car$lago(ar$cular(y( osteoartrosis( · pdf filecolágeno(• ii,(ix(xi...

43
Car$lago Ar$cular y Osteoartrosis Asesor: Dr. Med. Eduardo Álvarez Tomás Alejandro Ramos Sánchez R3

Upload: doxuyen

Post on 12-Feb-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Car$lago  Ar$cular  y  Osteoartrosis  

Asesor:  Dr.  Med.  Eduardo  Álvarez      

Tomás  Alejandro  Ramos  Sánchez  R3    

Page 2: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

CarDlago  Ar$cular  

Tejido  elás$co  avascular,  aneural  y  alinfá$co  que  recubre  las  ar$culaciones  diartrodiales  del  

esqueleto    

Page 3: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

CarDlago  Ar$cular  

•  Función    – Facilita  el  deslizamiento  y  lubricación  ar$cular  – Disminuye  la  fricción  y  ayuda  a  la  movilidad  sin  dolor    

– Absorbe  los  trauma$smos  mecánicos  – Distribuye  las  cargas  sobre  el  hueso  subyacente    

Page 4: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

CarDlago  Ar$cular    •  Condrocitos      •  Matriz  extracelular  

– Colágeno  – Proteoglicanos  – Proteínas  no  colagenicas  

Articular cartilage contains two major classes of pro-teoglycans: large aggregating molecules or aggrecans (Fig-ure 4) and smaller proteoglycans including decorin (dEco-RIn), biglycan, and fibromodulin. Because it may have aglycosaminoglycan component, type IX collagen is alsoconsidered a proteoglycan. Aggrecans have large numbersof chondroitin sulfate and keratan sulfate chains attachedto a protein core filament (Figure 5). Decorin has one der-matan sulfate chain, biglycan has two dermatan sulfatechains, and fibromodulin has several keratan sulfatechains. Aggrecan molecules fill most of the interfibrillarspace of the cartilage matrix. They contribute about 90%of the total cartilage matrix proteoglycan mass, whereaslarge nonaggregating proteoglycans contribute 10% or lessand small nonaggregating proteoglycans contribute about3%.

In the articular cartilage matrix, most aggrecans (Fig-ure 6) noncovalently associate with hyaluronic acid (hy-aluronan) and link proteins, small noncollagenous pro-teins, to form proteoglycan aggregates (Figure 4). Theselarge molecules have a central hyaluronan backbone thatcan vary in length from several hundred nanometers tomore than 10,000 nanometers. Large aggregates may havemore than 300 associated aggrecan molecules. Link pro-teins stabilize the association between monomers and hy-aluronic acid. Aggregate formation helps anchor pro-teoglycans within the matrix, preventing theirdisplacement during deformation of the tissue, and helpsorganize and stabilize the relationship between proteogly-cans and the collagen meshwork.

The small nonaggregating proteoglycans have shorterprotein cores than aggrecan molecules, and unlike aggre-cans they do not fill a large volume of the tissue or con-

tribute directly to the mechanical behavior of the tissue.Instead they bind to other macromolecules and probablyinfluence cell function. Decorin and fibromodulin bindwith type II collagen and may have a role in organizingand stabilizing the type II collagen meshwork, and bigly-can may interact with type VI collagen. The small pro-teoglycans also can bind transforming growth factor βand may limit healing of cartilage and alter degradativeenzyme production.

N o ncolla g e n o us Pro t eins a n d Glyco pro t einsA wide variety of noncollagenous proteins and glycopro-teins exist within normal articular cartilage and appear toconsist primarily of protein and a few attached monosac-charides and oligosaccharides. Some of these appear tohelp organize and maintain the macromolecular structureof the matrix. Anchorin CII, a collagen-binding chondro-cyte surface protein, may help “anchor” chondrocytes tothe matrix collagen fibrils. Cartilage oligomeric protein(COMP), an acidic protein, is concentrated primarilywithin the chondrocyte territorial matrix and appears tobe present only within cartilage and have the capacity tobind to chondrocytes. Fibronectin and tenascin, noncol-lagenous matrix proteins that are found in a variety of tis-sues, have also been identified within cartilage but thusfar their functions are not well understood.

Zones of Articular CartilageThe morphologic changes in chondrocytes and matrixfrom the articular surface to the subchondral bone makeit possible to identify four zones, or layers: the superficialzone, the transitional zone, the radial zone, and the zone

Figure 6 A, Electro n micro gra p h sh o w in g t h e articular cartila g e m a trix co m p art m e n ts o f t h e m e dial f e m oral co n dyle o f a n8-m o n t h-old ra b bit . A rro w h e a ds in dica t e p ericellular m a trix, * in dica t es t errit orial m a trix. Bar = 3 n m . B, A hig h er m a g nifica tio nelectro n micro gra p h sh o w in g t h e sa m e m a trix co m p art m e n ts a n d t h e rela tio nship b e t w e e n t h e cell m e m bra n e a n d t h e p ericellularm a trix. Bar = 1 n m . N o tice t h e sh ort-cell processes t h a t ext e n d t hro u g h t h e p ericellular m a trix. (Re pro d uce d fro m Buck w alt er JA ,H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p air o ft h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Chapter 9 Articular Cartilage and Osteoarthritis

165American Academy of Orthopaedic Surgeons | Orthopaedic Basic Science, ed 3

Page 5: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Condrocitos    •  Células  especializadas,  derivan  de  las  células  madre  

pluripotenciales  del  mesénquima    •  Representan  el  1%  del  volumen  total.  •  Difirieren  en  forma,  tamaño  y  ac$vidad  metabólica  en  las  

diferentes  capas.  •  ReDculo  endoplasmico  y  aparato  de  Golgi  •  La  edad  altera  su  funcionamiento  

tial for cartilage resiliency and joint lubrication or in theconcentrations of collagen and proteoglycans. It is clear,however, that the chondrocytes are in large measure re-sponsible for the maintenance and structural competence

of these materials and for allowing them to carry out theirrequired activities and functions. The chondrocytes areresponsible for producing and replacing appropriateamounts of macromolecules and assembling them into ahighly ordered macromolecular framework. To accom-plish these activities, the cells must sense changes in thematrix composition caused by degradation of macromol-ecules and the mechanical demands placed on the articu-lar surface, and then respond by synthesizing appropriatetypes and amounts of macromolecules.

