case studies: field qa/qc monitoring of subsurface bos 100

45
Battelle Presentation April 10, 2018 Nathan Lichti (Vertex Environmental Inc.) – Presenter Bruce Tunnicliffe (Vertex Environmental Inc.) Mike Mazzarese (AST Environmental Inc.) Case Studies: Field QA/QC Monitoring of Subsurface BOS 100® Injections

Upload: others

Post on 25-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Battelle PresentationApril 10, 2018

Nathan Lichti (Vertex Environmental Inc.) – PresenterBruce Tunnicliffe (Vertex Environmental Inc.)Mike Mazzarese (AST Environmental Inc.)

Case Studies: Field QA/QC Monitoring of Subsurface BOS 100® Injections

Page 2: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

• Introduction• Background

• BOS 100® Amendment• Delivery Approach• Field Monitoring

• Case Studies• Dry Cleaner Case Study • Industrial Site Case Study

• Conclusions

Introduction – Agenda

Page 3: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

• Nathan Lichti, B.A.Sc., P.Eng.• Environmental Engineer• University of Waterloo, Canada

• Vertex Environmental Inc.• Environmental Contractor• Remediation services across Canada• Approved Installer for Trap & Treat® 

products in Canada

Introduction – Vertex

Page 4: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Background – Delivery & Field Monitoring

Page 5: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Background – Amendment Overview

• BOS 100® • Consists of GAC impregnated 

with metallic iron

• Mechanisms:• “Trap” the contamination 

within the GAC matrix• “Treat” the contamination 

via reductive dechlorination within the GAC matrix

• Applications:• Treatment of chlorinated 

solvents• Overburden or bedrock• Plume or barrier applications

Mixing BOS 100® in the field

CONTAMINANTS

ACTIVATED CARBON

PORES

Activated Carbonadsorbs contaminants

Page 6: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Background – Delivery Equipment

INJECTION TRAILER

INTERLOCKING INTERVALS OF AMENDMENT

DIRECT PUSH RIG

DECOMMISSION WITH BENTONITE

TOP‐DOWN INJECTION ROD

SETUP

INJECTION TIP SELECTION IS IMPORTANT

Page 7: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Background – Injection Grid

Iterative Injection Grid – ISCO

TEMPORARYIP LOCATIONSINJECTION #1INJECTION #2INJECTION #3INJECTION #4

Single Application Injection Grid – Trap & Treat®

DELIVERY CRITICAL FOR SINGLE APPLICATION 

AMENDMENTS

TemporaryIP LocationsINJECTION #1

TREATMENT AREA

TREATMENT AREA

PROPERTY BOUNDARY

Page 8: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Background – Monitoring Matrix

• Flowrate • Pressure Signatures

Injection Parameters Monitoring Wells

• Hydraulic influence• Geochemistry influence• Daylighting / Surfacing

• Soil cores• High resolution sampling / 

characterization

Direct Push Rig Laboratory Analysis

• Soil and groundwater• Amendment concentrations

Real‐Tim

e Da

taInterim

 Data

MULTIPLE LINES OF EVIDENCE ARE CRUCIAL

IDENTIFY KEY MONITORING PARAMETERS PRIOR TO 

INJECTION

Page 9: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #1Dry Cleaner Site

Page 10: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Site Background• Ongoing dry cleaner operations• Former excavations (2002)• cVOCs in groundwater and soil

Remedial Objective• Generic groundwater/soil standards

Obstacles• Delivery around former excavations• Short time‐frame

Case Study #1 – Active Dry Cleaner Site

Page 11: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Site Map Conceptual Site Model

ACTIVE DRY 

CLEANER UNIT

FORMER EXCAVATIONS 

DENSE SILTY CLAY TILL WITH SAND SEAMS

WATER TABLE(~8 ft bgs)

