characterization of the iridescence and motility mutants

15
Herrera, 1 Characterization of the iridescence and motility mutants in Tenacibaculum sp. strain ECSMB88. Nadia Herrera California Institute of Technology 2017 Microbial Diversity Course Miniproject report Introduction Since the establishment of the Tenacibaculum genus with the discovery of two distinct species in 2001, the number of species added to the genus has greatly increased to 23 individual species (1). The distinct Tenacibaculum species have been reported as isolates from many parts of the world—from China to Peru-- as parts of marine organisms, rocky shores, and recently, deep sea sediments (2-7). Tenacibaculum was initially identified as originating from marine sponges, but the genus was quickly populated by species which were being isolated from fish pathogens (3,4,6,7). It was not until more recently that a group started identifying a “glitter-like” iridescence in the Tenacibaculum genus, as originated by studies on Cellulophaga lytica, which later developed means for enrichment for iridescent Tenacibaculum isolates (2,8- 10). Iridescence, however, had not gone unnoticed and had been described in the literature in reports, as early as 1950 (11). A challenge in presenting iridescence instances in a bacterial isolate was accompanied by the lack of color photography which could be used in those reports. This resulted in varied means by which authors reported and described the characteristic of iridescence, and as such, it has remained a relatively understudied facet of microbiological physiology. Interestingly, aside from iridescence, bacteria which have this phenotype also utilize gliding motility. Gliding motility has been much less studied than flagellar motility, and as such remains another understudied facet of microbial physiology (12). In recent literature, both gliding and iridescence have been studied in Cellulophaga, Tenacibaculum, and Aquimarina (8). An iridescent Tenacibaculum isolate, corresponding to Tenacibaculum sp. strain ECSMB88, has been isolated by a student in the 2017 cohort of Microbial Diversity, Melissa Kardish from the Marine Biological Laboratory’s Stony Beach in Woods Hole, Massachusetts. Intriguingly enough, ECSMB88 was previously isolated from the East China Sea Biofilm by Yang, J.L., and Guo, X.P. in the Fisheries and Life Science institution in China, as stated in their deposition, KU982641, in the GenBank database. This iridescent Tenacibaculum isolate readily grows gliding colonies which show iridescence upon the first 12 hours of incubation at 30°C. As such, this particular isolate presents a model organism in which to study genes behind gliding and iridescence using observations on whole colonies. This report presents 7 mutants to which defects in gliding motility and iridescence were introduced by use of a chemical mutagenesis

Upload: others

Post on 21-Oct-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterization of the iridescence and motility mutants

Herrera, 1

CharacterizationoftheiridescenceandmotilitymutantsinTenacibaculumsp.strainECSMB88.NadiaHerreraCaliforniaInstituteofTechnology2017MicrobialDiversityCourseMiniprojectreportIntroduction

SincetheestablishmentoftheTenacibaculumgenuswiththediscoveryoftwodistinctspeciesin2001,thenumberofspeciesaddedtothegenushasgreatlyincreasedto23individualspecies(1).ThedistinctTenacibaculumspecieshavebeenreportedasisolatesfrommanypartsoftheworld—fromChinatoPeru--aspartsofmarineorganisms,rockyshores,andrecently,deepseasediments(2-7).Tenacibaculumwasinitiallyidentifiedasoriginatingfrommarinesponges,butthegenuswasquicklypopulatedbyspecieswhichwerebeingisolatedfromfishpathogens(3,4,6,7).Itwasnotuntilmorerecentlythatagroupstartedidentifyinga“glitter-like”iridescenceintheTenacibaculumgenus,asoriginatedbystudiesonCellulophagalytica,whichlaterdevelopedmeansforenrichmentforiridescentTenacibaculumisolates(2,8-10).