Aging profoundly alters chondrocyte function. Withaging, the capacity of the cells to synthesize some types ofproteoglycans, their proliferative capacity, and their re-sponse to anabolic stimuli (including growth factors) de-creases. These changes may limit the ability of the cells tomaintain and restore the tissue and thereby contribute tothe development and progression of articular cartilage de-generation.

Extracellular M a trixThe articular cartilage matrix consists of two compo-nents: the tissue fluid and the framework of structuralmacromolecules that give the tissue its form and stability.The interaction of the tissue fluid and the macromolecu-lar framework give the tissue its mechanical properties ofstiffness and resilience. Water contributes up to 80% of

Figure 1 A rticular cartila g e fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . Th e tissu e is org a niz e d in t o f o ur lay-ers or z o n es: t h e su p erficial z o n e (S), t h e tra nsit io n al z o n e (T),t h e mid dle (ra dial or d e e p) z o n e (M), a n d t h e calcif ie d cartila g ez o n e (C). Bar = 50 n m . (Re pro d uce d fro m Buck w alt er JA , H u n-zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io na n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p airo f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica nAca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Figure 2 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), mid dle (ra dial or d e e p) z o n e (C), a n d calci-f ie d cartila g e z o n e (D) o f m a t ure articular cartila g e ch o n drocyt es fro m t h e m e dial f e m oral co n dyle o f a ra b bit . N = n ucle us, G =glyco g e n , IF = in t erm e dia t e fila m e n ts, M M = min eraliz e d m a trix, U M = u n min eraliz e d m a trix, b ar = 3 n m . (Re pro d uce d fro m Buck-w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n dRe p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

162

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

Page 6: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Condrocitos  •  Función  

– Producen  y  man$ene  la  matriz  extracelular.  – Responden  a  cambios  en  la  composición  de  la  matriz  extracelular    

•  Degradación  de  macromoléculas  •  Demandas  mecánicas  sobre  la  superficie  ar$cular  

•  Respuesta  – Sinte$zan  macromoléculas    

•  (colágeno,  proteoglicanos)  

Page 7: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Matriz  extracelular  •  Agua        

–  70%  del  peso  del  carDlago  ar$cular    

•  Macromoléculas  estructurales  – Da  al  tejido  su  forma  y  estabilidad    –   30%  del  peso  del  carDlago  ar$cular  

•  Colágeno  60%  •  Proteoglicanos  25%  a  35%  •  Proteínas  no  colagenicas    15%  a  20%  

                                           Rigidez  y  Resistencia  

 

Page 8: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Matriz  Extracelular  •  Función  

– Rigidez  y  resistencia  del  tejido  – Protege  las  células  del  daño  causado  por  el  uso.  – Flexibilidad  y  Lubricación  del  tejido  

•  Proteoglicanos  de  cadena  larga  (Agrecanos)  – Limita  el  ingreso  y  egreso  de  moléculas  al  liquido  sinovial.    

   

 

Page 9: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Agrecanos  •  Gran  numero  de  cargas  nega$vas    

–  Incrementa  la  osmolaridad  del  tejido  – Atrae  iones  de  carga  posi$va  

•  Sodio  – Repele  iones  de  carga  nega$va  

•  Cloro  

Page 10: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Colágeno  •  La  mas  común  $po  II  (90%  a  95%)  

– VI,  IX,  X,  XI  •  Se  distribuye  uniformemente  a  través  de  las  diferentes  zonas  excepto  zona  superficial  

•  Colágeno  $po  IX  une  la  red  fibrilar  con  los  proteoglicanos  

•  Colágeno  $pos  VI  une  los  condrocitos  con  la  matriz  extracelular  

Page 11: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Colágeno  •  II,  IX    XI  forman  la  red  fibrilar  que  se  observa  en  el  microscopio  electrónico  

the weight of articular cartilage and the interaction of wa-ter with the matrix macromolecules significantly influ-ences the mechanical properties of the tissue. Some of thewater is in the form of a gel and thus with pressure canmove freely in and out of the tissue. With pressure on thecartilage the water may move out of the tissue and form arelationship with the cartilage surface, which then servesas the lubrication system for cartilage movement on carti-lage. The volume, concentration, and behavior within thetissue depends primarily on its interaction with the struc-tural macromolecules: in particular, the large aggregatingproteoglycans that help maintain the fluid within the ma-trix and the fluid electrolyte concentrations. Because thesemacromolecules have large numbers of negative chargesthat attract positively charged ions and repel negativelycharged ions, they increase the concentration of positiveions such as sodium and decrease the concentration ofnegative ions such as chloride. The increase in total inor-ganic ion concentration increases the tissue osmolarity.

