic C h a r a c t e r i s t i c s

Rol l cont ro l . - A compar ison of exper imenta l and ana ly t ica l ro l l -cont ro l charac- t e r i s t i c s of e a c h t a i l - f i n c o n f i g u r a t i o n a t M = 2.50 f o r 9 = Oo is p r e s e n t e d i n f i g u r e 21. The p r e d i c t i o n s from program NSWCDM a r e i n good agreement with t e s t d a t a a t t h e lower angles of a t tack ( a < 8O) , e spec ia l ly fo r t a i l conf igu ra t ion bt/bc = 0.47. However, t he p red ic t ions d ive rged from tes t d a t a a t t h e h i g h e r a n g l e s of a t tack. In general , the overal l agreement of program NSWCDM with test d a t a is much be t te r than tha t p roduced by e i t h e r programs MISSILE1 o r MISSILE2. Both MISSILE codes underpredict roll cont ro l and g ive similar p r e d i c t i o n s up t o a n g l e s of a t t a c k

9

Page 12: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

of about 1 O o , where they diverge from each other. This divergence trend, which i s a l s o e x h i b i t e d by the yawing-moment c o e f f i c i e n t estimates, begins a t the angle o f a t t a c k where both programs s tar t p red ic t ing a f t e rbody vo r t i c i ty . Fo r ang le s o f a t t a c k above l o o , t h e s e t r e n d s r e f l e c t t h e e f f e c t s o f d i f f e r e n t a f t e r b o d y v o r t i c i t y models contained in each program. (See ref . 11 f o r a b r i e f desc r ip t ion o f t he vo r t ex models . ) Since the ta i l - f ins-off predict ions f rom a l l three computer programs are i n exce l l en t ag reemen t w i th l imi t ed t a i l - f in s -o f f t es t da ta ( f lagged symbols in f i g . 2 1 ( d ) ) , it appears t h a t improvements are needed i n a l l t h r e e c o d e s t o p r e d i c t more a c c u r a t e l y the t a i l - f i n l o a d i n g s .

Yaw cont ro l . - A comparison of experimental and analytical yaw-control charac- t e r i s t i c s of e a c h t a i l - f i n c o n f i g u r a t i o n a t M = 2.50 f o r 4 = 0' is p r e s e n t e d i n f i g u r e 22. In general, program NSWCDM p r e d i c t i o n s are i n good agreement with test da ta , the yaw c o n t r o l and induced roll ing-moment predictions becoming e x c e l l e n t w i t h i n c r e a s e s i n t a i l span fo r ang le s of a t t a c k up t o a b o u t 1 2 O . Of t he VISSILE codes, MISSILE2 r e f l e c t s t h e same p red ic t ion t r ends as program NSWCDM except MISSILE2 under- predicts the low-angle-of-at tack induced rol l ing moments. The e r ra t ic behavior of MISSILE1 p r e d i c t i o n s a t the h igher angles of a t t a c k f o r t a i l conf igu ra t ion bt/bc = 0.47 may be due t o t h e a f t e r b o d y v o r t i c i t y model t h a t t h i s code uses. MISSILE1 underpredic t s yaw con t ro l and i nduced ro l l i ng moment f o r t h e l a r g e r t a i l spans a t the lower angles of a t t a c k .

Asymmetric r o l l o r i e n t a t i o n . - Comparisons of t es t d a t a and p r e d i c t i o n s of t he l a t e r a l - d i r e c t i o n a l a e r o d y n a m i c c h a r a c t e r i s t i c s of s e l e c t e d t a i l - f i n c o n f i g u r a t i o n s a t M = 1.75 f o r I$ = 26.57' are p r e s e n t e d i n f i g u r e 23. The p red ic t ion t r ends o f program NSWCDM genera l ly fo l low those of t he tes t da t a . The estimates of the MISSILE codes overpredict the measured data a t the h igher angles o f a t tack .

Rol l -control and yaw-control effect iveness . - Summary comparisons of test d a t a and a n a l y t i c a l c a n a r d r o l l - and yaw-control effectiveness of each t a i l - f in con f igu ra - t i o n a t 4 = 0' and 01 = 0' are p r e s e n t e d i n f i g u r e s 24 and 25, r e spec t ive ly . For t h e test Mach number range , the p red ic t ions of r o l l - c o n t r o l e f f e c t i v e n e s s from pro- gram NSWCDM ( f i g . 2 4 ) are i n v e r y good agreement wi th the t es t da ta and re f lec t the r o l l r e v e r s a l t r e n d s of t a i l conf igu ra t ions bt/bc 2 1.07. In general , canard rol l - c o n t r o l e f f e c t i v e n e s s is underpredicted by both MISSILE codes and for t a i l configura- t i o n s bt/bc 2 1.07 is underpredicted even more a t the lower Mach numbers. MISSILE1 code estlmates a r e a l i t t l e b e t t e r t h a n MISSILE2 estimates f o r t a i l c o n f i g u r a t i o n s b /b > 0.75. P red ic t ions of canard yaw-control effectiveness from a l l of the codes ( f ig . 25 ) are i n good agreement with t es t d a t a . t , c -