Iridescence,however,hadnotgoneunnoticedandhadbeendescribedintheliteratureinreports,asearlyas1950(11).Achallengeinpresentingiridescenceinstancesinabacterialisolatewasaccompaniedbythelackofcolorphotographywhichcouldbeusedinthosereports.Thisresultedinvariedmeansbywhichauthorsreportedanddescribedthecharacteristicofiridescence,andassuch,ithasremainedarelativelyunderstudiedfacetofmicrobiologicalphysiology.Interestingly,asidefromiridescence,bacteriawhichhavethisphenotypealsoutilizeglidingmotility.Glidingmotilityhasbeenmuchlessstudiedthanflagellarmotility,andassuchremainsanotherunderstudiedfacetofmicrobialphysiology(12).Inrecentliterature,bothglidingandiridescencehavebeenstudiedinCellulophaga,Tenacibaculum,andAquimarina(8).

AniridescentTenacibaculumisolate,correspondingtoTenacibaculumsp.strainECSMB88,hasbeenisolatedbyastudentinthe2017cohortofMicrobialDiversity,MelissaKardishfromtheMarineBiologicalLaboratory’sStonyBeachinWoodsHole,Massachusetts.Intriguinglyenough,ECSMB88waspreviouslyisolatedfromtheEastChinaSeaBiofilmbyYang,J.L.,andGuo,X.P.intheFisheriesandLifeScienceinstitutioninChina,asstatedintheirdeposition,KU982641,intheGenBankdatabase.ThisiridescentTenacibaculumisolatereadilygrowsglidingcolonieswhichshowiridescenceuponthefirst12hoursofincubationat30°C.Assuch,thisparticularisolatepresentsamodelorganisminwhichtostudygenesbehindglidingandiridescenceusingobservationsonwholecolonies.Thisreportpresents7mutantstowhichdefectsinglidingmotilityandiridescencewereintroducedbyuseofachemicalmutagenesis

Page 2: Characterization of the iridescence and motility mutants

Herrera, 2

screenusingMethylMethanesulfonatetomodifytheDNAinTenacibaculumsp.StrainECSMB88.--MaterialsandmethodsIsolationofTenacibaculumsp.StrainECSMB88 SamplesforisolationwerecollectedbyMelissaKardishfromStonyBeachinWoodsHole,Massachusettsat41.529°E,70.674°N,at8A.M.duringthelowtide.Aseagrassrootwascollectedfromtheeastendofthebeach,nexttothejetty.Aftercollection,theseagrassrootwasstoredinseawateruntilitwastransportedtothelab.Onceinthelab,thesamplewassubjectedtothroughmixingusingthevortex.TheresultingsupernatantwasseriallydilutedandplatedontoSeawatercompletemediumplatesandincubatedat30°C.Thesequenceofthesamplewasfoundbydoing16sPCRwithprimers8Fand1391R,asdescribedbefore(13).ThePCRproductwassubmittedforsequencingandtheresultwasalignedusingNCBIBLASTn.Aphylogenytreecomparingtherelationofthetop10hitsof16sRNAsequencingresultwasmadeusingaMUSCLEalignmentfollowedbyuseofMEGA7withdefaultparameterstogenerateatreebasedonmaximumlikelihoodbasedonpreviouswork(14,15).MMSMutagenesis Methylmethanesulfonate(MMS)wasacquiredfromSigma-Aldrich,andusedatafinalconcentrationof40uMinallreaction.10uLofaliquidovernightcultureofTenacibaculumsp.StrainECSMB88wasusedtoinoculatea5mLcultureinSeawatercompletemediumandwasgrownforaround7hoursoruntilitreachedtoanOD600nm=0.5-0.8,soastoobtaintheorganisminexponentialphase.Onceexponentialphasewasreached,a1mLaliquotofcellswasremovedfromthecultureandsubjectedtoafinalconcentrationof40uMMMS(4.44uLof99%MMSinto1mLofcells)foratotalof5minutesat30°C.Thecompletedreactionwascentrifugedusingatabletopcentrifugeoperatingat12,000RPMfor2minutes.Supernatantwasdiscardedandtheremainingcolonywasre-suspendedwithseawatercompletemedium.There-suspensionwasseriallydilutedupto10-8.Atotalof80plateswereusedforspreadingthecells,todistributethenumberofcellsattainedandscreeneverydilutionfortheemergenceofindividualcolonies.Todistributethecellsspread,100uLofinoculumwasspreadineachof20platesperdilution:10-5,10-6,10-7,and10-8.AnadditionalseawatercompletemediumplatewasinoculatedwithwildtypeTenacibaculumsp.StrainECSMB88,soastoanalyzewildtypecolonies.Aftera2-dayincubationperiodatroomtemperature(~20°C)colonieswereanalyzedandpickedforfurtheranalysis.Mutantselectionandplatinganalysis Initially,colonieswerepickedonthebasisofthreevisiblephenotypes,lossoriridescence,lossofmotility,orgainofmotility.Inthelattercase,thecolonywouldappearasmorediffusethanawildtypestandard,whereaslossofmotilitywouldbemanifestedinacolonywhichlosttheirregularedgesandformedalessmotileandcompactarrangement.Lossofiridescencewouldbeanalyzedbyvisuallyinspectingcolonieswhiletiltingtheplatetoallow