Struct ural M acro m oleculesThe cartilage structural macromolecules, collagens, pro-teoglycans, and noncollagenous proteins contribute 20%to 40% of the wet weight of the tissue. The three classes of

macromolecules differ in their concentrations within thetissue and in their contributions to the tissue properties.Collagens contribute about 60% of the dry weight ofcartilage, proteoglycans contribute 25% to 35%, and thenoncollagenous proteins and glycoproteins contribute15% to 20%. Collagens are distributed relatively uni-formly throughout the depth of the cartilage, except forthe collagen-rich superficial zone (“the skin” of cartilagein which the collagen fibers run parallel the surface). Thecollagen fibrillar meshwork gives cartilage its form andtensile strength and also is responsible for maintaining thephysical location of the chondrocyte. Proteoglycans andnoncollagenous proteins bind to the collagenous mesh-work or become mechanically entrapped within it, andwater fills this molecular framework. Some noncollage-nous proteins help organize and stabilize the matrix mac-romolecular framework whereas others help chondrocytesbind to the macromolecules of the matrix.

Articular cartilage, like most tissues, contains multiplegenetically distinct collagen types, the major ones beingcollagen types II, VI, IX, X and XI. Collagen types II, IXand XI form the cross-banded fibrils seen by electron mi-croscopy (Figure 3). The organization of these fibrils into atight meshwork that extends throughout the tissue pro-

Figure 3 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), u p p er p ortio n o f t h e mid dle (ra dial or d e e p)z o n e (C), a n d lo w er p ortio n o f t h e mid dle z o n e (D) o f t h e articular cartila g e in t ert errit orial m a trix fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . A rro ws in dica t e pro t e o glyca ns precipit a t e d w it h ru t h e niu m h exa min e trichlorid e . Bar = 0.5 n m . (Re pro-d uce d fro m Buck w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt erJA (e ds): Injury a n d Re p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p405-425.)

Chapter 9 Articular Cartilage and Osteoarthritis

163American Academy of Orthopaedic Surgeons | Orthopaedic Basic Science, ed 3

Page 12: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Colágeno  •  Función    

– Forma  y  fuerza  tensil  al  carDlago  

– Forma  una  red  fibrilar  

– Mantener  la  localización  bsica    de  los  condrocitos  

Page 13: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Proteoglicanos  •  Proteína  +  1  ó  mas  cadenas  de  glucosaminoglicanos  

•  La  concentración  varia  de  acuerdo  a  la    ar$culación,  edad,  daño  ar$cular  y  enfermedad.  

•  Glucosaminoglicanos:  disacáridos  repe$dos    – Acido  hialuronico  – Condroi$n  sulfato  – Keratan  sulfato  – Dermatan  sulfato    

.  

vides the tensile stiffness and strength of articular cartilageand contributes to the cohesiveness of the tissue by me-chanically entrapping the large proteoglycans. The princi-pal articular cartilage collagen, type II, accounts for 90%to 95% of the cartilage collagen and forms the primary

component of the cross-banded fibrils. Type IX collagenmolecules bind covalently to the superficial layers of thecross-banded fibrils and project into the matrix wherethey also can bind covalently to other type IX collagenmolecules. Type XI collagen molecules bind covalently totype II collagen molecules and probably form part of theinterior structure of the cross-banded fibrils. The project-ing portions of type IX collagen molecules may also helpbind together the collagen fibril mesh and connect the col-lagen meshwork with proteoglycans. Type VI collagen ap-pears to form an important part of the matrix immediatelysurrounding chondrocytes and help chondrocytes attachto the matrix. The presence of type X collagen only nearthe cells of the calcified cartilage zone of articular cartilageand the hypertrophic zone of growth plate (where the lon-gitudinal cartilage septa begin to mineralize) suggests thatit has a role in cartilage mineralization.

Pro t e o glyca nsProteoglycans consist of a protein core and one ormore gly-cosaminoglycan chains (long unbranched polysaccharidechains) consisting of repeating disaccharides that contain anamino sugar. Each disaccharide unit has at least one nega-tively charged carboxylate or sulfate group, so the gly-cosaminoglycans form long strings of negative charges thatrepel one another and attract cations. Glycosaminoglycansfound in cartilage include hyaluronic acid, chondroitin sul-fate, keratan sulfate, and dermatan sulfate. The concentra-tion of these molecules varies among sites within articularcartilage and also with age, cartilage injury, and disease.

Figure 4 Tra nsmissio n electro n micro gra p h sh o w in g b ovin earticular cartila g e pro t e o glyca n a g gre g a t es fro m a calf (A) a n dst e er (B) co nsistin g o f ce n tral hyaluro n a n fila m e n ts a n d m ultiplea t t ach e d a g greca ns. A g gre g a t es fro m old er a nim als h ave sh ort-er hyaluro n a n fila m e n ts a n d f e w er a g greca ns. In a d ditio n , t h ea g greca ns are sh ort er a n d vary m ore in le n g t h . Bar = 500 n m .(Re pro d uce d w it h p ermissio n fro m Buck w alt er JA , K u e t t n er KE,Th o n ar EJ-M : A g e-rela t e d ch a n g es in articular cartila g e pro-t e o glyca ns: Electro n microsco pic st u dies. J O rt h o p Res 1985;3:251-257.)

Figure 5 A, A t o mic f orce im a g e o f a g greca n fro m f e t al b ovin e e pip hyse al cartila g e . N o t e t h a t glycosa min o glyca n ch ains projectfro m t h e ce n tral pro t ein fila m e n t o f t h e a g greca n m olecule . B, A t o mic f orce im a g e o f a g greca n fro m m a t ure b ovin e n asal cartila g e .N o t e t h a t t h e a g greca n m olecule fro m a sk ele t ally m a t ure a nim al is sh ort er a n d h as sh ort er glycosa min o glyca n ch ains. (Re pro d uce dw it h p ermissio n fro m N g L, Gro d zinsky AJ, Sa n dy JD , e t al: Struct ure a n d co n f orm a tio n o f in divid u al a g greca n m olecules a n d t h eco nstit u e n t G A G ch ains via a t o mic f orce microsco py. J Struct Biol 2003;143:242-257.)

