chapter 32-3 mammals. copyright pearson prentice hall 32-3 primates and humans

63
Chapter 32-3 Mammals

Upload: evan-young

Post on 01-Jan-2016

228 views

Category:

Documents


1 download

TRANSCRIPT

Chapter 32-3Mammals

Copyright Pearson Prentice Hall

32-3 Primates and Humans

Copyright Pearson Prentice Hall

32-3 Primates and Human Origins

Mam

mal

s: P

rimat

es

Copyright Pearson Prentice Hall

What Is a Primate?

What Is a Primate?In general, primates have binocular vision, a well-developed cerebrum, relatively long fingers and toes, and arms that can rotate around their shoulder joints.

Copyright Pearson Prentice Hall

What Is a Primate?

Fingers, Toes, and ShouldersFlexible digits enable primates to run along tree limbs and swing from branch to branch with ease.

Copyright Pearson Prentice Hall

What Is a Primate?

Primates’ arms are well adapted to climbing because they can rotate in broad circles around a strong shoulder joint. In most primates, the thumb and big toe can move against the other digits. This characteristic allows primates to hold objects in their hands or feet.

Copyright Pearson Prentice Hall

What Is a Primate?

Well-Developed CerebrumThe large cerebrum of primates enables them to display more complex behaviors than many other mammals. Many species have social behaviors that include adoption of orphans and even warfare between rival primate troops.

Copyright Pearson Prentice Hall

What Is a Primate?

Binocular Vision Many primates have a flat face, so both eyes face forward with overlapping fields of view. This facial structure allows for binocular vision. Binocular vision is the ability to merge visual images from both eyes, providing depth perception and a three-dimensional view of the world.

Copyright Pearson Prentice Hall

Evolution of Primates

Evolution of PrimatesThe two main groups of primates are prosimians and anthropoids.

Copyright Pearson Prentice Hall

Evolution of Primates

Old World Monkeys

Primate ancestor

Hominoids

Lorises and Bush Babies

Lemurs

New World

MonkeysGibbons

Orangutans Gorillas

Chimpanzees Humans

Anthropoids

Prosimians

Tarsiers

Copyright Pearson Prentice Hall

Evolution of Primates

Prosimians Most prosimians alive today are small, nocturnal primates with large eyes that are adapted to seeing in the dark. Living prosimians include bush babies, lemurs, lorises, and tarsiers.

Ord

er P

rimat

es

Pros

imia

n: A

Lem

ur

Monkeys are Anthropoids

Ord

er P

rimat

es

Copyright Pearson Prentice Hall

Evolution of Primates

Lorises and Bush Babies Lemurs Tarsiers

Primate Ancestor

Prosimians

Copyright Pearson Prentice Hall

Evolution of Primates

Anthropoids  Humans, apes, and most monkeys belong to a group called anthropoids, which means humanlike primates. This group split early in its evolutionary history into two major branches. These branches separated as drifting continents moved apart.

Copyright Pearson Prentice Hall

Evolution of Primates

Orangutans Chimpanzees

Old World monkeys

New World monkeys Gibbons Gorillas Humans

Anthropoids

Copyright Pearson Prentice Hall

Evolution of Primates

One branch of anthropoids is the New World monkeys. New World monkeys:

live almost entirely in trees. have long, flexible arms to swing from

branches. have a prehensile tail, which is a tail that can

coil around a branch to serve as a “fifth hand.”

Copyright Pearson Prentice Hall

Evolution of Primates

The other group of anthropoids includes Old World monkeys and great apes.

Old World monkeys live in trees but lack prehensile tails.

Great apes, also called hominoids, include gibbons, orangutans, gorillas, chimpanzees, and humans.

Copyright Pearson Prentice Hall

Hominid Evolution

Hominid EvolutionBetween 6 and 7 million years ago, the hominoid line gave rise to hominids. The hominid family includes modern humans.As hominids evolved, they began to walk upright and developed thumbs adapted for grasping. They also developed large brains.

Copyright Pearson Prentice Hall

Hominid Evolution

Modern human

Copyright Pearson Prentice Hall

Hominid Evolution

Modern human

Copyright Pearson Prentice Hall

Hominid Evolution

The skull, neck, spinal column, hipbones, and leg bones of early hominid species changed shape in ways that enabled later hominid species to walk upright. Evolution of this bipedal, or two-foot, locomotion freed both hands to use tools. Hominids evolved an opposable thumb that enabled grasping objects and using tools.

Copyright Pearson Prentice Hall

Hominid Evolution

Hominids displayed a remarkable increase in brain size, especially in an expanded cerebrum—the “thinking” area of the brain.

Copyright Pearson Prentice Hall

Hominid Evolution

Early Hominids At present, the hominid fossil record includes these genera:

Ardipithecus Australopithecus Paranthropus Kenyanthropus Homo

Copyright Pearson Prentice Hall

Hominid Evolution

There are as many as 20 separate hominid species. This diverse group of hominid fossils covers roughly 6 million years. All are relatives of modern humans, but not all are human ancestors.Questions remain about how fossil hominids are related to one another and to humans.

Copyright Pearson Prentice Hall

Hominid Evolution

Australopithecus An early hominid species, Australopithecus, lived from about 4 million to 1 million years ago. The structure of Australopithecus teeth suggests a diet rich in fruit.

Copyright Pearson Prentice Hall

Hominid Evolution

The best known species is Australopithecus afarensis—based on a female skeleton named Lucy, who was 1 meter tall.Members of the Australopithecus species were bipedal and spent some time in trees.

Copyright Pearson Prentice Hall

Hominid Evolution

Paranthropus The Paranthropus species had huge, grinding back teeth. Their diets probably included coarse and fibrous plant foods.