Page 3: Characterization of the iridescence and motility mutants

Herrera, 3

lighttoshinethroughthecoloniesunderinspection.Fromtheinitialscreen,34colonieswerepicked,andstreakedforisolationtoverifythephenotype.Onceverified,6mutantcolonieswereusedforsubsequentanalysisonseawatercompletemediumsupplementedwith1%papermateink.Eachcolonywasplatedbypipetting2-5uLofeitherre-suspendedcolonyinseawatercompletemedium,orliquidculture.Theresilienceofthemutationwasfurtherobservedbyplatingthecellson½dilutedseawatercompletemediumplateswith1%,1.5%(sameasregularplates),2%,and2.5%agarconcentrations.Stereomicroscopy StereomicroscopyimagesofindividualcoloniesonplatesweretakenusingaZeissSteREODiscoveryV.8microscopesupplementedwithanexternallightboxforangledilluminationoftheiridescentcolonies.Spectroscopy

Asalightsource,weusedanOSRAMM11Halogenlightbulb8V/20W.ThelightenergywasdirectedinaZEISSmobilefiberandfocusedbyamicroscopecondenserlenswithanapertureof1.25underanangleof38°ontothehorizontallypositionedcolonyonaplate.Iridescentlightwascollectedintoaglassfibermountedatadistanceof1cmverticallyabovetheobjectandconnectedtoaSpectralEvolutionSR-1900SpectroradiometerSN15782C0.SpectrawererecordedandanalyzedbytheDARWINsoftwareofSpectralEvolution(1CanalStreet,UnitB1,Lawrence,MA01840).Lightmicroscopy Liquidmountslideswerepreparedshortlybeforeimaging.LightmicroscopyimagesofindividualcellsfromliquidcultureweretakenonaZeissAxioImager2microscope,using100xmagnificationandaphasecontrastplateforeaseofvisualization.Scanningelectronmicroscopy Wholecolonieswhichhadbeengrowingfor12hoursweredehydratedforscanningelectronmicroscopy(SEM)studiesutilizinganosmiumtetraoxideandglutaraldehydefixationmethod,followedbydehydrationwithethanolandhexamethyldisilazane(HMDS).Dehydratedcolonieswerethenmountedontoaspecimenstubusingdoublesidedcarbontape.A10nmcoatofplatinumwasappliedusingaLeicasputtercoater.Foradetailedprotocol,pleaseseetheendofthisreport.ImagingofthesampleswasdoneonaSUPRA™40VPFieldEmissionSEM,equippedwithGEMENIcolumntechnologysupplementedwiththeThermoNoranSystemSIXEDS.

Page 4: Characterization of the iridescence and motility mutants

Herrera, 4

ResultsPhylogenytreebasedon16SrRNAsequencing

Thephylogenytree(Figure1)indicatedthatourisolatedhasacloserelationwithTenacibaculumspstrainECSMB88,andTenacibaculummesophiliumstrainHMG1.Duetothesimilarityoftheseresults,wehaveoptedforusingthenameofthefirsthitintheentiretyofthisreport.Assuch,theisolatedstrainisreferredtoasTenacibaculumspstrainECSMB88.