164

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

Page 14: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Proteoglicanos  •  2  $pos  principales  

– Moléculas  de  cadena  Larga  90%  •  Agrecanos      

– Moléculas  Cortas  10%  •  Decorinas  •  Biglycano  •  Fibromodulina  •  Colágeno  $po  IX  

Page 15: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Proteínas  no  colágenicas  y  glucocoproteínas  

•  Proteínas,  monosacáridos  u  oligosacáridos  

•  Ayudan  a  organizar  y  mantener  la  estructura  macromolecular    

•  Ancorina  CII  (ancla  condrocitos  a  las  fibras  de  colágeno)  

Page 16: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

CarDlago  Ar$cular    

•  Zonas    – Superficial  o  tangencial  

– Transicional  

– Zona  media  o  radial    – Zona  de  carDlago  calcificado    

tial for cartilage resiliency and joint lubrication or in theconcentrations of collagen and proteoglycans. It is clear,however, that the chondrocytes are in large measure re-sponsible for the maintenance and structural competence

of these materials and for allowing them to carry out theirrequired activities and functions. The chondrocytes areresponsible for producing and replacing appropriateamounts of macromolecules and assembling them into ahighly ordered macromolecular framework. To accom-plish these activities, the cells must sense changes in thematrix composition caused by degradation of macromol-ecules and the mechanical demands placed on the articu-lar surface, and then respond by synthesizing appropriatetypes and amounts of macromolecules.

Aging profoundly alters chondrocyte function. Withaging, the capacity of the cells to synthesize some types ofproteoglycans, their proliferative capacity, and their re-sponse to anabolic stimuli (including growth factors) de-creases. These changes may limit the ability of the cells tomaintain and restore the tissue and thereby contribute tothe development and progression of articular cartilage de-generation.

Extracellular M a trixThe articular cartilage matrix consists of two compo-nents: the tissue fluid and the framework of structuralmacromolecules that give the tissue its form and stability.The interaction of the tissue fluid and the macromolecu-lar framework give the tissue its mechanical properties ofstiffness and resilience. Water contributes up to 80% of

Figure 1 A rticular cartila g e fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . Th e tissu e is org a niz e d in t o f o ur lay-ers or z o n es: t h e su p erficial z o n e (S), t h e tra nsit io n al z o n e (T),t h e mid dle (ra dial or d e e p) z o n e (M), a n d t h e calcif ie d cartila g ez o n e (C). Bar = 50 n m . (Re pro d uce d fro m Buck w alt er JA , H u n-zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io na n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p airo f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica nAca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Figure 2 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), mid dle (ra dial or d e e p) z o n e (C), a n d calci-f ie d cartila g e z o n e (D) o f m a t ure articular cartila g e ch o n drocyt es fro m t h e m e dial f e m oral co n dyle o f a ra b bit . N = n ucle us, G =glyco g e n , IF = in t erm e dia t e fila m e n ts, M M = min eraliz e d m a trix, U M = u n min eraliz e d m a trix, b ar = 3 n m . (Re pro d uce d fro m Buck-w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n dRe p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

162

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

Page 17: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Zona  Superficial  o  tangencial        •  La  zona  mas  delgada  •  Fuerte  y  rígida    •  Se  divide  en  2  capas  

– 1.-­‐  fibras  pequeñas,  pocos  polisacáridos,  sin  células  •  Lamina  Splendens  

– 2.-­‐  Condrocitos  planos  de  forma  helicoidal  y  paralelos  a  la  superficie  ar$cular  

– Alta  concentración  de  colágeno  y  baja  de  proteoglicanos  

– Alta  concentración  de  agua  y  fibronec$na  

Page 18: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Zona  Transicional    •  Mayor  espesor  que  la  zona  superficial  •  Condrocitos  esferoidales    •  Fibras  colágeno  

– Mayor  diámetro    – No  organizadas  y  oblicuas  a  la  superficie    

•  Mayor  contenido  de  proteoglicanos    •  Menos  concentración  de  agua  

tial for cartilage resiliency and joint lubrication or in theconcentrations of collagen and proteoglycans. It is clear,however, that the chondrocytes are in large measure re-sponsible for the maintenance and structural competence

of these materials and for allowing them to carry out theirrequired activities and functions. The chondrocytes areresponsible for producing and replacing appropriateamounts of macromolecules and assembling them into ahighly ordered macromolecular framework. To accom-plish these activities, the cells must sense changes in thematrix composition caused by degradation of macromol-ecules and the mechanical demands placed on the articu-lar surface, and then respond by synthesizing appropriatetypes and amounts of macromolecules.

Aging profoundly alters chondrocyte function. Withaging, the capacity of the cells to synthesize some types ofproteoglycans, their proliferative capacity, and their re-sponse to anabolic stimuli (including growth factors) de-creases. These changes may limit the ability of the cells tomaintain and restore the tissue and thereby contribute tothe development and progression of articular cartilage de-generation.