FILL 

TARGET TREATMENT 

ZONE

PCE GW PLUME

FORMER EXCAVATIONS 

GW FLOW DIRECTION

Case Study #1 – Active Dry Cleaner Site

Page 12: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Pre‐Injection WorkStep 1) Remedial Design Characterization (RDC)• 4 BHs around/within former excavations• Re‐allocated vertical injection loadingsStep 2) Finalize Injection Plan• Injection of 5,200 lbs of BOS 100®• Temporary grid of 64 IPs on 5 ft spacingStep 3) Identify Key Monitoring Parameters• Injection Pressures / Signatures• Monitoring Well Influence• Confirmatory Soil Cores

Case Study #1 – Active Dry Cleaner Site

Page 13: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

WS01

EXTERIOR INJECTION GRID

INTERIOR INJECTION GRID

Case Study #1 – Active Dry Cleaner Site

Page 14: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

RECORD INJECTION PARAMETERS AT 

INJECTION TRAILER

RECORD INFLUENCE AT 

ADJACENT WELLS

COLLECT CONFIRMATORY SOIL CORES

Case Study #1 – Active Dry Cleaner Site

Page 15: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Injection Parameters• Flowrate

• Positive displacement pump (constant 34 GPM)• 10 to 20 GAL of BOS 100® slurry per shot

• Injection Pressure• Within former excavations fill: 

• 275 psi (avg peak pressure)• Within native clay till:

• 350 psi (avg peak pressure)

InjectionParameters

Monitoring Wells

Direct PushVerificatio

n

LaboratoryAnalysis

Real‐

Time

Interim

Case Study #1 – Active Dry Cleaner Site

Page 16: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

0

50

100

150

200

250

300

350

400

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

Injection Pressure

(psi)

Time(mm:ss)

Pressure Signature(IP17 @ 19 ft)

CLAY TILL FRACTURE AT 325 PSI

INJ START INJ END

15 GAL SHOT OF BOS 100® IN NATIVE 

CLAY TILL

Case Study #1 – Active Dry Cleaner Site

STABLE INJECTION PRESSURE ~280 PSI

Page 17: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

0

50

100

150

200

250

300

350

400

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35

Injection Pressure

(psi)

Time(mm:ss)

Pressure Signature(IP17 @ 11 ft)

STABLE INJECTION PRESSURE ~230 PSI

INJ END

15 GAL SHOT OF BOS 100® IN FORMER EXCAVATION FILL

INJ START

Case Study #1 – Active Dry Cleaner Site

Page 18: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

0

50

100

150

200

250

300

350

400

00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55

Injection Pressure

(psi)

Time(mm:ss)

Pressure Signature(IP19 @ 15 ft)

RAPID DROP IN PRESSURE 

INJ END

20 GAL SHOT OF BOS 100® IN NATIVE 

CLAY TILL

INJ START

Case Study #1 – Active Dry Cleaner Site

CLAY TILL FRACTURE AT 390 PSI

STABLE INJECTION PRESSURE ~375 PSI

Page 19: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #1 – Active Dry Cleaner Site

Pressure Signatures Summary

Benefits Limitations

• Data available real‐time in Injection Trailer• Establish expected pressure signatures during pilot‐

test (for each geology)• Use pressure signatures real‐time to assess delivery 

patterns and flag variations for further investigation

• Soil heterogeneities (i.e. sand seams in clay layer) can raise false flags

• Pressure signatures will indicate that “something” is happening but may need other lines of evidence to understand (i.e., soil cores, monitoring wells)

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 20: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Confirmatory Soil Cores – Edge of Former Excavation

0 to 5 ft

5 to 10 ft

10 to 15 ft

None

8’‐0” (fill)8’‐5” (fill)9’‐0” (sand)9’‐2” (clay)

11’‐6” (clay)12’‐8” (sand)12’‐11” (clay)14’‐6” (sand)

15’‐8” (sand)17’‐1” (clay)17’‐3” (clay)18’‐8” (clay)19’‐2” (sand)

Case Study #1 – Active Dry Cleaner Site

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

15 to 20 ft

Page 21: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

BOS 100® Seam in Sand @ 9’‐0”