Sch l i e ren pho tographs . - In an a t t empt t o v i sua l i ze cana rd -gene ra t ed f l ow f i e lds , schl ieren photographs of t a i l configurat ions bt /bc < 1.07 with canard yaw c o n t r o l a t M = 1.75 are shown i n f i g u r e 26. In general , th i s f i g u r e shows t h a t t h e most dominant feature a t a = 0' r e s u l t s f rom the vor tex o r ig ina t ing a t t he t ips of the v e r t i c a l c a n a r d s which are loaded due t o t h e yaw con t ro l . For t a i l conf igu ra t ions bt/bc 5 0.75 i n p a r t i c u l a r , t h e s e c a n a r d t i p v o r t i c e s clear the t a i l f ins , whereas f o r t a i l conf igu ra t ion bt/bc = 1 .07 , t h e r e i s evidence of vortex flow impingement on the t a i l f i n s . ( S e e f i g . 2 6 ( c ) .) It is b e l i e v e d t h a t t h i s impingement reduces the bene f i c i a l cana rd downwash and s idewash induced ta i l - f in loadings tha t he lp to produce model p i t c h and yawing moments. For each t a i l - f i n c o n f i g u r a t i o n , v o r t i c e s emanating from both tips of t he ve r t i ca l and ho r i zon ta l cana rds pas s ve ry c lose t o the t a i l f i n s as the angle of a t t a c k i n c r e a s e s . These canard vortices, which include downwash and s idewash , resu l t in the loading and un loading of i n d i v i d u a l t a i l f i n s wi th changes in angle of a t tack . In the lower por t ion of f i g u r e 2 6 ( a ) , p r e d i c t e d t i p v o r t e x t r a j e c t o r i e s o f t h e c a n a r d are superimposed on t h e t e s t - d a t a v o r t i c e s of t a i l

10

Page 13: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

conf igu ra t ion bt/bc = 0.47. From the s i d e view, t h e s e MISSILE1 p r e d i c t i o n s are shown to be in exce l l en t ag reemen t w i th t he t e s t da ta . S ince a l l t h r e e p r e d i c t i o n c o d e s p r e s e n t e d i n t h i s paper u s e t h e same vor t ex t r ack ing method, MISSILE1 may be an indicator of their accuracies; however , the predict ion methods of de te rmining the i n f l u e n c e s on ta i l - f in loadings p roduced by the cana rd gene ra t ed f l ow f i e lds are i n need of improvement, as i l l u s t r a t e d by the comparisons made i n f i g u r e 2 1 ( d ) .

CONCLUSIONS

An experimental wind-tunnel invest igat ion has been conducted a t Mach numbers from 1.60 t o 3.50 to ob ta in t he l ong i tud ina l and l a t e ra l -d i r ec t iona l ae rodynamic c h a r a c t e r i s t i c s of a c i r cu la r , c ruc i fo rm, cana rd -con t ro l l ed missile w i t h v a r i a t i o n s in t a i l - f in span . In add i t ion , compar i sons were made wi th the experimental aerody- namic c h a r a c t e r i s t i c s u s i n g t h r e e missile aeropredict ion programs: MISSILEl, MISSILE2, and NSWCDM. The r e s u l t s o f t h e i n v e s t i g a t i o n are as fol lows:

1 . For t h e tes t Mach number r ange , t he da t a i nd ica t e t ha t cana rd roll c o n t r o l a t l o w ang le s o f a t t ack i s f e a s i b l e on t a i l - f in con f igu ra t ions w i th t a i l - t o -cana rd span r a t i o s less than or equa l t o 0.75.

2. The canards are e f f e c t i v e p i t c h and yaw c o n t r o l d e v i c e s on each t a i l - f in span c o n f i g u r a t i o n t e s t e d .

3. Programs MISSILE1 and MISSILE2 provide very good p red ic t ions o f l ong i tud ina l ae rodynamic cha rac t e r i s t i c s and f a i r p red ic t ions o f l a t e ra l -d i r ec t iona l ae rodynamic c h a r a c t e r i s t i c s a t low ang les o f a t t ack , w i th MISSILE2 p r e d i c t i o n s g e n e r a l l y i n bet ter agreement with tes t d a t a .

4. Program NSWCDM provides good longi tudina l and la te ra l -d i rec t iona l aerodynamic p r e d i c t i o n s t h a t i m p r o v e w i t h i n c r e a s e s i n t a i l - f i n s p a n . E s t i m a t e s o f r o l l i n g - moment c o e f f i c i e n t a r e i n good agreement with tes t d a t a a t low angles of a t t a c k .

5. Programs MISSILEI, MISSILE2, and NSWCDM a p p e a r t o be acceptab le engineer ing d e s i g n t o o l s € o r a e r o p r e d i c t i o n a n d , i n g e n e r a l , make reasonable estimates of t he tes t data; however, these programs need to be m o d i f i e d i n o r d e r t o bet ter p r e d i c t t h e l a t e ra l -d i r ec t iona l ae rodynamic cha rac t e r i s t i c s a t h ighe r ang le s of a t t a c k ( g r e a t e r than 12O).