Extracellular M a trixThe articular cartilage matrix consists of two compo-nents: the tissue fluid and the framework of structuralmacromolecules that give the tissue its form and stability.The interaction of the tissue fluid and the macromolecu-lar framework give the tissue its mechanical properties ofstiffness and resilience. Water contributes up to 80% of

Figure 1 A rticular cartila g e fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . Th e tissu e is org a niz e d in t o f o ur lay-ers or z o n es: t h e su p erficial z o n e (S), t h e tra nsit io n al z o n e (T),t h e mid dle (ra dial or d e e p) z o n e (M), a n d t h e calcif ie d cartila g ez o n e (C). Bar = 50 n m . (Re pro d uce d fro m Buck w alt er JA , H u n-zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io na n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p airo f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica nAca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Figure 2 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), mid dle (ra dial or d e e p) z o n e (C), a n d calci-f ie d cartila g e z o n e (D) o f m a t ure articular cartila g e ch o n drocyt es fro m t h e m e dial f e m oral co n dyle o f a ra b bit . N = n ucle us, G =glyco g e n , IF = in t erm e dia t e fila m e n ts, M M = min eraliz e d m a trix, U M = u n min eraliz e d m a trix, b ar = 3 n m . (Re pro d uce d fro m Buck-w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n dRe p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

162

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

the weight of articular cartilage and the interaction of wa-ter with the matrix macromolecules significantly influ-ences the mechanical properties of the tissue. Some of thewater is in the form of a gel and thus with pressure canmove freely in and out of the tissue. With pressure on thecartilage the water may move out of the tissue and form arelationship with the cartilage surface, which then servesas the lubrication system for cartilage movement on carti-lage. The volume, concentration, and behavior within thetissue depends primarily on its interaction with the struc-tural macromolecules: in particular, the large aggregatingproteoglycans that help maintain the fluid within the ma-trix and the fluid electrolyte concentrations. Because thesemacromolecules have large numbers of negative chargesthat attract positively charged ions and repel negativelycharged ions, they increase the concentration of positiveions such as sodium and decrease the concentration ofnegative ions such as chloride. The increase in total inor-ganic ion concentration increases the tissue osmolarity.

Struct ural M acro m oleculesThe cartilage structural macromolecules, collagens, pro-teoglycans, and noncollagenous proteins contribute 20%to 40% of the wet weight of the tissue. The three classes of

macromolecules differ in their concentrations within thetissue and in their contributions to the tissue properties.Collagens contribute about 60% of the dry weight ofcartilage, proteoglycans contribute 25% to 35%, and thenoncollagenous proteins and glycoproteins contribute15% to 20%. Collagens are distributed relatively uni-formly throughout the depth of the cartilage, except forthe collagen-rich superficial zone (“the skin” of cartilagein which the collagen fibers run parallel the surface). Thecollagen fibrillar meshwork gives cartilage its form andtensile strength and also is responsible for maintaining thephysical location of the chondrocyte. Proteoglycans andnoncollagenous proteins bind to the collagenous mesh-work or become mechanically entrapped within it, andwater fills this molecular framework. Some noncollage-nous proteins help organize and stabilize the matrix mac-romolecular framework whereas others help chondrocytesbind to the macromolecules of the matrix.

Articular cartilage, like most tissues, contains multiplegenetically distinct collagen types, the major ones beingcollagen types II, VI, IX, X and XI. Collagen types II, IXand XI form the cross-banded fibrils seen by electron mi-croscopy (Figure 3). The organization of these fibrils into atight meshwork that extends throughout the tissue pro-

Figure 3 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), u p p er p ortio n o f t h e mid dle (ra dial or d e e p)z o n e (C), a n d lo w er p ortio n o f t h e mid dle z o n e (D) o f t h e articular cartila g e in t ert errit orial m a trix fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . A rro ws in dica t e pro t e o glyca ns precipit a t e d w it h ru t h e niu m h exa min e trichlorid e . Bar = 0.5 n m . (Re pro-d uce d fro m Buck w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt erJA (e ds): Injury a n d Re p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p405-425.)

Chapter 9 Articular Cartilage and Osteoarthritis

163American Academy of Orthopaedic Surgeons | Orthopaedic Basic Science, ed 3

Page 19: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Zona  media  o  radial    •  Condrocitos  de  forma  esferoidal  alineados  en  columnas  perpendiculares  a  la  superficie  

•  Fibras  de  colágeno  de  mayor  diámetro  •  Mayor  concentración  de  proteoglicanos  •  Menor  concentración  de  agua  •  Resiste  la  fuerza  de  cizallamiento    

tial for cartilage resiliency and joint lubrication or in theconcentrations of collagen and proteoglycans. It is clear,however, that the chondrocytes are in large measure re-sponsible for the maintenance and structural competence

of these materials and for allowing them to carry out theirrequired activities and functions. The chondrocytes areresponsible for producing and replacing appropriateamounts of macromolecules and assembling them into ahighly ordered macromolecular framework. To accom-plish these activities, the cells must sense changes in thematrix composition caused by degradation of macromol-ecules and the mechanical demands placed on the articu-lar surface, and then respond by synthesizing appropriatetypes and amounts of macromolecules.

Aging profoundly alters chondrocyte function. Withaging, the capacity of the cells to synthesize some types ofproteoglycans, their proliferative capacity, and their re-sponse to anabolic stimuli (including growth factors) de-creases. These changes may limit the ability of the cells tomaintain and restore the tissue and thereby contribute tothe development and progression of articular cartilage de-generation.

