catalysis and zeolites - home - springer978-3-662-03764...vi preface emerging, especially in the...

17
Catalysis and Zeolites

Upload: buidiep

Post on 18-Mar-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Catalysis and Zeolites

Page 2: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Springer-Verlag Berlin Heidelberg GmbH

Page 3: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

J. Weitkamp · L. Puppe (Eds.)

Catalysis and Zeolites Fundamentals and Applications

With 211 Figures and 48 Tables

, Springer

Page 4: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Prof Dr.-lng. lens Weitkamp UniversWit Stuttgart Institut fur Technische Chemie I D-70SS0 Stuttgart Germany

Dr. Lothar Puppe Bayer AG Geschaftsbereich Chemikalien CH -F-FC, Gebaude G 8 D-S1368 Leverkusen Germany

ISBN 978-3-642-08347-1

Library of Congress Cataloging-in-Publication Data

Catalysis and zeolites: fundamentals and applications / J. Weitkamp, L. Puppe (eds.). includes bibliographical references and index.

1. Zeolites. 2. Catalysis. I. Weitkamp, J. (Jens) II. Puppe, L. (Lothar) TP245.S5 C39 199 660'.2995-dc21 98-48578 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad­casting, reproduction on microftlm or in other ways, and storage in data banks. Duplication of this publication or parts there of is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999

Originally published by Springer-Verlag Berlin Heidelberg New York in 1999

Softcover reprint of the hardcover 1 st edition 1999

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant pro­tective laws and regulations and therefore free for general use.

Typesetting: Fotosatz-Service Kohler GmbH, Wtirzburg Cover layout: design & production, Heidelberg

SPIN: 10076794 02/3020 - 5 4 3 2 I - Printed on acid-free paper

ISBN 978-3-642-08347-1 ISBN 978-3-662-03764-5 (eBook) DOI 10.1007/978-3-662-03764-5

Page 5: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Preface

Zeolites occur in nature and have been known for almost 250 years as alumino­silicate minerals. Examples are clinoptilolite, mordenite, offretite, ferrierite, erionite and chabazite. Today, most of these and many other zeolites are of great interest in heterogeneous catalysis, yet their naturally occurring forms are of limited value as catalysts because nature has not optimized their properties for catalytic applications and the naturally occurring zeolites almost always contain undesired impurity phases.

It was only with the advent of synthetic zeolites in the period from about 1948 to 1959 (thanks to the pioneering work of R.M. Barrer and R. M. Milton) that this class of porous materials began to playa role in catalysis. A landmark event was the introduction of synthetic faujasites (zeolite X at first, zeolite Y slightly later) as catalysts in fluid catalytic cracking (FCC) of heavy petroleum distillates in 1962, one of the most important chemical processes with a worldwide capacity of the order of 500 million t/a. Compared to the previously used amorphous silica-alumina catalysts, the zeolites were not only orders of magnitude more active, which enabled drastic process engineering improvements to be made, but they also brought about a significant increase in the yield of the target product, viz. motor gasoline. With the huge FCC capacity worldwide, the added value of this yield enhancement is of the order of 10 billion US $ per year. No wonder therefore, that the introduction of zeolitic FCC catalysts is often referred to as a true revolution in petroleum refining.

Given this enormous success, it is not surprising that, in the period after 1962, zeolite catalysts rapidly conquered additional processes, at first in the field of petroleum refining, somewhat later in the field of basic petrochemistry. Exam­pIes of industrial processes (besides FCC) where zeolite catalysts nowadays have a firm place are hydrocracking of heavy petroleum distillates, octane number enhancement of light gasoline by isomerization, dewaxing of heavy petroleum distillates and lubricating oils, the synthesis of ethylbenzene (the precursor chemical of styrene and polystyrene) from benzene and ethene, the isomeriza­tion of xylenes (to produce para-xylene, the precursor chemical for terephthalic acid and polyesters derived from it) and the disproportionation of toluene into benzene and xylenes. Today, catalysis is the single most important application of zeolites in terms of financial market size (not in terms of tons produced per year) with an estimated turnover in the order of 1 billion US $ per year worldwide.

In these more traditional fields, zeolite catalysis has without doubt reached a certain degree of maturity. However, new applications for zeolites as catalysts are

Page 6: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

VI Preface

emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition, the potential of zeolite catalysts for the purifica­tion of exhaust gases, e. g., from diesel engines, is under intense scrutiny all over the world. Here, the environmental aspect of zeolite catalysis becomes obvious, yet the search for zeolitic catalysts in organic syntheses is often driven by environmental aspects as well, especially if less benign catalyst systems like hydrofluoric acid, aluminum trichloride etc. are to be replaced by zeolites.