Langley Research Center Nat ional Aeronaut ics and Space Adminis t ra t ion Hampton, VA 23665 May 2, 1983

11

Page 14: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

APPENDIX

AEROPREDICTION PROGRAMS

This appendix summar izes major charac te r i s t ics o f the ana ly t ica l p rograms.

NSWCDM

The aeropredict ion program NSWCDM calcu la tes de ta i led aerodynamic loadings and p r e s s u r e d i s t r i b u t i o n s a c t i n g on missile conf igu ra t ions i nc lud ing monoplane, c r u c i f o r m , a n d i n t e r d i g i t a t e d l i f t i n g s u r f a c e s mounted on b o d i e s w i t h c i r c u l a r c r o s s sec t ions . Ca lcu la t ions are based on paneling methods i n which supersonic l inear t heo ry so lu t ions are used. Vortex s t rengths and posi t ions are c a l c u l a t e d by empirical and vortex t racking methods. The Mach number range is from 1.3 t o a b o u t 3 .O. The angle of a t t a c k is up t o 20' with a v a r i a b l e model r o l l a n g l e .

MISSILE1 and MISSILE2

The aeropredict ion programs MISSILE1 and MISSILE2 p r e d i c t s ta t ic long i tud ina l , d i r e c t i o n a l , and l a t e ra l aerodynamic charac te r i s t ics o f c ruc i form missile conf igu ra t ions w i th c i r cu la r bod ie s . P red ic t ion t echn iques man ipu la t e empirical aerodynamic da ta r e t r i e v e d from a data base. Externa l vor tex in f luences are computed and superimposed on t h e missile. Vor tex s t rengths and pos i t ions are c a l c u l a t e d by empirical and vortex tracking methods. The Mach number range i s from 0.8 t o 3 .O and angle of a t t a c k is up t o 45' with a v a r i a b l e model r o l l a n g l e . For t h e c u r r e n t data base, t h e r e is a r e s t r i c t i o n i n f i n aspect r a t i o w i t h Mach number. Mach number and a spec t - r a t io r eg ions o f va l id i ty are p r e s e n t e d i n f i g u r e A1 .

4

3

A R 2

1

I 2 M

3 4

Figure A1 .- Mach number and f i n aspect r a t i o r e g i o n s of v a l i d i t y € o r c u r r e n t MISSILE1 and MISSILE2 da ta bases .

1 2

Page 15: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

REFERENCES

1. C o r l e t t , William A.; and Howell, Dorothy T.: Aerodynamic C h a r a c t e r i s t i c s a t Mach 0.60 t o 4.63 of TWO Cruciform Missile Models, One Having Trapezoidal Wings w i t h Canard Controls and the O t h e r Having Delta Wings With Tail Controls . NASA TM X-2780, 1973.

2. Blair , A. B., Jr.: Aerodynamic Characteristics of a Tandem-Canard Missile a t Mach Numbers From 1 .83 t o 4.63. NASA TM X-3040, 1974.

3. Burt , James R., Jr.: The Ef fec t iveness of Canards fo r Ro l l Con t ro l . Tech. R e p . RD-77-8, U.S. Army, Nov. 1976. (Available from DTIC as AD A037 077.)

4. mpp , G. H.: performance Improvements With Sidewinder Missile Airframe Variants. AIM Paper 79-0091, Jan. 1979.

5. Blair , A. B., Jr.; and Rapp, G. H.: Experimental and Analyt ical Comparison of Aerodynamic Charac t e r i s t i c s o f a Forward-Control Missile. AIAA-80-0374, Jan. 1980.

6. Allen, Jerry M.: Comparison of Analyt ical and Experimental Supersonic Aerody- namic Charac t e r i s t i c s o f a Forward Control Missile. AIAA-81-0398, Jan. 1981.

7. Allen, Jerry M.; and Bla i r , A. B., Jr.: Comparison of Ana ly t i ca l and Experi- mental Supersonic Aerodynamic C h a r a c t e r i s t i c s of a Forward Control Missile. J. Spacecr. & Rockets, vol. 19, no. 2, Mar.-Apr. 1982, pp. 155-1 59.

8. Nielsen, Jack N.; Hemsch, Michael J.; and Smith, Charles A.: A Prel iminary Method f o r C a l c u l a t i n g t h e Aerodynamic Characteristics of Cruciform Missiles t o High Angles of Attack Including Effects of Rol l Angle and Control Deflections. ONR-CR215-226-4F, U.S. Navy, Nov. 1 , 1977. (Avai lab le from DTIC a s AD A054 349. )

9. Smith, C. A.; and Nielsen, J. N.: F inal Report - Pred ic t ion of Aerodynamic C h a r a c t e r i s t i c s of Cruciform Missiles t o High Angles of Attack Utilizing a Dis t r ibu ted Vor tex Wake. NEAR TR 208 (Cont rac t N60921-79-C-A049), Nielsen Eng. & R e s . , Inc., Jan. 1980.