Extracellular M a trixThe articular cartilage matrix consists of two compo-nents: the tissue fluid and the framework of structuralmacromolecules that give the tissue its form and stability.The interaction of the tissue fluid and the macromolecu-lar framework give the tissue its mechanical properties ofstiffness and resilience. Water contributes up to 80% of

Figure 1 A rticular cartila g e fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . Th e tissu e is org a niz e d in t o f o ur lay-ers or z o n es: t h e su p erficial z o n e (S), t h e tra nsit io n al z o n e (T),t h e mid dle (ra dial or d e e p) z o n e (M), a n d t h e calcif ie d cartila g ez o n e (C). Bar = 50 n m . (Re pro d uce d fro m Buck w alt er JA , H u n-zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io na n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p airo f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica nAca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Figure 2 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), mid dle (ra dial or d e e p) z o n e (C), a n d calci-f ie d cartila g e z o n e (D) o f m a t ure articular cartila g e ch o n drocyt es fro m t h e m e dial f e m oral co n dyle o f a ra b bit . N = n ucle us, G =glyco g e n , IF = in t erm e dia t e fila m e n ts, M M = min eraliz e d m a trix, U M = u n min eraliz e d m a trix, b ar = 3 n m . (Re pro d uce d fro m Buck-w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n dRe p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

162

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

the weight of articular cartilage and the interaction of wa-ter with the matrix macromolecules significantly influ-ences the mechanical properties of the tissue. Some of thewater is in the form of a gel and thus with pressure canmove freely in and out of the tissue. With pressure on thecartilage the water may move out of the tissue and form arelationship with the cartilage surface, which then servesas the lubrication system for cartilage movement on carti-lage. The volume, concentration, and behavior within thetissue depends primarily on its interaction with the struc-tural macromolecules: in particular, the large aggregatingproteoglycans that help maintain the fluid within the ma-trix and the fluid electrolyte concentrations. Because thesemacromolecules have large numbers of negative chargesthat attract positively charged ions and repel negativelycharged ions, they increase the concentration of positiveions such as sodium and decrease the concentration ofnegative ions such as chloride. The increase in total inor-ganic ion concentration increases the tissue osmolarity.

Struct ural M acro m oleculesThe cartilage structural macromolecules, collagens, pro-teoglycans, and noncollagenous proteins contribute 20%to 40% of the wet weight of the tissue. The three classes of

macromolecules differ in their concentrations within thetissue and in their contributions to the tissue properties.Collagens contribute about 60% of the dry weight ofcartilage, proteoglycans contribute 25% to 35%, and thenoncollagenous proteins and glycoproteins contribute15% to 20%. Collagens are distributed relatively uni-formly throughout the depth of the cartilage, except forthe collagen-rich superficial zone (“the skin” of cartilagein which the collagen fibers run parallel the surface). Thecollagen fibrillar meshwork gives cartilage its form andtensile strength and also is responsible for maintaining thephysical location of the chondrocyte. Proteoglycans andnoncollagenous proteins bind to the collagenous mesh-work or become mechanically entrapped within it, andwater fills this molecular framework. Some noncollage-nous proteins help organize and stabilize the matrix mac-romolecular framework whereas others help chondrocytesbind to the macromolecules of the matrix.

Articular cartilage, like most tissues, contains multiplegenetically distinct collagen types, the major ones beingcollagen types II, VI, IX, X and XI. Collagen types II, IXand XI form the cross-banded fibrils seen by electron mi-croscopy (Figure 3). The organization of these fibrils into atight meshwork that extends throughout the tissue pro-

Figure 3 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), u p p er p ortio n o f t h e mid dle (ra dial or d e e p)z o n e (C), a n d lo w er p ortio n o f t h e mid dle z o n e (D) o f t h e articular cartila g e in t ert errit orial m a trix fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . A rro ws in dica t e pro t e o glyca ns precipit a t e d w it h ru t h e niu m h exa min e trichlorid e . Bar = 0.5 n m . (Re pro-d uce d fro m Buck w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt erJA (e ds): Injury a n d Re p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p405-425.)

Chapter 9 Articular Cartilage and Osteoarthritis

163American Academy of Orthopaedic Surgeons | Orthopaedic Basic Science, ed 3

Page 20: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Zona  de  car$lago  calcificado  •  Separa  la  zona  radial  del  hueso  subcondral  •  Las  células  con$enen  un  reDculo  endoplasmico  y  aparato  de  Golgi  pequeño.  

•  Nivel  metabólico  muy  bajo,  no  funcionales    

tial for cartilage resiliency and joint lubrication or in theconcentrations of collagen and proteoglycans. It is clear,however, that the chondrocytes are in large measure re-sponsible for the maintenance and structural competence

of these materials and for allowing them to carry out theirrequired activities and functions. The chondrocytes areresponsible for producing and replacing appropriateamounts of macromolecules and assembling them into ahighly ordered macromolecular framework. To accom-plish these activities, the cells must sense changes in thematrix composition caused by degradation of macromol-ecules and the mechanical demands placed on the articu-lar surface, and then respond by synthesizing appropriatetypes and amounts of macromolecules.

Aging profoundly alters chondrocyte function. Withaging, the capacity of the cells to synthesize some types ofproteoglycans, their proliferative capacity, and their re-sponse to anabolic stimuli (including growth factors) de-creases. These changes may limit the ability of the cells tomaintain and restore the tissue and thereby contribute tothe development and progression of articular cartilage de-generation.

Extracellular M a trixThe articular cartilage matrix consists of two compo-nents: the tissue fluid and the framework of structuralmacromolecules that give the tissue its form and stability.The interaction of the tissue fluid and the macromolecu-lar framework give the tissue its mechanical properties ofstiffness and resilience. Water contributes up to 80% of

Figure 1 A rticular cartila g e fro m t h e m e dial f e m oral co n dyleo f a n 8-m o n t h-old ra b bit . Th e tissu e is org a niz e d in t o f o ur lay-ers or z o n es: t h e su p erficial z o n e (S), t h e tra nsit io n al z o n e (T),t h e mid dle (ra dial or d e e p) z o n e (M), a n d t h e calcif ie d cartila g ez o n e (C). Bar = 50 n m . (Re pro d uce d fro m Buck w alt er JA , H u n-zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io na n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n d Re p airo f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica nAca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