Altogether, zeolite catalysis has become a most important sub-field of hetero­geneous catalysis. Nobody who is active in heterogeneous catalysis, either in industry or at a research institution, can afford to ignore zeolites and the remarkable progress that is still being made in their synthesis, post-synthesis modification, pysico-chemical characterization and testing.

This book therefore starts, in Chapter 1 written by J.-L. Guth and H. Kessler, with a state-of-the-art review of the synthesis methods for alumino silicate zeolites and related silica-based materials. The term "zeolite" is nowadays used in a much broader sense than the one traditionally used by mineralogists, and it encompasses numerous zeolite-like, cristalline microporous solids with ele­ments other than silicon and aluminum on tetrahedral framework positions. Many of these materials do have a potential as catalysts, and the most important family of such materials, the aluminophosphates and their derivatives, are dealt with in Chapter 2 by J.A. Martens and P.A. Jacobs. An overview of the available post-synthesis techniques for the transformation of a zeolite with the desired framework into a catalyst with optimal acidic, shape-selective etc. properties is given in Chapter 3 written by G. Kahl. An in-depth treatment of the most relevant techniques for zeolite characterization, viz. X-ray powder diffraction, infrared spectroscopy and nuclear magnetic resonance spectroscopy, has been contributed by H. G. Karge, M. Hunger, and H. K. Beyer in the central Chapter 4. Chapter 5, written by J. Weitkamp, S. Ernst, and L. Puppe, deals with the prin­ciples and fundamentals of shape-selective catalysis which is unique for cata­lysts with pore widths in the order of molecular dimensions. A critical review of the recent literature on the use of zeolite catalysts in organic chemistry is pre­sented in Chapter 6 by P. Espeel, R. Parton, H. Youfar, J. A. Martens, W. Holderich, and P.A. Jacobs. The final Chapter 7 by P.M.M. Blauwhoff, J. w. Gosselink, E.P. Kieffer, S. T. Sie, and W.H.J. Stork discusses the industrial processes which are currently in operation using zeolitic catalysts and the specific effects of the zeolites in those processes. The editors sincerely thank the authors for having contributed to this book and for having devoted a large amount of their precious time to the respective chapters.

Catalysis and Zeolites is meant to provide comprehensive and valuable in­formation to all those who already are working in the field or who plan to use zeolites as catalysts in their future research. It is our hope that the book will fully meet the readers' expectations.

Jens Weitkamp Lothar Puppe

April 1999

Page 7: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Contents

1

1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.1.1 1.3.1.2 1.3.1.3 1.3.1.4 1.3.2 1.3.2.1 1.3.2.2 1.3.2.3 1.3.2.4 1.4 1.4.1 1.4.1.1 1.4.1.2 1.4.1.3 1.4.1.4 1.4.1.5 1.4.1.6 1.4.1.7 1.4.1.8 1.4.1.9 1.4.1.10 1.4.2 1.4.2.1 1.4.2.2 1.4.2.3

Synthesis of Aluminosilicate Zeolites and Related Silica-Based Materials

Jean-Louis Guth and Henri Kessler

Scope ..................... . Introduction ....... . .... . . . . . . Structure, Composition, Nomenclature ........ .. . History of Zeolite Synthesis ................ . Theoretical Part ....................... . Crystallogenesis ...... . . . . . . . . . . . . . . . . . . Nucleation ........................ . Crystal Growth ...................... . Advancement of the Crystallization with Time . . . . . Ostwald's Rule ........... . . . . . . . . . . . . Zeolite Synthesis, Mechanism and Chemistry . . . . . . . . . . . Presentation of the Synthesis System .............. . Framework T Elements .. . . . . . . . . . . . . . . . . . . . .. Mineralizer and T Element Species in the Solution . . . . . . . . Templates .............................. . Experimental Part . . . . . . . . . . . . . . . . . . . . . . . . . Experimental Factors ...................... . Nature of the Reactants . . . . . . . . . . . . . . . . . . . .. . Composition of the Reaction Mixture . . . . . . . . . . . . . . Preparation Procedure of the Reaction Mixture ........ . Aging ............................ .... . Seeding. . . . . . . . . . . . . . . . . . . . .... . . Nature of the Reactor ... . . . . . . . . . . . . . . . . . . . Crystallization Temperature ................... . Pressure ..... ....... ... ..... .......... . Agitation .............................. . Heating Time ........................... . Review of Zeolites Obtained from Various Reaction Systems .. All-Silica Molecular Sieves (T = Si) ............... . (Si, AI) Systems with Inorganic Cations ............. . (Si,Al) Systems with Inorganic and Organic Templates . . .. .