10. Di l lenius , M. F. E.; and Smith, C. A.: F ina l Repor t - Program NSWCDM, Aerody- namic P red ic t ion Program for Cruciform Canard-Axisymmetric Body-Cruciform T a i l Missiles a t Supersonic Speeds. NEAR TR 217 (Con t rac t No. N70921-79-C-A365), Nielsen Eng. & R e s . , Inc. , A p r . 1980.

1 1 . Hemsch, Michael J.; and Nielsen, Jack N.: S t a tus Repor t on Tr i se rv ice Data Base Extension of PROGRAM MISSILE. Proceedings of the Twelfth Navy Symposium on A e r o b a l l i s t i c s - Volume I, U.S. N a v y , May 1981, pp. 1-107 - 1-1 15.

12. Di l lenius , M. F. E.; Hemsch, M. J.; Sawyer, W. C.; Allen, J. M.; and B l a i r , A. B., Jr.: Comprehensive Missile Aerodynamics Programs for Pre l iminary Design. AIAA-82-0375, Jan. 1982.

13. Standard for Metric P rac t i ce . E 380-79, American SOC. Tes t ing & Mater., c.1980.

13

Page 16: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

14. Jackson, Charlie M., Jr.; Corlett, William A.; and Monta, William J.: Descrip- t ion and Cal ibra t ion of the Langley Uni ta ry P lan Wind Tunnel. NASA TP-1905, 1981.

15 . S t a l l i ngs , Robert L., Jr.; and L a m b , Milton: Effects of Roughness S i z e on t h e P o s i t i o n of Boundary-Layer Trans i t ion and on the Aerodynamic C h a r a c t e r i s t i c s of a 55O Swept Delta Wing a t Supersonic Speeds. NASA TP-1027, 1977.

14

I

Page 17: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

TABLE I.- GEOMETRIC CHARACTERISTICS OF CANARD AND TAIL-FIN CONFIGURATIONS

TF-4 canard: Exposed root chord. c m ( i n . ) ....................................... 11.123 (4.379) Tip chord. c m ( i n . ) ................................................ 3.338 (1.314) mposed taper r a t i o ......................................................... 0.300 Exposed span. c m ( i n . ) ............................................. 14.463 (5.694)

Maximum th ickness . c m ( i n . ) ........................................ 0.508 (0.200) Exposed aspect r a t i o ........................................................ 2.00 Leading-edge sweep. deg ..................................................... 47.1 Hinge l i ne . pe rcen t roo t cho rd .............................................. 57.0

Exposed planform area. a c m 2 ( i n 2 ) ................................ 104.561 ( 1 6.207)

Tails f i n s : Configurat ion bt/bc = 0.47:

Exposed root chord. c m ( i n . ) ..................................... 21.590 (8.500) Tip chord. c m ( i n . ) .............................................. 18.204 (7.167) Exposed taper r a t i o ....................................................... 0.843 Exposed span. c m ( i n . ) ........................................... 6.772 (2.666) Exposed planform area. a c m 2 ( i n 2 ) .............................. 134.735 (20.884) Thickness. c m ( i n . ) .............................................. 0.231 (0.091) Exposed a s p e c t r a t i o ...................................................... 0.34 Leading-edge sweep. deg ................................................... 45.0

Exposed root chord. c m ( i n . ) ..................................... 21.590 (8.500) Tip chord. c m ( i n . ) .............................................. 16.167 (6.365)

Exposed span. cm ( i n . ) ........................................... 10.846 (4.270) Exposed planform area. a c m 2 ( i n 2 ) .............................. 204.748 (31.736)

Configuration bt/bc = 0.75:

Exposed taper r a t i o ....................................................... 0.749

Thickness. c m ( i n . ) .............................................. 0.231 (0.091) Exposed a s p e c t r a t i o ...................................................... 0.58 Leading-edge sweep. deg ................................................... 45.0

Configurat ion bt/bc = 1.07: Exposed root chord. c m ( i n . ) ..................................... 21.590 (8.500) T i p chord. c m ( i n . ) .............................................. 13.863 (5.458) Exposed t a p e r r a t i o ....................................................... 0.642 Exposed span. c m ( i n . ) ........................................... 15.453 (6.084) Exposed planform area. a c m 2 ( i n 2 ) .............................. 273.935 (42.460) Thickness. c m ( i n . ) .............................................. 0.231 (0.091) Exposed a s p e c t r a t i o ...................................................... 0.87 Leading-edge sweep. deg ................................................... 45.0

Exposed root chord. c m ( i n . ) ..................................... 21.590 (8.500) Tip chord. c m ( i n . ) .............................................. 12.550 (4.941)

Exposed span. c m ( i n . ) .......................................... 18.080 (7.1118) Exposed planform area. a c m 2 ( i n 2 ) .............................. 308.625 (47.837)

Configurat ion bt/bc = 1.25:

Exposed t a p e r r a t i o ....................................................... 0.581

Thickness. c m ( i n . ) .............................................. 0.231 (0.091) Exposed a s p e c t r a t i o ...................................................... 1.06 Leading-edge sweep. deg ................................................... 45.0

aExposed planform area i s t h e area formed when two exposed panels of the canard o r t a i l f i n are jo ined t oge the r .

