characterizing fine-grained associativity gaps: a preliminary study of cad-cae model...

55
Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability [email protected] http://itimes.marc.gatech.edu/ http://eislab.gatech.edu/projects/ ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference September 2-6, 2003 Chicago, Illinois Paper No. CIE-48232 http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/ Copyright © 1992-2003 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved. reproduce and distribute for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation

Upload: aron-logan

Post on 30-Dec-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

Characterizing Fine-Grained Associativity Gaps:A Preliminary Studyof CAD-CAE Model Interoperability

[email protected]://itimes.marc.gatech.edu/

http://eislab.gatech.edu/projects/

ASME 2003 Design Engineering Technical Conferences andComputers and Information in Engineering Conference

September 2-6, 2003Chicago, Illinois

Paper No. CIE-48232

http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/

Copyright © 1992-2003 by Georgia Tech Research Corporation, Atlanta, Georgia 30332-0415 USA. All Rights Reserved.Permission to reproduce and distribute for non-commercial purposes (including internal corporate usage) is hereby granted provided this notice and a proper citation are included.

Page 2: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

2

AbstractCharacterizing Fine-Grained Associativity Gaps:

A Preliminary Study of CAD-CAE Model InteroperabilityThis paper describes an initial study towards characterizing model associativity gaps and other engineering interoperability problems. Drawing on over a decade of X-analysis integration (XAI) research and development, it uses the XAI multi-representation architecture (MRA) as a means to decompose the problem and guide identification of potential key metrics.

A few such metrics are highlighted from the aerospace industry. These include number of structural analysis users, number of analysis templates, and identification of computing environment components (e.g., number of CAD and CAE tools used in an example aerospace electronics design environment).

One problem, denoted the fine-grained associativity gap, is highlighted in particular. Today such a gap in the CAD-CAE arena typically requires manual effort to connect an attribute in a design model (CAD) with attributes in one of its analysis models (CAE). This study estimates that 1 million such gaps exist in the structural analysis of a complex product like an airframe. The labor cost alone to manually maintain such gaps likely runs in the tens of millions of dollars. Other associativity gap costs have yet to be estimated, including over- and under-design, lack of knowledge capture, and inconsistencies.

Narrowing in on fundamental gaps like fine-grained associativity helps both to characterize the cost of today’s problems and to identify basic solution needs. Other studies are recommended to explore such facets further.

http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/

X = design, mfg., sustainment, and other lifecycle phases.

Page 3: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

3

Design Models Analysis ModelsDesign Models Analysis Models

Frame of Reference10+ years of R&D in

CAD-CAE Model Representation & Interoperability

Resulting techniques to date: Architecture with new model abstractions (patterns)

– Enables modular, reusable building blocks– Supports diversity:

» Product domains and physical behaviors» CAD/E methods and tools

– Supports multiple levels of fidelity

Other Model Abstractions (Patterns)

Page 4: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

4

Frame of Reference (cont.) 10+ years of R&D in

CAD-CAE Model Representation & Interoperability

Represent design-analysis model associativity as tool-independent knowledge

Provide methodology– Capture analysis idealization knowledge – Create highly automated analysis templates – Support product design

Design Models Analysis ModelsOther Model Abstractions (Patterns)

Idealization & Associativity Relations

Page 5: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

5

X-Analysis Integration Techniquesfor CAD-CAE Interoperability

http://eislab.gatech.edu/research/

a. Multi-Representation Architecture (MRA)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

b. Explicit Design-Analysis Associativity

c. Analysis Module Creation Methodology

I n f o r m a l A s s o c i a t i v i t y D i a g r a m

C o n s t r a i n e d O b j e c t - b a s e d A n a l y s i s M o d u l eC o n s t r a i n t S c h e m a t i c V i e w

P l a n e S t r a i n B o d i e s S y s t e m

P W A C o m p o n e n t O c c u r r e n c e

CL

1

m a t e r i a l ,E( , )g e o m e t r y

b o d y

p l a n e s t r a i n b o d y , i = 1 . . . 4P W B

S o l d e rJ o i n t

E p o x y

C o m p o n e n tb a s e : A l u m i n a

c o r e : F R 4

S o l d e r J o i n t P l a n e S t r a i n M o d e l

t o t a l h e i g h t , h

l i n e a r - e l a s t i c m o d e l

A P M A B B

3 A P M 4 C B A M

2 A B Bc

4b o d y 3b o d y

2b o d y

1h oT

p r i m a r y s t r u c t u r a l m a t e r i a l

ii

i

1 S M M

D e s i g n M o d e l A n a l y s i s M o d e l

A B B S M M

s o l d e rs o l d e r j o i n t

p w b

c o m p o n e n t

1 . 2 5

d e f o r m a t i o n m o d e l

t o t a l h e i g h t

d e t a i l e d s h a p e

r e c t a n g l e

[ 1 . 2 ]

[ 1 . 1 ]

a v e r a g e

[ 2 . 2 ]