BOS 100® Seam in Clay @ 12’‐11”

BOS 100® Seam in Sand @ 19’‐2”

Case Study #1 – Active Dry Cleaner Site

Confirmatory Soil Cores – Edge of Former Excavation

Page 22: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Confirmatory Soil Cores – North of Excavation

0 to 5 ft

5 to 10 ft

10 to 15 ft

15 to 20 ft

None

6’‐1” (sand)7’‐6” (clay)8’‐0” (sand)8’‐3” (clay)8’‐10” (clay)9’‐1” (sand)9’‐3” (clay)9’‐7” (sand)10’‐0” (clay)

10‐8” (sand)11’‐8” (clay)13’‐0” (sand)13’‐4” (clay)14’‐0” (sand)

15’‐10” (clay)

Case Study #1 – Active Dry Cleaner Site

BOS 100® RE‐ALLOCATED TO TARGET 16 – 20 ft

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 23: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Interim

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

BOS 100® Seams in Sandy Clay @ 9’‐0” to 9’‐6”

Case Study #1 – Active Dry Cleaner Site

Confirmatory Soil Cores – North of Excavation

Page 24: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #1 – Active Dry Cleaner Site

Soil Core Summary

Benefits Limitations

• Critical evidence for confirming delivery within each unique geologic units

• Useful tool to investigate pressure signature flags

• Time & budget to complete• Not real‐time data

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 25: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Monitoring Well Influence• Hydraulic Influence

• Observed at all wells within injection zone

• Influence ranging from 1.9 to 9.7 ft• Geochemistry Influence

• Avg ORP = ‐182 mV (pre‐injection)• Avg ORP = ‐320 mV (post‐injection)

Case Study #1 – Active Dry Cleaner Site

WS01ΔWLMAX = 1.9 ftΔORP = ‐132 mV

VMW1ΔWLMAX = 9.7 ftΔORP = ‐227 mV

VMW2ΔWLMAX = 4.4 ftΔORP = ‐141 mV

WS02ΔWLMAX = 3.1 ftΔORP = ‐48 mV

WS04ΔWLMAX = 1.8 ftΔORP = +13 mV

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 26: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #1 – Active Dry Cleaner Site

Monitoring Well Influence

Benefits Limitations

• Real‐time data• Confirm delivery and radius of influence (ROI) 

assumptions• Monitor downgradient receptors and property 

boundaries• Make adjustments to injection program based on 

real‐time MW responses

• Relies on existing well network (which may be inadequate)

• Well screens often straddle multiple geological layers 

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 27: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #1 – Active Dry Cleaner Site

Project Summary• Remedial Design Characterization

• Identified new soil impact outside excavations• Re‐allocation of vertical injection loadings

• Key Monitoring Parameters• Injection pressures utilized to flag intervals with unexpected signatures• Soil cores utilized to confirm BOS 100® delivery/ROI assumptions, and identify zones for re‐application• Monitoring well evidence for delivery/ROI assumptions, and that amendments stayed within the target zone 

(no offsite migration)• Analytical Results

• Initial cVOCs GW results >90% decrease (initial “Trap”)• Subsequent GW samples and soil cores to be collected by Consultant

Page 28: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #2Industrial Site with Inflexible Remediation Deadline

Page 29: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Site Background• Site being sold; full remediation required as condition of 

sale• Timeline for remediation was inflexible

Contaminant Situation• Two separate areas of cVOCs

Remedial Objective• Generic groundwater standards

Obstacles• Short timeframe for remediation (<5 months)• Creek adjacent to Site – non‐mobile amendment needed

Case Study #2 – Industrial Site with Inflexible Deadline

Page 30: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #2 – Industrial Site with Inflexible Deadline