15

Page 18: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

102.31 (40.28) <

< (10.60)

f18.13) Moment center

( a ) Complete model with t a i l f i n s bt/bc = 0.47.

t

Figure 1.- Model d e t a i l s . ~ l l dimensions are g iven i n cen t ime te r s ( i nches ) un le s s o the rwise i nd ica t ed .

Page 19: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

0.51 ( 0.20)

1.45

7 .'24 (2.85)

TF-4 canard

Tail bJbc Tip chord Sernispan

0.47 18.21 (7.17) 3.38 (1.33)

(b) Canard and t a i l fins.

Figure 1 .- Concluded.

17

Page 20: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

683-85

Figure 2.- Model with t a i l f i n s bt/b, = 1.07.

Page 21: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

C

.4

. 3

.2

.1

0 -8 -4 0 4 12 16 20

Figure 3.- Typical var ia t ion of measured balance-chamber axial-force coefficient with angle of a t t ack . Complete model wi th t a i l - f in conf igura t ion bt/b, = 0.47 and zero cont ro l def lec t ion .

24

Page 22: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

=, deq

( a ) M = 2.50.

Figure 4.- E f f e c t s of t a i l - f i n s p a n on long i tud ina l ae rodynamic cha rac t e r i s t i c s a t 4 = Oo.

20

Page 23: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20

0

-20

-40

Cm -60

-80

-100

-120

-140

24

20

16

12

'N *

4

0

-4

-8 -8 -4 0 4 8 12 16 20 24 28 3;

0 > deg

(b) M = 3.00.

Figure 4 .- Continued.

21

Page 24: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

0. deg

(c) M = 3.50.

Figure 4 .- Concluded .

22

Page 25: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20

0

-20

-40

C, -60

-80

-100

-1 20

-140

24

20

16

12

'N 8

4

0

-4

-8 -8 -4 0 4 8 12 16 20 24 28 32

0 , deg

C A

( a ) M = 2.50.

23

Page 26: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

0, deg

(b) M = 3.00.

Figure 5 .- Continued.

24

" .. . .. . ... . .

Page 27: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20

5

-20

-40

C, -65

-80

-100

-125

-140

24

20

16

12

‘N

4

0

-a

-8 -8 -4 0 4 8 12 16 20 24 28 32

5 , deg

( C ) M = 3.50.

Figure 5 .- Concluded.

25

Page 28: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

Figure 6.-

26

Ef f 'ects o f t a i l - f in span on pitch-control characterist ics at

&pitch = 5 0 .

oo .

Page 29: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

16 20

I3 bt/ bc

0.47

0.75

1.07

1.25

2

1 'A

0

32

M = 3.00.

Figure 6 .- Continued.

27

Page 30: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

I I I I i 1 . 1 I I I

Tail b,

(c) M = 3.50.

Figure 6 .- Concluded.

28

Page 31: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

C n "6

1

X - ac

1

.o

.8

. 6

.4

, 2

0

2

0

1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

M

Figure 7.- Summary of l ong i tud ina l ae rodynamic cha rac t e r i s t i c s . @ = O o .

29

Page 32: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-3

J n "6

1

0 .2 Tai l f ins off

4 .6 .8 1.0

bt I b c

Figure 7 .- Concluded.

1.2 1.4

30

Page 33: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8

=4 1 Tai l fins O f f

0 4 16 20

(a) M = 1.75.

24 28 32

Figure 8.- Effects of tail-fin span on roll-control characteristics at I$ = 0 ' .

6r011 = -1 oo .

31

Page 34: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

(b) M = 2.50.

Figure 8 .- Continued.

2

1

0

-1

-2

32

Page 35: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

0, deg

(c) M = 3.00.

Figure 8 .- Continued.

33

Page 36: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

( d ) M = 3 .50 .

Figure 8 .- Concluded.

34

Page 37: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

c"

4

0

-4

-8

-12

-16

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

( a ) M = 1.75.

Figure 9.- Effects of t a i l - f in span on roll-control characterist ics a t 6 = 26.57O.

6r011 = - loo .

35

Page 38: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

2

1

O

-1

-2

36

-8 -4 0 4 8 12 16 20 24 28 32

a , d e l

(b) M = 2.50.

Figure 9 .- Continued.

Page 39: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

(c) M = 3.00.

Figure 9 .- Continued.

37

Page 40: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

0, deg

(d) M = 3.50.

Figure 9 .- Concluded.

38

Page 41: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

'n

-a

-12

-16

Tail bt/ bc

0 0.47

0 0.75

0 1.07

A fl 1.25 I

I '

/ I 'ai l fins off I

I

4

! 2

0

cy -2

-4

-6

I

I

2 4 2 8

( a ) M = 1.75.

Figure 10.- Effects of t a i l - f in span on rol l -control character is t ics a t Q = 45O.

%-011 = -100.

39

Page 42: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20

0, deg

(b) M = 2.50.