[ 2 . 1 ]

cT c

T s

i n t e r - s o l d e r j o i n t d i s t a n c ea p p r o x i m a t e m a x i m u m

s j

L s

p r i m a r y s t r u c t u r a l m a t e r i a l

t o t a l t h i c k n e s s

l i n e a r - e l a s t i c m o d e l

P l a n e S t r a i n

g e o m e t r y m o d e l 3

a

s t r e s s - s t r a i nm o d e l 1

s t r e s s - s t r a i nm o d e l 2

s t r e s s - s t r a i nm o d e l 3

B o d i e s S y s t e m

x y , e x t r e m e , 3

T 2

L 1

T 1

T 0

L 2

h 1

h 2

T 3

T s j

h s

h c

L c

x y , e x t r e m e , s jb i l i n e a r - e l a s t o p l a s t i c m o d e l

l i n e a r - e l a s t i c m o d e l

p r i m a r y s t r u c t u r a l m a t e r i a l l i n e a r - e l a s t i c m o d e l

c o m p o n e n to c c u r r e n c e

s o l d e r j o i n ts h e a r s t r a i nr a n g e

[ 1 . 2 ]

[ 1 . 1 ]l e n g t h 2 +

3 A P M 2 A B B 4 C B A M

F i n e - G r a i n e d A s s o c i a t i v i t y

ProductModel Selected Module

Analysis Module Catalogs

MCAD

ECAD

Analysis Procedures

CommercialAnalysis Tools

Ansys

Abaqus

Solder Joint Deformation Model

Idealization/Defeaturization

CommercialDesign Tools

PWB

Solder Joint

Component

APM CBAM ABB SMM

Ubiquitous Analysis(Module Usage)

Ubiquitization(Module Creation)

CAE

Physical Behavior Research,Know-How, Design Handbooks, ...

Page 6: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

6

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 7: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

7

FEA-based Analysis Template Linkage Plane Stress Model

ts1

rs1

L

rs2

ts2tf

ws2ws1

wf

tw

F

L L

x

y

L C

Plane Stress Bodies

Higher fidelity version vs. Linkage Extensional Model

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ABBSMM SMM Template

Page 8: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

8

Flexible High Diversity Design-Analysis Integration

Electronic Packaging Examples: Chip Packages/Mounting Shinko Electric Project: Phase 1 (production usage)

EBGA, PBGA, QFP

CuGround

PKG

Chip

Analysis Modules (CBAMs) of Diverse Behavior & Fidelity

FEAAnsys

General MathMathematica

Analyzable Product Model

XaiTools

XaiToolsChipPackage

ThermalResistance

3D

Modular, ReusableTemplate Librariestemperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

Design Tools

PWB DB

Materials DB*

Prelim/APM Design ToolXaiTools ChipPackage

ThermalStress

Basic3D**

** = Demonstration module

BasicDocumentation

AutomationAuthoringMS Excel

Page 9: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

9

Chip Package Thermal Resistance Analysis Template (FEA-based CBAM)

L

H

W

Theta ja

Theta jc

Tmax

Tmin

ave PST

ave BTST

CW

CL

D

kx

ky

kz

P

hc

hp

hbave BBST

Ta

q

chip_package_product_assembly

componentsL[i:1,n]

power

heat_generation_rate

convection_coefficient_1 L[j:1,m]

convection_coefficient_2 L[j:1,m]

convection_coefficient_3 L[j:1,m]

condition temperature

avelair_flow_velocity L[j:1,m]

width

cavity_width

length

cavity_length

height

depth

singular_mat

Variable TopologyFEA Model

thermal model

r1

composite_mat

isotropic_thermal_model

orthotropic_thermal_model

base_mat

mixed_mat

PTmax

PTmax

Tmax

P

Ta

Thermal ResistanceModel

Page 10: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

10

Circuit Board Design-Analysis IntegrationElectronic Packaging Examples: PWA/B

Analysis Modules (CBAMs) of Diverse Mode & Fidelity

Design Tools

Laminates DB

FEA Ansys

General MathMathematica

Analyzable Product Model

XaiToolsPWA-B

XaiToolsPWA-B

Solder JointDeformation*

PTHDeformation & Fatigue**

1D,2D

1D,2D,3D

Modular, ReusableTemplate Libraries

ECAD Tools Mentor Graphics,

Zuken, …

temperature change,T

material model

temperature, T

reference temperature, To

cte,

youngs modulus, E

force, F

area, A stress,

undeformed length, Lo

strain,

total elongation,L

length, L

start, x1

end, x2

mv6

mv5

smv1

mv1mv4

E

One D LinearElastic Model(no shear)