1 1 1 4 5 5 5 9

13 14 16 16 18 20 22 23 23 24 25 25 26 26 26 27 27 27 27 28 28 28 29

Page 8: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

VIII

1.4.2.4 1.4.2.5 1.4.2.6 1.4.2.7 1.4.2.8

1.4.3 1.4.3.1 1.4.3.2 1.4.3.3 1.4.3.4 1.4.3.5 1.4.3.6 1.4.3.7 1.4.3.8

1.5 1.5.1 1.5.2 1.6

2

2.1 2.2

2.2.1 2.2.2 2.2.3 2.3

2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

2.3.6

2.3.7

2.3.8

Contents

(Si,AI) Systems with Organic Templates (Si, Til) Systems, Til = Be, Co, Cu, Zn (Si, TIll) Systems, TIll = B, Fe, Ga . . . . (Si, TIV) Systems, TIV = Ge, Ti, Zr . . . . Other Si-Based Systems - V, Cr and Mo in Tetrahedral Frameworks . . .. . .. . .. . .. . .. . . . Synthesis of Some Selected Important Zeolites . . Zeolites with the LTA-Type Structure . . . . ... Zeolites with FAU-Type Structures and Polytypes Synthesis of Zeolite Beta .. .. .. . .. .. . . . Synthesis of Zeolite LTL . . . . . . . . . . . . . . . Synthesis of Zeolites with the MAZ-Type Structure Synthesis of Zeolites with the MFI -Type Structure . Synthesis of Zeolites with the MOR-Type Structure Synthesis of Zeolites with the OFF- and/or the ERI-Type Structure . ... . .. .... . ... . Synthesis of Other Selected Materials ..... .. . Titanosilicates with Mixed Octahedral-Tetrahedral Frameworks Synthesis of Mesoporous Aluminosilicates Activation of Zeolites References .. . . .. ... ... ... .. .

Phosphate-Based Zeolites and Molecular Sieves Johan A. Martens and Pierre A. Jacobs

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . Structural, Synthetic and Physicochemical Concepts Relevant to Poro-tecto-phosphates . ... . . AIP04 (GaP04) Topological Concept . . ... . Al (Ga) Coordination Concept .. . ... . . . Template: Framework Stoichiometry Concept Rationalization of Properties of Poro-tecto-phosphates with Structural, Synthetic and Physicochemical Concepts Pore Size ... . . . . . Thermal Stability . . . . Adsorption Properties Isomorphic Substitution Isomorphic Substitutions SM la, Ib and IIa Generating Framework Charges . . . . . . . . . . . . . . . . . . . . Isomorphic Substitutions Ic and IIb Generating Electroneutral Frameworks .. ..... .. ... . . . ...... . Si Incorporation According to SM III Generating Si and AlP Domains .. . . .. ..... . .. . . . . . Si Incorporation According to Combinations of SM II a and SM III Generating SiAl and SiAlP Domains References . . .. .. .. .. ....... . ..... . .

29 30 31 32

32 33 33 34 36 37 37 38 41

42 44 44 45 46 46

53

53

54 54 56 60

62 62 62 65 68

71

73

74

75 76

Page 9: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Contents

3

3.1 3.1.1 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.l.3 3.l.3.1 3.l.3.2 3.l.3.3 3.1.4 3.1.4.1 3.1.4.2 3.1.4.3 3.1.4.4 3.2 3.2.1 3.2.1.1 3.2.1.2 3.2.l.3 3.2.1.4 3.3 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.2.1 3.3.2.2 3.3.3 3.3.3.1 3.3.3.2 3.3.3.3 3.3.4 3.3.4.1 3.3.4.2 3.3.5 3.4 3.4.1 3.4.2 3.4.2.1 3.4.2.2 3.4.2.3 3.4.2.4