Figure 10 .- Continued.

24 28 32

40

I . .. . . .

Page 43: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

(c) M = 3.00.

Figure 10 .- Continued.

41

Page 44: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

(d) M = 3.50.

Figure 10 .- Concluded.

42

Page 45: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

c" -8

-12

-16

43

Page 46: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-a -4 0 4 a

2

1

0

-1

-2

28 32

(b) M = 3.00.

Figure 1 1 .- Continued.

44

Page 47: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

C" -8

-12

-16

- 20

L

(

c -; Y

-1

2

1

0 C l

-1

-2

- 8 - 4 2 8 32 4

M = 3.50.

Figure 1 1 .- Concluded.

45

Page 48: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

Figure 12.- Effects of t a i l - f in span on lateral-directional aerodynamic cha rac t e r i s t i c s a t 4 = 26.57O.

46

Page 49: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

0, deg

(b) M = 2.50.

Figure 12.- Continued.

47

Page 50: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

(c) M = 3.00.

Figure 12.- Continued.

48

Page 51: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

5-l

- 8

-12

-16

I

[

'4

-8 -4 0 4 8 12 16 20 24 28 32

a. deg

( d ) M = 3.50.

Figure 1 2 .- Concluded.

49

Page 52: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

C m6

C n 6

C

1.2 1.6 2.0 2.4 2.8 M

3.2 3.6 4.0

Figure 13.- Summary of canard cont ro l e f fec t iveness of e a c h t a i l - f i n c o n f i g u r a t i o n a t 6 = Oo. a = O o .

50

Page 53: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

C m6

C

6

4

2

0

.3

. 2

.1

0

-

Ta i

1

I fins off 2 .4

bt Ibc

1.0 1.2

C

Figure 1 3 .- Concluded.

51

Page 54: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20 24 28 32

( a ) bt/bc = 0.47.

Figure 14.- Comparison of experimental and analyt ical longi tudinal aerodynamic c h a r a c t e r i s t i c s of e a c h t a i l - f i n c o n f i g u r a t i o n a t @ = Oo. M = 2.50.

52

Page 55: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

(b) bt/b, = 0 .75 .

Fi’gure 14.- Continued.

53

Page 56: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

(c) bt/b, = 1.07.

Fiqclre 14.- Continued.

54

Page 57: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

28 32

(d) bt /bc = 1.25 .

Figure 1 4. - Concluded.

55

Page 58: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

( a ) bt/bc = 0.47.

Figure 15.- Comparison of experimental and ana ly t ica l longi tudina l aerodynamic c h a r a c t e r i s t i c s of e a c h t a i l - f i n c o n f i g u r a t i o n a t (I = 45". M = 2.50.

56

Page 59: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

16 20 24 28 32

(b) bt/b, = 0.75.

Figure 15 .- Continued.

57

Page 60: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20

0

-20

-40

'c m -60

-80

-100

-120

24

20

16

12

CN 8

4

0

-A -, -8 -4 0 4 8 12 16 20 24 28 32

a, deg

(c) bt/b, = 1.07.

Figure 15.- Continued.

58

Page 61: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

0 4 8 12 16

a , deg

(d) bt/b, = 1 e 2 5

Figure 1 5 .- Concluded.

59

I

Page 62: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-a -4 0 4 a

( a ) bt/bc = 0.47.

16 20 24

. . : I 4 . . . . . . ....

I

Figure 16.- Comparison of experimental and a n a l y t i c a l p i t c h - c o n t r o l c h a r a c t e r i s t i c s of each t a i l - f i n c o n f i g u r a t i o n a t @ = Oo. M = 2 .50 ; 'pitch = s o .

60

Page 63: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-4 0 4

( b ) bt/b, = 0.75.

20 24 32

Figure 16.- Continued.

61

Page 64: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 16 24 28 32

(c) bt/bc = 1 -07 .

Figure 16.- Continued.

62

Page 65: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

( d ) bt/bc = 1 .25.

Figure 16.- Concluded.

6 3

Page 66: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

a bt/ bc = 0.75

4 t 3 I-

" b

2 -

0 Test data

NSWCDM "- MI SSI LE2

--- MISSILE1

-

1 -

0 ' I

.I 3 - C I

2 l-

1 -

0 , I I 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M M

Figure 17.- Summary comparison of experimental and analytical canard pitch- c o n t r o l e f f e c t i v e n e s s of e a c h t a i l - f i n c o n f i g u r a t i o n a t @ = O o .

Page 67: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

1.0 - 0 Test data

NSWCDM - 0 -

BM

-1.0 -

-2.0 -

HM

c~~

. 4 - -

0 -

- .4 -

2.0 -

/- -1.0 I 1

-8 -4 0 4 8 12 16 20 a . deg

c

c

1 I -8 -4 0 4 8 12 16 20

a. deg

( a ) M = 2.50. (b) M = 3.50.

Figure 18.- Comparison of experimental and analytical canard loads (canard panel 2) i n presence of body a t $I = O o . Zero cont ro l def lec t ion .