Page 31: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

AEC‐1

Case Study #2 – Industrial Site with Inflexible Deadline

CREEK

Page 32: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

AEC‐2

Case Study #2 – Industrial Site with Inflexible Deadline

Page 33: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Pre‐Injection WorkStep 1) Remedial Design Characterization• Fill in data gapsStep 2) Develop Pilot & Full‐Scale Injection Plan• Injection of 5,400 lbs of BOS 100®• Grid of 135 IPs on 5  to 7.5 ft spacing• 14 day injection programStep 3) Identify Key Monitoring Parameters• Monitoring Wells & Preferential Pathways• Interim Groundwater Monitoring

Case Study #2 – Industrial Site with Inflexible Deadline

Page 34: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Conceptual Site Model

Case Study #2 – Industrial Site with Inflexible DeadlineSite Map

AEC1

INJECTION GRID

AEC2

INJECTION GRID

ASPHALT

FILL 

LIMESTONE BEDROCK

WATER TABLE(~13 ft bgs)

PROPERTY BOUNDARY

SILTY SAND LAYER

CREEK

TARGET TREATMENT 

ZONE

Page 35: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Monitoring Well Influence in AEC1• Hydraulic Influence

• Observed at all wells within injection zone

• Influence ranging from 9.4 to 13.4 ft• Geochemistry Influence

• Avg ORP = +97 mV (pre‐injection)• Avg ORP = ‐100 mV (post‐injection)

• Preferential Pathways• No influence in creek• No surfacing along  creek bank

Case Study #2 – Industrial Site with Inflexible Deadline

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 36: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

MW206‐16ΔWLMAX = 13.3 ftΔORP = ‐208 mV

MW205‐16ΔWLMAX = 13.4 ftΔORP = ‐74 mV

MW115‐15ΔWLMAX = 9.4 ftΔORP = ‐270 mV

Case Study #2 – Industrial Site with Inflexible Deadline

AEC1Monitoring Well Influence in AEC1• Hydraulic Influence

• Observed at all wells within injection zone

• Influence ranging from 9.4 to 13.4 ft• Geochemistry Influence

• Avg ORP = +97 mV (pre‐injection)• Avg ORP = ‐100 mV (post‐injection)

• Preferential Pathways• No influence in creek• No surfacing along  creek bank

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 37: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Monitoring Well Influence in AEC2• Hydraulic Influence

• Observed at all wells within injection zone

• Influence ranging from 3.6 to 12 ft• Geochemistry Influence

• Avg ORP = +15 mV (pre‐injection)• Avg ORP = ‐122 mV (post‐injection)

MW201‐16ΔWLMAX = 6.4 ftΔORP = ‐438 mV

MW204‐16dΔWLMAX = 9.9 ftΔORP = +107 mV

MW110‐15ΔWLMAX = 4.2 ftΔORP = ‐246 mV

Case Study #2 – Industrial Site with Inflexible Deadline

AEC2

MW204‐16sΔWLMAX = 8.7 ftΔORP = ‐26 mV

MW116‐15ΔWLMAX = 8.7 ftΔORP = ‐182 mV

MW107‐15ΔWLMAX = 7.4 ftΔORP = ‐102 mV

BH1 (MW)ΔWLMAX = 12 ftΔORP = ‐142 mV

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 38: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Monitoring Wells and Preferential Pathways

Benefits Limitations

• Real‐time data• Confirm delivery and radius of influence (ROI) 

assumptions• Monitor downgradient receptors and property 

boundaries• Make adjustments to injection program based on 

real‐time MW responses

• Relies on existing well network (which may be inadequate)

• Well screens often straddle multiple geological layers 

Case Study #2 – Industrial Site with Inflexible Deadline

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 39: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Interim Monitoring Timeline• <5 months from Project Award 

to Real‐Estate transaction

Case Study #2 – Industrial Site with Inflexible Deadline

FEB MAR APR MAY JUN

FEB 24, 2017PROJECT AWARD

MAR 29 ‐ 30PILOT TEST(2 INJ DAYS)

INTERIM SAMPLING #1

MAR. 25

APR. 24 ‐MAY 5FULL‐SCALE(10 INJ DAYS)