Modification of Zeolites GUnter H. KUhl

Ion Exchange of Zeolites Introduction and Theory Aqueous Ion Exchange Ion-Exchange Isotherms Experimental . . . . . . . Thermochemistry of Ion Exchange Ion Exchange of Zeolites X and Y Univalent Ion Exchange Divalent Ion Exchange Trivalent Ion Exchange Ion Exchange of ZSM-5 Univalent Ion Exchange Divalent Ion Exchange Trivalent Ion Exchange Aluminum-Independent Ion Exchange Metals Supported on Zeolites . . . . Reduction of Metal Ions in Zeolites Group IB . . .... . .. . . Group VIllA, Fourth Period Group VIllA, Fifth Period . Group VIllA, Sixth Period Dealumination of Zeolites Thermal Treatment Hydrogen Zeolites . . . . . Dehydroxylation . . . . . . Extraction of Framework Aluminum with Acid The Aluminum-Deficient Form . . .. . .. . . Annealing of Tetrahedral Vacancies; High-Silica Faujasite Hydrothermal Treatment The Stabilized Form . . . . . . . . . . The Ultras table Form ... . .... . Dealumination of High-Silica Zeolites Direct Replacement of Aluminum with Silicon Reaction with Silicon Halides . .. . . . Reaction with Hexafluorosilicates . . . Removal of Other Framework Elements Insertion into the Zeolite Framework Reinsertion of Hydrolyzed Aluminum . Reaction with Aluminum Compounds Aqueous Aluminate Aluminum Oxide . . . .. . . Aluminum Halides ..... . Complex Aluminum Fluoride

IX

81

81 81 81 84 86 88 88 90 93 98

100 100 102 103 103 104 105 105 113 116 123 127 127 128 l32 l33 134 l35 l36 l36 140 142 145 145 151 154 155 155 157 157 158 161 163

Page 10: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

x

3.4.2.5 3.4.3 3.4.3.1 3.4.3.2 3.5 3.5.1 3.5.1.1 3.5.1.2 3.5.2 3.5.2.1 3.5.2.2

Contents

Generation of Vacancies Prior to Alumination .. . . . .. 163 Insertion of Other Elements . ... . . ...... ... .. . . . 164 Group IlIA Elements .. .. . ... ... . . ... . .. .. .. . 165 Elements of Other Groups ..... .. .. . . . ......... 167 Other Modifications . . . . . . . . . . . . . . . . . . . . . . . .. 169 Reactions of OH-Groups ...... . ....... . . .. .... 169 Reaction with Silanes . . . .. ... . . . . ... . . . . . . ... 170 Reaction with Phosphines .... .. .. . .. .. . .. .. . . . 172 Reaction with Oxoacids . . . . . . . . . . . . . . . . . . . . . . . 174 Reaction with Derivatives of Phosphorous Acid . .. . ... . . 174 Reaction with Phosphoric Acid . . . . . . . . . . . . . . . . . . . 175 References ... . .. . ... .. ... . . . . . . . .. .. . . .. 179

4 Characterization of Zeolites - Infrared and Nuclear

4.1 4.1.1 4.1.2 4.1.3 4.1.3.1 4.1.3.2

4.1.3.3 4.1.3.4

4.1.4 4.1.5 4.1.5.1 4.1.5.2 4.1.5.3 4.1.6 4.1.7 4.1.8 4.2 4.2.1 4.2.2 4.2.2.1 4.2.2.2 4.2.3 4.2.3.1

Magnetic Resonance Spectroscopy and X-Ray Diffraction .. 198

Hellmut G. Karge, Michael Hunger, and Hermann K. Beyer

List of Abbreviations . .. . ... . ... ....... . . . .. 198 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .. 199 IR Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . 201 Theoretical Background .... .. .. . . . . . . . . . . . 201 Experimental Techniques . . . . . . . . . . . 204 Transmission IR Spectroscopy .. . . . . . . 204 Diffuse Reflectance IR (Fourier Transform) Spectroscopy (DRIFT) ....... . .. .. . . . . . .. 206 Photo acoustic IR Spectroscopy (PAS) .. . . .. ... ... 207 Cells for Studying Zeolites and Zeolite Adsorbate Systems by IR Spectroscopy ..... . . . .. . . .. ... . . . 208 Study of Framework Vibrations of Zeolites . . . . . . . . . . . . 211 IR Investigation of Acidic and Basic Sites in Zeolites . . . . . . . 215 Br0nsted Acid Sites (Acidic Hydroxyls) .. .. ........ . . 216 Lewis Acid Sites - True Lewis Sites . . . . . . . . . . . . . . . . . 230 Lewis Acid Sites - Cations . .. .. . ..... . ... . . . . .. 231 Basic Sites (Basic Hydroxyls, Basic Oxygens) .. .. . .. . ... 233 Zeolite-Adsorbate Systems .... . .... . . . . . .. 235 Motion, Diffusion and Reaction of Guest Molecules in Zeolites 238 NMR Spectroscopy .. . . .... . .... . . .... .. . . .. 239 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 Theoretical Background .... . . .... . . . . . . . . . ... 240 Zeeman Interaction and Relaxation Effects . . . . . . . . . . . . 240 Solid-State Interactions . . . . . . . . . . . . . . . . . . . 242 Experimental Techniques . . . . . . . . . . . . . . . . . . 245 Methods of High-Resolution Solid-State NMR . . . . . . 245