Page 68: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

20

16

12

cN

8

4

0

20

16

12

cN

8

4

0 Test data Tail alone ( 2 panels) NSWCDM

ref = Body cross-sectional area, A ”- NSWCDM + CN,VSE

0.47

0 Test data

MI SSI LE2

0 0 0 0 4 8 12 16 20 a, deg

Figure 1 9 .- Comparison of experimental and analytical normal-force coefficients for t a i l alone (two panels) i n presence of body a t 4 = Oo. M = 2.50.

66

Page 69: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16

a. deg

20 24 28 32

( a ) bt/bc = 0.47.

Figure 20.- Comparison of expe r imen ta l and ana ly t i ca l for complete model with bt/bc = 0.47 and 1 .25

aerodynamic c h a r a c t e r i s t i c s a t 6 = O o . M = 2.50.

67

Page 70: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 8 12 16 20 24 28 32

a, deg

( b ) bt/bc = 1 .25.

Figure 20.- Concluded.

68

"

Page 71: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

8

4

0

C" -4

-8

-12

-16

2

0

c y -2

-4

-6 I -8

Figure 21 .-

\

I

4 j I i t

( a ) bt/bc = 0.47.

I c

i I

-1-

t

r -

\

20

0 Test data NSWCDM

-" MISSILE2

_" MISSILE1

j i i I

I

! !

I

1 1

24

! -

I I

28 32

Comparison of e x p e r i m e n t a l a n d a n a l y t i c a l r o l l - c o n t r o l c h a r a c t e r i s t i c s of e a c h t a i l - € i n c o n f i g u r a t i o n f o r = -100 a t Q = Oo. M = 2.50. 6r011

69

Page 72: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4

:I

16 20 .. ! -

0 Test data

NSWCDM "_ MISSILE2

"_ MISSILE1

28

3

2

1

CZ

0

-1

-2

32

(b ) bt/b, = 0.75.

Figure 21 .- Continued.

70

Page 73: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

8

4

0

-4

C"

-8

-12

-16

-20

2

0

c y -2

-4

-6 -8 0 4

( c ) bt/b, = 1.07.

0 Test data

NSWCDM "_ MISSILE2

"_ MISSILE1

24 32

Figure 21 .- Continued.

71

I

Page 74: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

a, deg

( d ) bt/b, = 1.25.

Figure 21 .- Concluded.

72

Page 75: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

c" -8

-12

-16

2

0

-2

-4

-6 -8 -4 0 16

bt/bc = 0.47.

20 24

3

2

1

0

-1

-2

-3

Figure 22.- Comparison of experimental and analyt ical yaw-control character is t ics of each tail-fin configuration f o r 6 = -so a t 4 = Oo. M = 2.50.

Yaw

73

Page 76: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4 12 16 20 24 28 32

0, deg

( b ) bt/b, = 0.75.

Figure 22. - Continued.

74

Page 77: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

4

0

-4

C"

-8

-12

-16

2

[

-1

1

-I

-a -4 0 12 16

0 Test data NSWCDM

" - MI S S I LE2 I ~ _

"_ MI SSI LE1 I 1

20 24 F 28

2

1

0 cz

-1

-2

32

(c) bt/bc = 1 -07

Figure 22.- Continued.

75

Page 78: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-8 -4 0 4

1 .25.

24 28

2

1

c1

-1

-2

Figure 22.- Concluded.

76

Page 79: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

8

4

0

C" -4

-8

-12

-16

2

0

-2

-4

-6 16 20 24 28 32

( a ) bt/bc = 0.75.

F igure 23.- Comparison of expe r imen ta l and ana ly t i ca l l a t e ra l -d i r ec t iona l ae rodynamic c h a r a c t e r i s t i c s of s e l e c t e d t a i l - f i n c o n f i g u r a t i o n s a t 4 = 26.57O. M = 1.75.

77

Page 80: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

8

4

0

-4

c" -8

-12

-16

-20

4

2

0

-2

-4

-6 -8 -4 4

bt/b, = 1.07.

0 Test data

_"

/ . .

. . . . . . . .

20

3

2

1

0

-1

-2

Figure 23.- Continued.

78

Page 81: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-a 0 a 16

"-

20 24 28 32

bt/b, = 1.25.

Figure 23. - Concluded.

79

Page 82: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

.15

.10

.05

C

0

-. 05

-. 10

- a 11 c b b = 0.75

-

- :lo """"- """"_

-

I

.20 r I

I bt'bc = 0.47

.15 1

O t -.05 1 1 1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 M

-0 bt/bc = 1.25

0 Test data

NSWCDM

M I SSI LE2

MISSILE1

- "- -"

M

Figure 24.- Summary comparison of experimental and analyt ical canard rol l -control e f f e c t i v e n e s s of each ta i l - f i n c o n f i g u r a t i o n a t 4 = Oo . a = Oo .