Figure1-Phylogenytreecalculatedfromthetoptenhitsof16srRNAsequencingofourisolate.Thephylogenytreedisplaysacomparisonof10hitsfromtheNCBIBLASTnresultsof16srRNAsequencingdataobtainedfromourisolate.Thescalebarindicatesthebranchdistancescale.

Page 5: Characterization of the iridescence and motility mutants

Herrera, 5

Firstroundofmutantsselected Thefirstseriesofmutantswereselectedindividuallyfroman80platearray.Coloniesthatspreadoutrelativetoawild-typecomparisonwereconsideredtobegainofglidingmutantsand,andre-struckonseawatercompletemedium,asshowninblueboxesinfigure2.Ontheotherhand,colonieswhichappearedaslossofglidingmutantshadveryroundcolonieslackinganirregularedge,thesecolonieswerepickedandareshowninorangeboxesinfigure2.Finally,colonieswhichappearedtoloseiridescenceorchangeiridescencefromthewildtypegreen/yellowhuewerepickedforfurtheranalysis,andareshownasyellowboxesinfigure2.

Figure2-Stereomicroscopyimagesofmutantsselectedforanalysisbyre-streakingofasinglemutantcolony.Instancesofgainofgliding,lossofgliding,andlossofiridescencearehighlightedinblue,orange,andgoldboxes,respectively.Analysisofselectedmutantsfromfirstround Tounderstandthephysiologicalchangesbehindthedifferentphysicalobservationsatthecolonylevel,themutantsofinterestwereplatedonseawatercompletemediumsupplementedwithink.Theblackinkshowedthestrikingdifferenceiniridescenceasthecolonygrowsontotheplate,withgreeniridescencetypicallyresidinginthecenterofthecolonyandrediridescenceresidingontheedgesofthecolony(Figure3).Inourmutationsofinterest,thisiridescencewasonlychangedinmutants4and5,whichhadbeenhighlightedaslossofiridescencemutantsinthescreenillustratedinfigure2.Onceabasalphenotypewasobserved,thecolonieswereplatedonlow-nutrientmedium,½seawatercompletewiththesameamountofagarasisusedintypicalseawatercompletemediumplates,1.5%.Theseplates

Page 6: Characterization of the iridescence and motility mutants

Herrera, 6

showedthatwithlowernutrients,theedgeoftheglidingcolonieswasspreadwidelywhilemaintainingacorrugatedshape,asseeinwildtype,andmutants1,2,4,and5(Figure3).

Ontheotherhand,mutantswhichhadbeenidentifyingashavingalossofglidingmotilitywerespreadout,buthadevenlycircularedgesasseeninmutants3and6(Figure3).Inaddition,itwasclearthatcolonies3and5hadstrikinglydifferentorganizationthantherest,highlightingacircularcolonysurroundedbyathinnerdefinedringandtaperedwithathinnerlayerofiridescentcells.Thisphenotypewasmuchreducedwhenanalyzingthesamecoloniesin½seawatercompleteand1%and2.5%agar(figures5-6).Astrikingobservationwasthatin½seawatercompletemediumwith1%agar,mostofthecoloniesspreadthoroughly,andevendisplayedlossofiridescenceinmutants2and5(figure5).Intriguingly,mutant3didnotspreadthoroughly,butinsteadremainedinasmallandcircularcolonyshape(figure5).Lastly,uponincreasingtheagarconcentration.In½seawatercompletemediumto2.5%,iridescencewasverydistinctfromtheotherconditions,andagreenhuewasobservedontheoutsideofwildtype,andmutants1-3,and5-6(Figure6).Ontheotherhand,themutantwhichhadbeenselectedforalossofiridescence,mutant4,waspigmentedcompletelydifferentlyanddisplayedverylittleiridescenceamidstaredhue(figure5).Collectively,theeffectofagarconcentrationandnutrientavailabilitygreatlyimpactshowthemutationsmanifestthemselves.Thisindicatesthatitiscriticalto“makenicewithyourbug”andplateitonmultiplemediainthepursuitofinvestigatingtheeffectsofamutation.