Page 11: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Contents

4.2.3.2 4.2.3.3 4.2.4 4.2.4.1

4.2.4.2

4.2.4.3

4.2.4.4 4.2.4.5 4.2.4.6

4.2.4.7

4.2.4.8

4.2.4.9 4.2.4.10

4.3

4.3.1 4.3.2 4.3.3 4.3.4 4.3.4.1 4.3.4.2 4.3.4.3

4.3.5 4.3.6 4.3.7

5

5.1 5.2 5.2.1 5.2.2 5.2.3

Cross-Polarization and Other Selected Pulse Techniques Two-Dimensional NMR Spectroscopy .... . . Applications ................... . 29Si MAS NMR Spectroscopy of Si04 Tetrahedra in the Zeolite Framework . . . . . . . . . . . 27 Al NMR Spectroscopy of Framework and Non-Framework Aluminum in Zeolites 31p MAS NMR Spectroscopy of P04 Tetrahedra in Aluminophosphate-, Silicoaluminophosphate-, and Gallophosphate-Type Zeolites . . . . . . . . . . . . . . . llB MAS NMR Spectroscopy of Boron-Modified Zeolites .. Solid-State 170 NMR Spectroscopy of the Zeolite Framework 1H MAS NMR Spectroscopy of Acidic and Non-Acidic Hydroxyl Groups in Zeolites .............. . Solid-State 23Na NMR Spectroscopy of Sodium Cations in Hydrated and Dehydrated Zeolites ......... . 133Cs MAS NMR Spectroscopy of Cesium Cations in Hydrated and Dehydrated Mordenites and Faujasites 129Xe NMR Investigations of the Zeolitic Pore Architecture Investigations of Bf0nsted and Lewis Acid Sites by Probe Molecules ............. . Application of Powder X-Ray Diffractometry in Zeolite Research ............. . Introduction . . . . . . . . . . . . . . . . . . Parameters Affecting the Intensity of Bragg Reflections Calculation of Structure Factors . . Powder-Data Structure Refinement Profile-Fitting Method ...... . Rietveld Method . . . . . . . . . . . Application of the Rietveld Method in Zeolite Structure Analysis . . . . . . . . . . . . . . . . Crystallinity Determination ....... . . . Determination of Framework Aluminum from X-Ray Data Determination of the Crystallite Size References .......................... .

XI

248 249 250

250

256

262 266 266

267

275

282 285

291

295 295 296 299 302 303 304

306 308 310 314 316

Shape-Selective Catalysis in Zeolites ......... 327

Jens Weitkamp, Stefan Ernst, and Lothar Puppe

Scope ......... . Introduction .. . . . . Molecular Dimensions Porous Solids: Crystallographic and Effective Pore Diameter Molecular Sieving ... . . . . . . . . . . . . . . . . . . . . .