Page 83: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

5 - a bt/bc = 0.75

4 -

3 -

2 "

5 - a

4 -

3 -

c n 6

2

1

0

bt/bc = 0.47

- D bt/bc = 1.25

- \ \

l-

bt/bc = 1.07 \ \ \

0 Test data

NSWCDM "- MISSILE2

-" MISSILE1

-

L 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M M

Figure 25.- Summary comparison of experimental and analytical canard yaw-control e f f ec t iveness of each ta i l - f in conf igura t ion a t 4 = Oo . a = o0 .

Page 84: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

a = O 0

a = 8 0

Canard vortex trajectories

a = O 0

a = 8 0

Predicted canard t ip vortex t ra jector ies (MISSILEI)

683-86 ( a ) bt/bc = 0.47.

Figure 26.- Schl ie ren photographs o f se lec ted t a i l - f in conf igura t ions wi th canard yaw con t ro l . 4 = 0' ; M = 1.75; = -50.

yaw

82

Page 85: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

01 = 0.0'

u = 4.0'

a = 0.0'

a = 4.0'

u = 8.0'

( b ) bt/bc = 0.75.

a = 8.0'

L-83-87 ( c ) bt/bc = 1.07.

Figure 26 .- Concluded.

83

Page 86: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

-

1. Report No. ~~ ~-

- I 2. Government Accession No.

NASA TP-2157 4. Title and Subtitle

EFFECT O F T A I L - F I N SPAN ON STABILITY AND CONTROL CHARACTERISTICS OF A CANARD-CONTROLLED MISSILE AT SUPERSONIC MACH NUMBERS

. .

7. Author(s) . .

~~

A. B. Blair , Jr., Je r ry M. Allen, and Gloria Hernandez

. . -

9. Performing Organization Name and Address

NASA Langley Research Center Hampton, VA 23665

2. Sponsoring Agency Name and Address ~.

National Aeronautics and Space Administration Washington, DC 20546

5. Supplementary Notes ."

" ~ -_ . . "

6. Abstract " .

3. Recipient's C a t a l o g No.

5. Report Date

June 1983 6. Performing Organization Code

505-43-23-02 -

8. Performing Organization Report No.

L-15586 10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Paper 14. Sponsoring Agency Code

"

An experimental wind-tunnel investigation has been conducted a t Mach numbers from 1 .60 t o 3.50 to obtain the longi tudinal and l a t e ra l -d i r ec t iona l aerodynamic charac- t e r i s t i c s of a circular, cruciform, canard-controlled missile with variations i n t a i l - f in span . I n addition, comparisons were made with the experimental aerodynamic character is t ics using three missi le aeropredict ion programs: MISSILE1 , MISSILE2, and NSWCDM. The r e s u l t s of t he i nves t iga t ion i nd ica t e t ha t €o r t he t e s t Mach number range, canard r o l l c o n t r o l a t low angles of a t tack is f eas ib l e on ta i l - f in conf iqura- t ions with tai l- to-canard span ratios of less than or equal to 0.75. The canards are e f f ec t ive p i t ch and yaw control devices on each tail-fin span configuration tested. Programs MISSILE1 and MISSILE2 provide very good predict ions of longitudinal aero- dynamic c h a r a c t e r i s t i c s and fa i r p red ic t ions of l a t e ra l -d i r ec t iona l aerodynamic c h a r a c t e r i s t i c s a t low angles of a t tack, wi th MISSILE2 predict ions general ly i n b e t t e r agreement with t e s t d a t a . Program NSWCDM provides good longitudinal and l a t e ra l -d i r ec t iona l aerodynamic predictions that improve with increases i n t a i l - f i n span. Estimates of rolling-moment coe f f i c i en t a r e i n good agreement with test data a t low angles of a t t ack . Programs MISSILEl, MISSILE2, and NSWCDM appear t o be acceptable engineering design tools for aeroprediction and, in general , make rea- sonable estimates of t h e t e s t d a t a ; however, these programs need t o be modified i n o rder to be t te r p red ic t the l a te ra l -d i rec t iona l aerodynamic c h a r a c t e r i s t i c s a t higher angles of a t tack (grea te r than 1 2 ' ) .

. . ~~

I . Key Words (Suggested by Authorls)) 18. Distribution Statement " .

supersonic aerodynamics

Canard-controlled missiles Missile aerodynamics

Unclassified - Unlimited

Missile aeroprediction programs Subject Category 02

I. Security Classif. (of this report) 20. Security Classif. (of this p a g e ) ~ ~ ~ I 21. N;;f Pages 22. Rice " - -

unclassified Unclassified I A05 ~~ "

For sale by the Natlonal Technical Information Service, Sprinefield. Virginia 22161 NASA-Langley, 1983

Page 87: Canard-Controlled Missile at -Supersonic Mach Numbers · 2013-08-31 · SUMMARY An experimental wind-tunnel investigation has been conducted at Mach numbers from 1.60 to 3.50 to obtain

National Aeronautics and Space Administration

THIRD-CLASS BULK R A T E

Washington, D.C. 20546 Official Business

penalty for Private Use, $300

Postage and Fees Paid National Aeronautics and Space Administration N A S A 4 5 1

SI POSTMASTER: I f Undeliverable (Section 1 5 8 Postal Manual) Do Not Return