Figure3-Colonycomparisoninseawatercompletemedium,using1.5%agar.Wildtypeisdisplayedontheleft-handpanel,whereastheselectedmutantsareontheright-handpanel.Iridescentpropertiesarehighlightedbytheuseofblackinkontheplates,demonstratingthevariabilityofcolorsindifferentregionsofthecolony.

Page 7: Characterization of the iridescence and motility mutants

Herrera, 7

Figure4-Colonycomparisoninseawatercomplete,using½concertationofmediumnutrientswhilemaintainingtherigidityoftheagarfromregularseawatercompleteplates.Theseplateshighlightadditionalglidinginallofthemutantsanalyzed,withdefinedchangesincolonymorphologyinmutants3and6.

Figure5-Colonycomparisoninseawatercomplete,using½concentrationofnutrientsinmediumand1%agar.Inthismedium,colonieswhichwerecharacterizedasgainofglidingweremuchspread,whereascolony3wasfurtherestablishedasalossofmotilitycolony.Theiridescenthueinthecoloniesbecomesdiminishedinwildtype,andmutants1-2,4-5.

Page 8: Characterization of the iridescence and motility mutants

Herrera, 8

Figure6-Colonycomparisoninseawatercomplete,using½concentrationofnutrientsinmediumand2.5%agar.Inthismedium,ahardersurfacepreventsmostcoloniesfromglidingfar.Inaddition,iridescenceismanifestedasagreenpigmentalongtheedgesofmostcolonies,whereasthelossofiridescenceisprominentinmutant4.Analysisofcellmorphologyinindividualcolonies Lightmicroscopyoncellsobtainedfromliquidcultureofvaryingmutantsshowedthattheyallcontainedamixedpopulationofrodswithvaryinglengths,ashighlightedinFigure7.Inthisanalysis,itwasevidentthatamixedpopulationofrodswashomogeneousamidstallcells,withwildtype,andmutants2,4and5displayingbothaninstanceofalongrodandaformationofcellularorganizationonaglassslide.Interestingly,mutants1-3,and6onlysharedoneofthosecharacteristicswithwildtype.Sincecellularorganizationappearstobeveryvariedamidstthemutants,itwasimperativetoanalyzetheirorganizationatthewholecolonylevel,soastounderstandcellularorganizationatthecolonylevel.

Page 9: Characterization of the iridescence and motility mutants

Herrera, 9

Figure7-Lightmicroscopyimagesofthemutantsselectedforanalysis.Elongatedcellshapesarehighlightedusingredarrows,whereaseventsthatappeartobeearlycellularorganizationarehighlightedusingyellowarrows.Ingeneral,mostmutantsshareeitheroneorbothofthesecharacteristicswithwildtype.SEManalysisofcoloniesandmutants SEManalysisofourcoloniesallowedfortheinvestigationofsubcellularorganizationintheentiretyofacolony.InpreparationforSEM,itwasnotedthattheiridescentpropertiesofthecoloniesappearedtosurviveddehydration,asshowninfigure8.OnceanalyzedwithSEM,immediatecolonyorganizationwasnotevidentinanyportionofthecolonyforanyofthemutationsobserved.Ahomogeneousmixtureofcellsizeincolonyformationwasobservedinwildtypeandmutants1,2,4-6(Figure9).Thisresultlikelyexplainstheglitter-likeiridescenceobservedincoloniesonagar,astheiridescenceislikelytheresultofasmallgroupofcoloniesforminganorderedarrayamidstanarrayofcellsinagivencolony.Interestingly,ourlossofiridescencemutantdisplayedanorderedarrayofcellswhichseemedtohaveaperiodicstructurewithinindividualclustersandwithincellsthemselves(Figure9).Thisresultisindicativeofastructuraldifferencecorrelatedwithachangeofpigmentinacolony.Ontheotherhand,thecellsinmutant3appeartoreleaseamaterialwhichislikelyexopolysaccharideusedinbiofilmformation.Characterizationofiridescentpropertiesinthesemutants,isthereforeofinterestforfurtherdifferentiation.