327 328 328 329 331

Page 12: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

XII

5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.5

5.5.1 5.5.2 5.5.2.1 5.5.2.2

5.5.2.3

5.5.3 5.5.3.1 5.5.3.2 5.5.3.3 5.5.3.4

5.5.3.5 5.6 5.6.1 5.6.2 5.6.3 5.6.4 5.7

5.7.1 5.7.1.1

5.7.1.2 5.7.1.3 5.7.2 5.7.2.1

5.7.2.2

5.8

5.8.1 5.8.2 5.8.3 5.8.4

Catalysis and Selectivity ....... . Incentives for Applying a Catalyst .. . Intrinsic, Grain and Reactor Selectivity Shape-Selective Catalysis . . . . . . . . Internal vs. External Surface of Zeolites Effect of the Crystallite Size . . . . . . . Experimental Techniques . . . . . . . . Examples for Shape-Selective Reactions and Models for Rationalizing the Observed Effects .... . Early Observations ............... .. . The Classical Concept After Weisz and Csicsery .. Mass Transfer Effects: Reactant and Product Shape Selectivity Intrinsic Chemical Effects: Restricted Transition State Shape Selectivity ........ . Discrimination Between Mass Transfer and Intrinsic Chemical Effects Other Concepts ..... . The Cage or Window Effect . . Molecular Traffic Control . . . Shape Selectivity at the External Surface: The Nest Effect Tip-on Adsorption of Molecules Diffusing Inside the Pore System ...................... . Secondary Shape Selectivity/Inverse Shape Selectivity . . Tailoring the Shape-Selective Properties of Zeolite Catalysts Variation of the Zeolite Type and Isomorphous Substitution Variation of the Crystallite Size and Compositional Zoning Ion Exchange and Pore Size Engineering .......... . Selective Poisoning of the External Surface . . . . . . . . . . Catalytic Test Reactions for Probing the Effective Pore Width of Microporous Materials . . . . . . . . . . . . . . . . . . Test Reactions for Acidic Molecular Sieves ....... . Competitive Cracking of n-Hexane and 3-Methylpentane (the ConstraintIndex, CI) ............... . Isomerization and Disproportionation of meta-Xylene Reactions of Other Alkyl Aromatics . . . . . . . . . . . . Test Reactions for Bifunctional Molecular Sieve Catalysts Isomerization and Hydrocracking of Long-Chain n-Alkanes (the Refined or Modified Constraint Index, CI *) Hydrocracking of Butylcyclohexane (the Spaciousness Index, SI) ..... . More Recent Directions and Challenges in Shape-Selective Catalysis ..... . Trend Towards Bulkier Molecules .. . Shape-Selective Catalysis on Transition Metals in Zeolites Stereoselective Catalysis in Zeolites Host/Guest Chemistry in Zeolites References ............. .

Contents

333 333 334 335 336 336 337

340 340 341 341

343

344 345 345 346 347

349 350 351 351 353 354 355

356 357

357 359 360 361

362

364

365 365 367 367 368 370

Page 13: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Contents

6

6.1 6.2 6.3 6.4 6.5 6.6 6.7

6.7.1 6.7.1.1 6.7.1.2 6.7.2 6.7.2.1 6.7.2.2 6.7.2.3 6.7.3 6.7.3.1 6.7.3.2

6.7.4 6.7.4.1 6.7.4.2 6.7.4.3 6.7.4.4 6.7.4.5

6.7.5 6.7.5.1 6.7.5.2 6.7.5.3 6.8

6.8.1 6.8.2

6.8.3 6.8.3.1

6.8.3.2

6.8.3.3

Zeolite Effects in Organic Catalysis Patrick Espeel, Rudy Parton, Helge Toufar, Johan Martens, Wolfgang H6lderich, and Pierre Jacobs

Reported Catalytic Technology with Zeolites . . . . . . . . Generalities on Catalytic Organic Chemistry with Zeolites Established Generalities on Shape Selectivity with Zeolites Generation of Active Sites in Zeolites The Latest Visions on Zeolite Acidity ......... . Zeolite Superacidity . . . . . . . . . . . . . . . . . . . . Zeolite Specificity in Organic Catalysis with Functional Molecules: Zeolite Effects . . . . . Zeolite Effect I: Shape Selectivity . . . . . . . . . . . . . General Procedures .. . ........ . .... . . . . Manifestation of Shape Selectivity in Organic Reactions Zeolite Effect II: Specific Adsorption Diels-Alder Cydoadditions Friedel-Crafts Alkylation . . .... . Beckmann Rearrangement .. . . . . Zeolite Effect III: Functional Selectivity Hydrogenation of Unsaturated Aldehydes Preparation of Allyl-Substituted Aromatics by Friedel-Crafts Methods . . . . . ... . Zeolite Effect IV: Multifunctional Synergy Hydrogenation + Alkylation Hydrolysis + Hydrogenation . .. Hydration + Dehydrogenation .. Isomerization + Dehydrogenation Complete Process Changes by Zeolite Catalysts: £-Caprolactam Production . . .. . . . .. . . Zeolite Effect V: New Chemistry with Zeolites Pseudo-Solid-Solvent Effect . . . . .. . New Complexes Through Encapsulation Ti-Zeolites .. . .. .. ......... . Case Study: Zeolites as Non-Corrosive, Environmentally Friendly Friedel-Crafts Alkylation Catalysts Introduction . . .. . . . . . . . . . . . Friedel-Crafts Chemistry over Zeolites from a Historical Perspective . . . . . . Overview of Friedel-Crafts Literature with Zeolites Group 1 Reactions: Alkylation of Alkyl Aromatics with Ole fins .. . . ....... . ... . . .. . . Group 2 Reactions: Alkylation of Alkyl Aromatics with Alcohols, Ethers, Aldehydes, Amines etc. . . . Group 3 Reactions: Alkylation of Heteroatom-Substituted Aromatics with Olefins . . . . . .. . ... . ..... . . .