Figure 2 Electro n micro gra p hs sh o w in g t h e su p erficial z o n e (A), tra nsit io n al z o n e (B), mid dle (ra dial or d e e p) z o n e (C), a n d calci-f ie d cartila g e z o n e (D) o f m a t ure articular cartila g e ch o n drocyt es fro m t h e m e dial f e m oral co n dyle o f a ra b bit . N = n ucle us, G =glyco g e n , IF = in t erm e dia t e fila m e n ts, M M = min eraliz e d m a trix, U M = u n min eraliz e d m a trix, b ar = 3 n m . (Re pro d uce d fro m Buck-w alt er JA , H u n zik er EB, Rose n b erg LC, e t al: A rticular cartila g e: Co m p osit io n a n d struct ure , in W o o SL, Buck w alt er JA (e ds): Injury a n dRe p air o f t h e M usculosk ele t al So f t Tissu es. Park Rid g e , IL, A m erica n Aca d e my o f O rt h o p a e dic Surg e o ns, 1988, p p 405-425.)

162

Section 2 Physiology of Musculoskeletal Tissues

Orthopaedic Basic Science, ed 3 | A merican Academy of Orthopaedic Surgeons

Page 21: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Interacción  Matriz  -­‐Condrocito  •  En  respuesta  a  diferentes  esDmulos  •  Autocrino  o  paracrino  

–  Interleucina  1      •  Metaloproteasas  

–  Degradan  macromoléculas  –  Interfieren  en  la  síntesis  te  proteoglicanos  

– Factor  de  crecimiento  dependiente  de  insulina  1  – Factor  de  crecimiento  transformador  beta    

•  Es$mulan  la  síntesis  de  matriz  extracelular  y  proliferación  celular  

Page 22: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Biomecánica  •  Cargas  mecánicas  está$cas  y  dinámicas  

– Compresión  (red  fibrilar)  Colágeno  •  .5  a  1  MPa  

– Cizallamiento  (red  fibrilar)  Colágeno  •  .25  MPa  

– Tensión  (Proteoglicanos)  •  10  a  50  MPa  

La  habilidad  del  carDlago  para  resis$r  las  fuerzas  de  compresión,  tensión  y  cizallamiento  depende  de  la  composición  e  integridad  de  l  matriz  extracelular  

Page 23: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

ents, substrates for synthesis of matrix molecules, newlysynthesized molecules, degraded matrix molecules, meta-bolic waste products and molecules that help regulate cellfunction, such as cytokines and growth factors, all passthrough the matrix, and in some instances may be storedin the matrix.

Throughout life, chondrocytes degrade and synthesizematrix macromolecules. The mechanisms that control thebalance between these activities remain poorly under-stood, but cytokines with catabolic and anabolic effectsappear to have important roles. For example, interleukin 1(IL-1) induces expression of matrix metalloproteases thatcan degrade the matrix macromolecules and interfereswith synthesis of matrix proteoglycans at the transcrip-tional level. Other cytokines such as insulin-dependentgrowth factor I and transforming growth factor beta op-pose these catabolic activities by stimulating matrix syn-

thesis and cell proliferation. In response to a variety ofstimuli, chondrocytes synthesize and release these cytok-ines into the matrix where they may bind to receptors onthe cell surfaces (stimulating cell activity either by auto-crine or paracrine mechanisms) or become trappedwithin the matrix. The degradative response, on the otherhand, appears to be the result of a complex cascade thatincludes IL-1, stromelysin, aggrecanase, plasmin, and col-lagenase being activated or inhibited by factors such asprostaglandins, transforming growth factors beta, tumornecrosis factor, tissue inhibitors of metalloproteases, tissueplasminogen activator, plasminogen activator inhibitor,and other molecules.

Articular Cartilage BiomechanicsArticular cartilage is subjected to a wide range of staticand dynamic mechanical loads. Under normal physiologic

Figure 7 Lo a din g o f articular cartila g e ca uses tissu e d e f orm a tio n a n d ch a n g es in t h e cellular micro e nviro n m e n t . D urin g join t m o-tio n (A), articular cartila g e (gray) is su bject e d t o a co m plex co m bin a tio n o f co m pressio n a n d sh e ar f orces, ca usin g d e f orm a tio n o f t h ecells a n d extracellular m a trix as w ell as f luid a n d io n flo ws. M e t h o d olo gies d evelo p e d t o m e asure cartila g e bio m ech a nical pro p ertiesu n d er hydrost a tic (or osm o tic) pressure lo a din g (B), u nco n fin e d (C) a n d co n fin e d (D) co m pressio n , sh e ar (E), a n d t e nsio n h ave b e e nuse d t o q u a n tify t h e m e t a b olic resp o nse o f articular cartila g e t o n orm al a n d injurio us m ech a nical lo a ds. (A d a p t e d w it h p ermissio nfro m D e M icco M , Kim YJ, Gro d zinsky AJ: Resp o nse o f t h e ch o n drocyt e t o m ech a nical stim uli, in Bra n d t K , D o h erty M , Lo h m a n d er S(e ds): Ost e o art hritis. O xf ord , En gla n d , O xf ord U niversity Press, 2003.)