Page 10: Characterization of the iridescence and motility mutants

Herrera,10

Figure8-SEMcolonydehydrationafterfixation.Huesofpinkandgreenonthecolonysurfaceappeartomanifestaretentionofcolonyiridescencethroughtheprocedureofdehydration.Colonysizewasreducedtoabout1/10oftheoriginalsizeandcoloniesbecamecorrugatedfromdehydrationafterpreparation.

Figure9-SEMofcolonies.SEMonindividualcoloniesshowedamesh-likestructureofcellsofvaryingsizesonthecolony,regardlessoflocationofimagingonthecolony.Mutant3showedaparticularlydensebedofextracellularmaterialaccumulationwhichislikelyexopolysaccharides.SpectroscopiccharacterizationofmutantsSpectroscopystudiesonindividualcolonies Spectroscopymeasurementsweretakenonindividualcoloniesgrownonseawatercompleteplatesinblackagar.Theseplatesprovidedabaseforreflectionmeasurementsoffoftheiridescenceofthecolony.Weobservedthatwildtypehasstrongestreflectionsat540nm,whichisrightinthegreenzoneofthelightspectrumandinaccordancewiththecolorthatweseebyeye.Thispeakisshiftedinmostmutants,butthemoststrikingchangeisinmutant4,

Page 11: Characterization of the iridescence and motility mutants

Herrera,11

wherethepeakmovestothe582nmrange,whichisclosertotheyellowspectrumanddifferentiatesthiscolonyashavingdifferentspectroscopicreflections.Ourresultssuggestthatthisprocedureofmeasuringiridescenceisawaytoprovidequantificationofdifferencesobservediniridescence,andcouldbeawaytotrulydiscernbetweendifferentiridescencetypes.

Figure10-Spectroscopyonindividualcoloniesgrownonseawatercompleteagarplatessupplementedwithink.Discussion

Wehaveisolatedcoloniesthathavedefectsinglidingabilityandiridescentcolor.Studyingthegeneticbasisbehindthiswillshedlightontwofacetsofbacterialphysiologywhicharenotwellunderstoodtodate.Thoughitisinitiallyobservedthatcoloniesformlittleorder,theyappeartoretainiridescenceafterdesiccation.Inaddition,theiriridescentpropertiesseemtoremainunchangedafterdehydration.Inordertofurtheranalyzecolonyorganizationatthecellularlevel,itwouldbenecessarytoimageagrowingcolonyusinganinvertedmicroscopesetup,orstudyingawholecolonyusingtransmissionelectronmicroscopy,whichcouldshedlightoncellularorganizationattheultrastructurallevel.

Page 12: Characterization of the iridescence and motility mutants

Herrera,12

Thisorganismhasalotofinterestingfeatureswhicharetraceable,andmanycharacteristicsandpropertieslefttoexplore.Forinstance,throughoutthistime,itisdifficulttousecentrifugationat3400RPMtopelleta50mLmassofcells,evenafterextendedspinning.Itislikelythatthesecellsarebeingkeptinsuspensionbytheirproductionofexopolysaccharideinthegrowthmediumoncetheyreachlagphase,asthisisnotobservedincellsgrowntoexponentialphase.Infact,studieshavebeendonewhereafoambeadisseenglidingalongacellinliquidmedium,soastosuggestthattheirglidingmotilityisactivewhilegrowingonliquidmedium,despitethelackofasurfacetoglideon(16).

Inordertobetter-understandthesephenotypicmutations,itessentialtosequencethegenomeofthecoloniesofinterest,soastostudythegeneswhicharebeingmutatedtocreatetheeffectsseen.Outofthemutantspresentedinthisstudy,therearethreedistinctcoloniesthatshouldbestudiedtostarttounderstandpatternsofchange,andthosearewildtype,alossofmotilitymutant3,andalossofiridescentmutant5(Figure11).Onceweareabletomapthemutationstothegenome,complementationstudieswillallowustoestablishthegenesbehindthemutationsobserved.Fortunately,inthelastyearageneticsystemhasbeenestablishedforasimilartypeofbacteriawhichcanbeusedforcomplementationstudies(17).Ultimately,theseconstructscanprovetobethebeginningofaninvestigationtowardstwobacterialphenotypeswhichhaveyettobethoroughlyunderstood.