XIII

377

377 379 382 388 393 397

398 398 399 400 409 409 409 410 411 411

411 412 412 413 413 413

413 414 414 414 415

416 416

417 417

417

420

422

Page 14: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

XIV Contents

6.8.3.4 Group 4 Reactions: Alkylation of Heteroatom-Substituted Aromatics with Alcohols, Aldehydes, Haloalkanes etc. 424

6.8.4 Recent Developments in Friedel-Crafts Alkylation: Solvent Effects . . . . . . . 427 References .............................. 429

7 Zeolites as Catalysts in Industrial Processes . . . . . . . . . . 437

P. M. M. Blauwhoff, J. W. Gosselink, E. P. Kieffer,

7.1 7.1.1 7.1.2 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.4.1 7.2.4.2 7.2.4.3 7.2.4.4 7.2.4.5 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.4.1 7.3.4.2 7.3.4.3 7.3.4.4 7.3.5 7.4 7.4.1 7.4.2 7.5 7.5.1 7.5.2 7.5.3 7.5.3.1 7.5.3.2 7.5.4 7.5.5 7.5.6

S. T. Sie, and W. H. J. Stork

Introduction and General Overview . . . . . . . . . . . . . . .. 438 Oil Refining: Basics ......................... 438 The Petrochemical Industry .................... 443 Fluid Catalytic Cracking ...................... 444 Feedstocks and Products .................... .~. 446 Application of Fluid Catalytic Cracking (FCC) ....... . . . 451 Reaction Mechanism ........................ 453 The FCC Catalyst ............... . .. . ....... 455 Catalyst Constituents ........................ 455 Effect of Metals on FCC Catalyst Behavior ............ 459 Novel Zeolites in FCC Catalysts .................. 459 Physical Catalyst Parameters . . . . . . . . . . . . . . . . . . .. 460 Mechanical Aspects ......................... 461 Hydrocracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 Process Configurations .. . .. .. . ............... 462 Feedstocks and Products ...................... 465 Application of Hydrocracking ................... 467 Catalytic Aspects ....... .. ..... ........... 469 Hydrocracking Mechanism and "Ideal Hydrocracking" ..... 469 Hydrogenation Function ...................... 471 Acidic Function ........................... 472 Hydrocracking Catalysts ...................... 477 Challenges in Hydrocracking . . . . . . . . . . . . . . . . . . .. 478 Catalytic Dewaxing ......................... 479 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 479 Principles of Catalytic Dewaxing . . . . . . . . . . . . . . . . .. 480 Upgrading of Naphtha and Tops . . . . . . . . . . . . . . . . .. 484 Cracking of Normal Paraffins . . . . . . . . . . . . . . . .. 484 Desulfurization of Naphtha ex Fluid Catalytic Cracking . . . .. 486 Isomerization of Light Paraffins .................. 486 Isomerization over Amorphous Catalysts . . . . . . . . . . . .. 488 Isomerization over Zeolitic Catalysts ............ 491 Isomerization of Light Olefins ................... 492 Paraffin/Olefin Alkylation ............ . . . .. 492 Zeolite-Supported (De)Hydrogenation Catalysts . . . . . . . .. 494

Page 15: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Contents

7.5.6.1 7.5.6.2

7.6 7.6.1 7.6.1.1 7.6.1.2 7.6.1.3 7.6.2

7.6.3 7.6.4 7.6.4.1 7.6.4.2 7.6.5 7.6.6 7.7 7.7.1 7.7.2 7.7.2.1 7.7.2.2 7.7.2.3 7.7.2.4 7.7.2.5 7.7.2.6

7.7.3 7.7.3.1 7.7.3.2 7.7.3.3 7.7.4 7.8

Aromatization Catalysts ................. . Sulfur-Tolerant Hydrogenation Catalysts for Production of Low Aromatics Diesel .......... . Zeolites in Synfuels Production ...... . Conversion of Methanol to Gasoline (MTG) Reaction Mechanism .... The Fixed-Bed MTG Process ... . .... . The Fluid-Bed MTG Process ........ . Integration of Methanol Synthesis and Methanol Conversion (TIGAS Process) ........... . Direct Conversion of Synthesis Gas into Gasoline Conversion of Methanol to Synfuels via Light Olefins Methanol to Light Ole fins (MTO) Process . . . . . . . Light Ole fins to Gasoline and Distillates (MOGD) Process Upgrading of Fischer-Tropsch Products with Zeolites Aromatics from Light Paraffins (Cyclar Process) Application of Zeolites in the Chemical Industry . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . Acid-Catalyzed Reactions Giving Hydrocarbon Products Ethylbenzene from Benzene plus Ethylene ....... . Isopropylbenzene (Cumene) from Benzene plus Propylene Higher Alkylbenzenes . . . . . . . . . . . . p-Ethyltoluene from Toluene plus Ethylene . . . . . . . . . Alkylation of Binuclear Aromatics . . . . . . . . . . . . . . . Xylenes Production: Isomerization (Including Ethylbenzene) and Toluene Disproportionation . . . . . . . . . . Oxidation and Ammoximation Processes . . . . . Hydroxylation of Phenol with Hydrogen Peroxide Epoxidation of Propylene . . . . . Ammoximation of Cyclohexanone Amination ..... . Concluding Remarks References