JUL

INTERIM SAMPLING #2

APR. 17

INTERIM SAMPLING #3

APR. 28

INTERIM SAMPLING #4

MAY 12

INTERIM SAMPLING #5

JUN 13

MAY 18 ‐ 19CONTINGENCY(2 INJ DAYS)

JUN 30, 2017REAL ESTATETRANSACTION

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 40: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #2 – Industrial Site with Inflexible Deadline

0

50

100

150

200

250

25‐M

ar‐17

1‐Ap

r‐17

8‐Ap

r‐17

15‐Apr‐17

22‐Apr‐17

29‐Apr‐17

6‐May‐17

13‐M

ay‐17

20‐M

ay‐17

27‐M

ay‐17

3‐Jun‐17

10‐Ju

n‐17

17‐Ju

n‐17

1,1‐DCE

 Con

centratio

n(ug/L)

AEC1: 1,1‐DCE Groundwater Results

MW205‐16

MW206‐16

MOECC Standard = 17 ug/L

PILOT‐TESTINJECTION

FULL‐SCALE INJECTION

CONTINGENCY INJECTION

1,1‐DCE SPIKE

Page 41: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

0.0

2.0

4.0

6.0

8.0

10.0

25‐M

ar‐17

1‐Ap

r‐17

8‐Ap

r‐17

15‐Apr‐17

22‐Apr‐17

29‐Apr‐17

6‐May‐17

13‐M

ay‐17

20‐M

ay‐17

27‐M

ay‐17

3‐Jun‐17

10‐Ju

n‐17

17‐Ju

n‐17

VC Con

centratio

n(ug/L)

AEC2: Vinyl Chloride Groundwater Results

MW116‐15MW201‐16MW110‐15MOECC Standard = 1.7 ug/L

Case Study #2 – Industrial Site with Inflexible Deadline

PILOT‐TESTINJECTION

FULL‐SCALE INJECTION

CONTINGENCY INJECTION

CONTINGENCY DAYS NEEDED IN AEC2

Page 42: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Interim Monitoring Events

Benefits Limitations

• Provides progress updates on delivery (“Trap”)• Leads to adjustments of horizontal or vertical 

injection spacings and loadings• Most useful on projects where there are multiple 

phases to the injection program (i.e., Pilot, Full, Contingency)

• Time & budget to complete• Relies on existing well network (which may be 

inadequate)• Not real‐time data

Case Study #2 – Industrial Site with Inflexible Deadline

InjectionParameters

Monitoring Wells

Direct PushVerification

LaboratoryAnalysis

Real‐

Time

Interim

Page 43: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Case Study #2 – Industrial Site with Inflexible Deadline

Project Summary• Key Monitoring Parameters

• MWs provided evidence for delivery/ROI• MWs indicated no offsite migration of amendments• Interim monitoring identified need for re‐allocation in 

AEC1, and contingency injection in AEC2• Analytical Results

• Site remediation completed on time• Remedial objective achieved

• Real‐Estate transaction successful

Page 44: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Closing Thoughts for Successful Injections

Stage Description Scope(Approx. Cost)

Pre‐Injection Remedial Design Characterization drilling and sampling Fill‐in soil data gaps(drill rig + analytical costs)

Pilot‐Test Assess design assumptions (drilling, delivery, ROI) ~10% of Full‐Scale(extra MOB cost)

Full‐Scale

Identify “Key Monitoring Parameters” for site:• Monitoring Wells and Preferential Pathways• Pressure Signatures• Soil Cores• Interim Sampling

Use “Key Monitoring Parameters” to make in‐field adjustments

Field Delivery Monitoring(field labour costs)(field labour costs)(drill rig costs)

(analytical costs)

Page 45: Case Studies: Field QA/QC Monitoring of Subsurface BOS 100

Thank You for Your Time

Nathan Lichti (Vertex Environmental Inc.)[email protected]

Bruce Tunnicliffe (Vertex Environmental Inc.)[email protected]

Mike Mazzarese (AST Environmental Inc.)[email protected]

Questions