Figure11-Wholegenomesequencecandidates,colonyandSEMimages.Amidstallofthemutationsinthisstudy,thesethreecandidateswouldallowforinitialunderstandingofthemachinerybehindmotility.

Page 13: Characterization of the iridescence and motility mutants

Herrera,13

References1. Suzuki,M.,Nakagawa,Y.,Harayama,S.,andYamamoto,S.(2001)Phylogeneticanalysis

andtaxonomicstudyofmarineCytophaga-likebacteria:proposalforTenacibaculumgen.nov.withTenacibaculummaritimumcomb.nov.andTenacibaculumovolyticumcomb.nov.,anddescriptionofTenacibaculummesophilumsp.nov.andTenacibaculumamylolyticumsp.nov.IntJSystEvolMicrobiol51,1639-1652

2. Kientz,B.,Ducret,A.,Luke,S.,Vukusic,P.,Mignot,T.,andRosenfeld,E.(2012)Glitter-likeiridescencewithinthebacteroidetesespeciallyCellulophagaspp.:opticalpropertiesandcorrelationwithglidingmotility.PLoSOne7,e52900

3. Kim,Y.O.,Park,S.,Nam,B.H.,Jung,Y.T.,Kim,D.G.,Jee,Y.J.,andYoon,J.H.(2013)Tenacibaculumhalocynthiaesp.nov.,amemberofthefamilyFlavobacteriaceaeisolatedfromseasquirtHalocynthiaroretzi.AntonieVanLeeuwenhoek103,1321-1327

4. Lopez,J.R.,Nunez,S.,Magarinos,B.,Castro,N.,Navas,J.I.,delaHerran,R.,andToranzo,A.E.(2009)FirstisolationofTenacibaculummaritimumfromwedgesole,Dicologoglossacuneata(Moreau).JFishDis32,603-610

5. Park,S.,andYoon,J.H.(2013)Tenacibaculumcaenipelagisp.nov.,amemberofthefamilyFlavobacteriaceaeisolatedfromtidalflatsediment.AntonieVanLeeuwenhoek104,225-231

6. Pineiro-Vidal,M.,Gijon,D.,Zarza,C.,andSantos,Y.(2012)Tenacibaculumdicentrarchisp.nov.,amarinebacteriumofthefamilyFlavobacteriaceaeisolatedfromEuropeanseabass.IntJSystEvolMicrobiol62,425-429

7. Smage,S.B.,Brevik,O.J.,Duesund,H.,Ottem,K.F.,Watanabe,K.,andNylund,A.(2016)Tenacibaculumfinnmarkensesp.nov.,afishpathogenicbacteriumofthefamilyFlavobacteriaceaeisolatedfromAtlanticsalmon.AntonieVanLeeuwenhoek109,273-285

8. Kientz,B.,Agogue,H.,Lavergne,C.,Marie,P.,andRosenfeld,E.(2013)IsolationanddistributionofiridescentCellulophagaandotheriridescentmarinebacteriafromtheCharente-Maritimecoast,FrenchAtlantic.SystApplMicrobiol36,244-251

9. Kientz,B.,Luke,S.,Vukusic,P.,Peteri,R.,Beaudry,C.,Renault,T.,Simon,D.,Mignot,T.,andRosenfeld,E.(2016)Auniqueself-organizationofbacterialsub-communitiescreatesiridescenceinCellulophagalyticacolonybiofilms.SciRep6,19906

10. Kientz,B.,Marie,P.,andRosenfeld,E.(2012)Effectofabioticfactorsontheuniqueglitter-likeiridescenceofCellulophagalytica.FEMSMicrobiolLett333,101-108