Chapter 9 Articular Cartilage and Osteoarthritis

167American Academy of Orthopaedic Surgeons | Orthopaedic Basic Science, ed 3

Cuando el cartilago es comprimido expulsa agua/solutos de proteoglicanos , éstos balanceando las cargas  

Page 24: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  

Perdida  progresiva  de  la  estructura  y  función  normal  del  carDlago  ar$cular,  acompañado  por  

un  intento  de  reparación  del  mismo  

Page 25: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  

•  Se  desarrolla  frecuentemente  en  ausencia  de  una  causa  aparente  (primaria  o  idiopá$ca)  

•  Secundarias  – Daño  ar$cular  –  Infección  – Desordenes  neurológicos,  metabólicos,  hereditarios  

Page 26: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  

•  Primaria  o  Idiopá$ca  – Edad,  predisposición  gené$ca,  desordenes  metabólicos  y  hormonales,  inflamación  

– Peso  – Ac$vidad  fisica  –  Incidencia  y  prevalencia  aumenta  >40  años    

Page 27: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  

•  Secundaria  – La  edad  de  inicio  depende  de  la  causa    – Deformidades  (displasia  del  desarrollo  de  la  cadera)  

– Se  puede  presentar  en  adultos  jóvenes  e  incluso  en  niños  

   

Page 28: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  •  Rodillas  

•  Caderas  

•  Pie  

•  Columna  

•  Manos    

Page 29: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  Síntomas  y  signos  

– Dolor    

– Limitación  de  la  movilidad    

– Crepitación    

–  Inflamación    

– Deformidad    

Page 30: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  

•  Tejidos  involucrados  –  Tejido  sinovial  –  Car$lago  ar$cular  – Hueso  subcondral  y  metafisiario    –  Ligamentos  –  Capsula  ar$cular    – Músculos    

Cambio  Primario  Perdida  del  car$lago  ar$cular,  remodelación  de  hueso  

subcondral  y  formación  de  osteofitos.  

Page 31: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  •  Microscópicos  +  tempranos  

– Deshilachamiento  o  desfibrilación  de  la  zona  superficial  hasta  transicional  del  carDlago  ar$cular.  

– Disminución  del  la  $nción  de  proteoglicanos  en  zonas  superficial  y  transicional        

 – Cambio  la  vascularidad  subcondral.  

Page 32: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  •  Visibles  +  tempranos  

– Desfibrilación  o  disrupción  de  las  capas  superficiales  del  carDlago  ar$cular  

•  Progresión  – Hendiduras,  la  superficie  ar$cular  se  vuelve  rugosa  e  irregular  

– Las  hendiduras  y  fibrilación  alcanzan  el  hueso  subcondral  

– Se  liberan  fragmentos  libres  ar$culares  y  disminuye  el  grosor  del  carDlago.    

– Al  mismo  $empo  existe  una  degeneración  enzimá$ca  de  la  matriz  

Page 33: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  

Page 34: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  

•  Los  mecanismos  responsables  de  la  progresión  no  están  claros  

•  Proceso  en  3  fases  1.-­‐Alteración  o  daño  en  la  matriz  del  car$lago  2.-­‐  Respuesta  de  los  condrocitos  al  daño  del  tejido  3.-­‐  Disminución  de  la  respuesta  sinté$ca  de  los  condrocitos  y  progresión  de  la  perdida  de  tejidos  

Page 35: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  1º  Fase.  Causas  

– Carga  torsional  o  impacto  de  alta  intensidad    

–  Inflamación  Ar$cular  

– Cambios  metabólicos  en  el  tejido  

Page 36: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  1º  Fase    

– Disrupción  de  la  estructura  macromolecular  en  incremento  en  el  contenido  de  agua.  

– Colágeno  $po  II  permanece  constante  – Disminuye  agregación  de  proteoglicanos    – Agrecanos    

•  Disminución  de  la  longitud  y  de  las  cadenas  de  glucosaminoglicanos.  

Disminución  en  la  rigidez  de  la  matriz  extracelular  

Page 37: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartrosis  •  2º  Fase      

Condrocitos  detectan  daño  en  los  tejidos  o  alteración  en  la  osmolaridad,  densidad  o  estructura  y  liberan  mediadores  que  es$mulan  la  respuesta  celular    

Page 38: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  2º  Fase.  Respuesta    

– Ac$vidad  anabólica  y  catabólica  – Respuesta  Anabólica  

•  Proliferación  de  condroci$ca  •  Síntesis  de  matriz  extracelular  

– Respuesta  Catabólica  •  Producción    de  Oxido  Nítrico  •  Producción  de  Interleucina  1  

Page 39: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Condrocitos  Liberación  en  respuesta  a  

un  estrés  

Oxido  nítrico  

Interleucina  1  

Metaloproteasas  

Degradación  de  las  moléculas  de  la  matriz  

(fibronec@na)  

Interleucina  1  

Page 40: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  3º  Fase    

– Falla  en  estabilizar  o  restaurar  el  tejido.  •  Daño  progresivo  el  carDlago  ar$cular  •  Disminución  en  la  respuesta  anabólica  de  los  condrocitos    •  Osteoartrosis  

Page 41: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  •  Alteraciones  del  hueso  subcondral  

–  Incremento  en  la  densidad  del  hueso  subcondral  o  esclerosis  subcondral  

•  (Primer  signo  de  enf.  ar$cular  degenera$va  en  hueso  subcondral)  

– Formación  de  cavidades  óseas  en  forma  de  quiste  con  tejido  mixoide,  fibroso  o  car$laginoso  

– Apariencia  de  car$lago  regenera$vo  en  o  sobre  el  hueso  subcondral.  OSTEOFITOS  

Page 42: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Osteoartri$s  

•  Acortamiento  

•  Deformidad    

•  Inestabilidad    

Page 43: Car$lago(Ar$cular(y( Osteoartrosis( · PDF fileColágeno(• II,(IX(XI forman(lared(fibrilar(que(se(observaen(el(microscopio(electrónico(the weight of articular cartilage and the

Tratamiento  

•  Objetivos – Alivio de sintomas – Mantener/mejorar función – Limitar incapacidad física – Evitar toxicidad medicamentosa