Copyright Pearson Prentice Hall

Hominid EvolutionRecent Hominid Discoveries In 2001, a team had discovered a skull in Kenya.

Its ear resembled a chimpanzee’s. Its brain was small. Its facial features resembled those of Homo

fossils. It was put in a new genus, Kenyanthropus,

which lived at the same time as A. afarensis.

Copyright Pearson Prentice Hall

Hominid Evolution

Kenyanthropus platyops Homo erectus

Copyright Pearson Prentice Hall

Hominid Evolution

In 2002, paleontologists working in the desert in north-central Africa discovered another skull.

Called Sahelanthropus, it is nearly 7 million years old.

If it is a hominid, it would be a million years older than any hominid previously known.

It had a brain like a modern chimp and a flat face like a human.

Copyright Pearson Prentice Hall

Sahelanthropus tchadensis

Hominid Evolution

Copyright Pearson Prentice Hall

Hominid Evolution

Rethinking Early Hominid Evolution Researchers once thought that human evolution took place in steps, in which hominid species became gradually more humanlike.

Copyright Pearson Prentice Hall

Hominid Evolution

Hominid evolution did not proceed by the simple, straight-line transformation of one species into another. Rather, a series of complex adaptive radiations produced a large number of species whose relationships are difficult to determine.

Copyright Pearson Prentice Hall

Hominid Evolution

Millions of years ago

Copyright Pearson Prentice Hall

Hominid Evolution

The hominid fossil record dates back 7 million years, close to the time that DNA studies suggest for the split between hominids and the ancestors of modern chimpanzees.

Known or Suspect Hominids

Sim

plif

ied

Tre

e

Aust

ralo

pith

icus

afa

rens

is

Ho

mo

hab

ilis

Ho

mo

ere

ctu

s

H. erectus lived from approximately 1.8 to 0.5 million years ago and perhaps even longer

H. erectus was the most successful of the the genus Homo lineages in terms of time on Earth

H. erectus spread her kind throughout the old world

Pan H. erectus

H. sapiensHomo erectus

Ho

mo

ere

ctu

s

Copyright Pearson Prentice Hall

The Road to Modern Humans

The Road to Modern HumansPaleontologists still do not completely understand the history and relationships of species within our own genus.Other species in the genus Homo existed before Homo sapiens.

Copyright Pearson Prentice Hall

The Road to Modern Humans

The Genus HomoThe first fossils in the genus Homo are about 2.5 million years old. These fossils were found with tools, so researchers called the species Homo habilis, which means “handy man.”

Copyright Pearson Prentice Hall

The Road to Modern Humans

2 million years ago, a species called Homo ergaster appeared. It had a bigger brain and downward-facing nostrils that resembled those of modern humans.At some point, either H. ergaster or a related species named Homo erectus began migrating out of Africa through the Middle East.

Copyright Pearson Prentice Hall

The Road to Modern Humans

Out of Africa—But Who and When?Evidence suggests that hominids left Africa in several waves, as shown in the following diagram.

Copyright Pearson Prentice Hall

The Road to Modern Humans

Copyright Pearson Prentice Hall

The Road to Modern Humans

It is not certain where and when Homo sapiens arose. One hypothesis, the multi-regional model, suggests that modern humans evolved independently in several parts of the world from widely separated populations of H. erectus.

Copyright Pearson Prentice Hall

The Road to Modern Humans

Another hypothesis, the out-of-Africa model, proposes that modern humans evolved in Africa between 200,000–150,000 years ago, migrated out to colonize the world, and replaced the descendants of earlier hominid species.

Copyright Pearson Prentice Hall

Modern Homo sapiens

Modern Homo sapiensThe story of modern humans over the past 500,000 years involves two main groups.

Copyright Pearson Prentice Hall

Modern Homo sapiens

The earliest of these species is called Homo neanderthalensis.Neanderthals lived in Europe and Asia 200,000–30,000 years ago. They made stone tools and lived in organized social groups.The other group is Homo sapiens—people whose skeletons look like those of modern humans.

Copyright Pearson Prentice Hall

Modern Homo sapiens

50,000–40,000 years ago some populations of H. sapiens seem to have changed their way of life:

They made more sophisticated stone blades and elaborately worked tools from bones and antlers.

They produced cave paintings. They buried their dead with elaborate rituals.

Copyright Pearson Prentice Hall

Modern Homo sapiens

About 40,000 years ago, a group known as Cro-Magnons appeared in Europe.By 30,000 years ago, Neanderthals had disappeared from Europe and the Middle East. Since that time, our species has been Earth’s only hominid.

Copyright Pearson Prentice Hall

32-3 Quiz

Copyright Pearson Prentice Hall

32-3

The ability to merge visual images from both eyes is called

monocular vision. binocular vision. overlapping vision. color vision.

Copyright Pearson Prentice Hall

32-3

Which of the following is true about hominid evolution?

a. The development of a large brain happened before bipedal locomotion.

b. There is a straight line of descent from the earliest hominid species to Homo sapiens.

c. The genus Homo appeared before the genus Australopithecus.

d. Hominid evolution took place as a series of adaptive radiations that produced a large number of species.

Copyright Pearson Prentice Hall

32-3

The evolution of bipedal locomotion was important because it

increased brain size. made it easier to see. freed both hands to use tools. allowed easier escape from predators.

Copyright Pearson Prentice Hall

32-3 The multi-regional model hypothesizes that a. Homo sapiens evolved independently in

several parts of the world. b. Modern humans evolved in Africa, then

migrated to various parts of the world. c. Neanderthals produced cave drawings. d. Homo habilis descended from Homo erectus.

Copyright Pearson Prentice Hall

32-3

The oldest known Homo sapiens skeletons are about

6,000 years old. 100,000 years old. 3 million years old. 30 million years old.

END OF SECTION