Subject Index . . . .

xv

494

496 496 496 496 497 501

502 505 506 507 509 510 512 513 513 514 514 516 517 517 518

518 522 523 525 525 526 528 530

539

Page 16: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

Authors

Dr. Hermann K. Beyer X-Ray Diffraction Department Central Research Institute for Chemistry Hungarian Academy of Sciences P.O. Box 17 H-1525 Budapest, Hungary E-mail: [email protected]

Dr. P.M.M. Blauwhoff Shell-Raffinaderiet Fredericia P.O. Box 106 DK-Fredericia, Denmark

Prof Stefan Ernst Department of Chemistry Chemical Technology University of Kaiserslautern P.O. Box 3049 D-67653 Kaiserslautern, Germany

Dr. Patrick Espeel Exxon Chemical International, Inc. Hermes1aan 2 B-1830 Machelen, Belgium

Dr. J. w. Gosselink Shell International Oil Products Shell Research and Technology Centre, Amsterdam Badhuisweg 3 NL-1031 CM Amsterdam, The Netherlands

Prof Jean-Louis Guth Laboratoire de Materiaux Mineraux URA-CNRS 428 Ecole Nationale Superieure de Chimie de Mulhouse 3, rue Alfed Werner F-68093 Mulhouse Cedex, France

Prof Wolfgang Holderich Institute for Chemical Technology and Heterogeneous Catalysis RWTHAachen Worringerweg 1 D-52074 Aachen, Germany

Priv.-Doz. Dr. Michael Hunger Institute of Chemical Technology I University of Stuttgart D-70550 Stuttgart, Germany E-mail: [email protected]

Professor Pierre A. Jacobs Centrum voor Oppervlaktechemie en Katalyse Katholieke Universiteit Leuven Kardinaal Mercierlaan 92 B-3001 Heverlee, Belgium E-mail: [email protected]

Dr. Hellmut G. Karge Faradayweg 8 D-14195 Berlin, Germany

Dr. Henri Kessler Laboratoire de Materiaux Mineraux Ecole Nationale Superieure de Chimie de Mulhouse 3, rue Alfred Werner F-68093 Mulhouse Cedex, France E-mail: [email protected]

Dr. E.P. Kieffer Shell Research and Technology Centre, Amsterdam Shell International Chemicals B. V. Badhuisweg 3 NL-1031 CM Amsterdam, The Netherlands

Page 17: Catalysis and Zeolites - Home - Springer978-3-662-03764...VI Preface emerging, especially in the broad area of manufacturing organic intermediates and fine chemicals. In addition,

XVIII

Prof. Gunter H. Kuhl Department of Chemical Engineering 311A Towne Building University of Pennsylvania 220 South 33rd Street Philadelphia, PA 19104-6393, USA E-mail: [email protected]

Prof. johan A. Martens Centrum voor Oppervlaktechemie en Katalyse Katholieke Universiteit Leuven Kardinaal Mercierlaan 92 B-300 1 Heverlee, Belgium E-mail: [email protected]

Dr. Rudy Parton DSM Research New Polymers EP/NP P.O. Box 18 NL-6160 MD Geleen, The Netherlands E-mail: [email protected]

Dr. Lothar Puppe Bayer AG GB Chemikalien, CH-F-FC GebaudeG8 Bayerwerk D-51368 Leverkusen, Germany E-mail: [email protected]

Prof. S. T. Sie Faculty of Chemical Technology & Materials Science Delft University of Technology Julianalaan 136 NL-2628 BL Delft, The Netherlands E-mail: [email protected]

Dr. Wim H.j. Stork

Authors

Shell Research and Technology Centre, Amsterdam Shell International Chemicals B.V. Badhuisweg 3 NL-I031 CM Amsterdam, The Netherlands

Dr. Helge Toufar Fachbereich Chemie Institut fiir Technische Chemie Martin-Luther-Universitat Halle-Wittenberg SchloBberg 2 D-06108 Halle, Germany

Prof. lens Weitkamp Institute of Chemical Technology I University of Stuttgart D-70550 Stuttgart, Germany E-mail: [email protected]