11. Warner,P.T.(1950)TheiridescentphenomenonofPs.pyocyanea.BrJExpPathol31,242-257

12. Youderian,P.(1998)Bacterialmotility:secretorysecretsofglidingbacteria.CurrBiol8,R408-411

13. Turner,S.,Pryer,K.M.,Miao,V.P.,andPalmer,J.D.(1999)InvestigatingdeepphylogeneticrelationshipsamongcyanobacteriaandplastidsbysmallsubunitrRNAsequenceanalysis.JEukaryotMicrobiol46,327-338

14. Tamura,K.,andNei,M.(1993)EstimationofthenumberofnucleotidesubstitutionsinthecontrolregionofmitochondrialDNAinhumansandchimpanzees.MolBiolEvol10,512-526

Page 14: Characterization of the iridescence and motility mutants

Herrera,14

15. Kumar,S.,Stecher,G.,andTamura,K.(2016)MEGA7:MolecularEvolutionaryGeneticsAnalysisVersion7.0forBiggerDatasets.MolBiolEvol33,1870-1874

16. McBride,M.J.(2001)Bacterialglidingmotility:multiplemechanismsforcellmovementoversurfaces.AnnuRevMicrobiol55,49-75

17. Zhu,Y.,andMcBride,M.J.(2016)ComparativeAnalysisofCellulophagaalgicolaandFlavobacteriumjohnsoniaeGlidingMotility.JBacteriol198,1743-1754

SupplementalinformationProtocolforSEMdehydrationandfixationofabacterialcolony

1- Usingarazorblade,cutoutthecolonyfromanagarplate.2- Scoopthecolonyontothelidofa1cmdiameterpetridish3- Add500uLoffixativeagent,Osmiumtetraoxideinwaterat1%concentrationtothe

bottomofthepetridishandspreadthroughoutplateevenly.4- Carefullyplacethecolonyovertheliquidinthebottomoftheplate,andadd300uLof

additional1%osmiumtetraoxidesoastoformameniscusaroundthecolony.Donotre-suspendcolony.

5- Allowfixationtoproceedfor1houratroomtemperature,coveryourdish.6- Pipetteoutthefixative,andreplacewith800uLof3.5%glutaraldehydein0.1M

cacodylatebuffer.7- Allowfixationtoproceedfor2hoursatroomtemperature,coveryourdish.8- Pipetteoutthefixativeandreplacewith800uLof0.1MCacodylatebuffer.9- Allowwashingtoproceedfor15minutes,andrepeatstep8foranadditional15

minutes.10- Atthispoint,yourcolonyshouldbedarkened.Pipetteoutwashingsolutionandadd800

uLof1%Osmiumtetraoxidein0.1Mcacodyltebuffer.11- Allfixationtoproceedforanhouratroomtemperature,coveryourdish.12- Removesupernatantandadd800uLofdistilledwater.13- Allowwashingtoproceedfor30minutes,andrepeatstep12foranadditional30

minutes.14- Todryyoursample,pipettegently,useanelectricpipettethatwillallowfordispensing

atlowspeed.Pipetteoutthewaterandreplacewith4mLof50%ethanol.15- Allowdryingtoproceedfor15minutes.16- Pipetteoutethanol,andreplacewith4mLof70%ethanol.17- Allowdryingtoproceedfor15minutes.18- Repeatsteps16-17with80%,90%,95%,and100%ethanol(twicefor100%).19- Afterfinalstep,removeethanolandreplacewith4mLofa1:2solutionof

Hexamethyldisilazane(HMDS):Ethanol.20- Allowdryingtocontinuefor20minutes.21- PipetteoutfirstsolutionofHMDS:Ethanolandreplacewith4mLofa2:1HMDS:Ethanol

solution.

Page 15: Characterization of the iridescence and motility mutants

Herrera,15

22- Alldryingtooccurfor20minutes.23- Repeatspets21and22with100%HMDS.24- Onceyoureachyourfinalstepof100%HMDS,pipetteoutliquidcarefully,andallow

colonytodryslowlybyleavingthecoveronthepetridishovernight.Oncedrythecolonieswillbebrittleandmuchreducedinsize.