T

e

t

thermal strain, t

elastic strain, e

mv3

mv2

x

FF

E, A,

LLo

T, ,

yL

r1

12 xxL

r2

oLLL

r4

A

F

sr1

oTTT

r3L

L

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

T o r s i o n a l R o d

G

J

r

2

1

s h e a r m o d u l u s , G

c r o s s s e c t i o n :e f f e c t i v e r i n g p o l a r m o m e n t o f i n e r t i a , J

a l 1

a l 3

a l 2 a

l i n k a g e

m o d e : s h a f t t o r s i o n

c o n d i t i o n r e a c t i o n

t s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

T

o u t e r r a d i u s , r o a l 2 b

s t r e s s m o s m o d e l

a l l o w a b l e s t r e s s

t w i s t m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

a l l o w a b l et w i s t Analysis Tools

PWBWarpage

1D,2D

Materials DB

PWB Stackup ToolXaiTools PWA-B

STEP AP210‡ GenCAM**,

PDIF*

‡ AP210 Ed2 WD8 * = Item not yet available in toolkit (all others have working examples) ** = Item available via U-Engineer.com

Page 11: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

11

total_thicknesspwa

layup layers[0]

layers[1]

layers[2]

TOTAL

CU1T

CU2T

POLYT

PREPREGT

TETRA1T

EXCU

ALPXCU

EXEPGL

ALPXEGL

TO

deformation model

ParameterizedFEA Model

ux mos model

Margin of Safety(> case)

allowable

actual

MS

UX

condition

UY

SX

associated_pwb

nominal_thickness

prepregs[0] nominal_thickness

top_copper_layer nominal_thickness

related_core nominal_thickness

prepregs[0] nominal_thicknesslayers[3]

primary_structure_material linear_elastic_model E

cte

primary_structure_material linear_elastic_model E

cte

reference temperature

temperatureDELTAT

APM ABB

SMM

PWB Warpage Modulesa.k.a. CBAMs: COB-based analysis templates

deformation model

Thermal Bending Beam

L

b

T

Treference

t

T

total diagonalassociated_pwb

total thickness

coefficient of thermal bending

al1

al2

al6

al3

t

TLb

2

warpage

wrapage mos model

allowable

MSactual

Marginof Safety

associated condition

al5

al4

temperature

reference temperature

pwa

APM

ABBPWB Thermal Bending Model

(1D formula-based CBAM)

PWB Plane Strain Model (2D FEA-based CBAM)

APMUsage of Rich Product Models

Page 12: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

12

Purpose of this Paper Preliminary Characterization of CAD-CAE Interoperability Problem

Number of Subsystems (Models, Tools, Relations)

Design Models Analysis ModelsOther Model Abstractions (Patterns)

Idealization & Associativity Relations

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3

body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

Page 13: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

13

Multi-Representation Architecture (MRA) SummaryCharacteristics of Component Representations

Solution Method Models (SMMs)– Packages solution tool inputs, outputs, and control as integrated

objects– Automates solution tool access and results retrieval via tool agents

and wrappers Analysis Building Blocks (ABBs)

– Represents analysis concepts using object and constraint graph techniques

– Acts as a semantically rich 'pre-preprocessor' and 'post-postprocessor' model.

» ABB instances create SMM instances based on solution method considerations and receive results after automated solution tool execution

Page 14: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

14

Multi-Representation Architecture (MRA) SummaryCharacteristics of Component Representations (cont.)

Analyzable Product Models (APMs)– Represent design aspects of products and enables connections

with design tools– Support idealizations usable in numerous analysis models– Have possibly many associated CBAMs

Context-Based Analysis Models (CBAMs)– Contain linkages explicitly representing design-analysis

associativity, indicating usage of APM idealizations– Create analysis models from ABBs and automatically connects

them to APM attributes– Represent common analysis models as automated, predefined

templates– Support interaction of analysis models of varying complexity and

solution method– Enable parametric design studies via multi-directional input/output

(in some cases)

Page 15: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

15

Multi-Representation Architecture (MRA) SummaryOverall Characteristics

Addresses information-intensive nature of CAD-CAE integration

Breaks design-analysis integration gap into smaller subproblems (patterns)

Flexibly supports different design and analysis methods and tools

Based on modular, reusable information building blocks

Defines methodology for creating specialized, highly automated analysis tools to support product design

Represents analysis intent as tool-independent knowledge

Page 16: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

16

Multi-Representation Architecture (MRA) Summary Overall Characteristics (cont.)

Multiple representations required by:– Many:Many cardinality– Reusability & modularity

Self-Test: Consider impact of removing a representation Similar to “software design patterns”

for CAD-CAE domain– Identifies patterns between CAD and CAE

(including new types of objects)– Captures explicit associativity– Other needs: conditions, requirements, next-higher analysis

Distinctive CAD-CAE associativity needs– Multi-fidelity, multi-directional capabilities

Page 17: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

17

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

O(100) tools

Page 18: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

18

Holding AccountBilling & Payable

E-CAE Toolsmiths and Workstations

DN

P O

pera

tion

s ToolsmithsWorkstations

SystemSystemCAECAE

DIVISION 31DIVISION 31

Servers & Sys AdminM-CAE Servers& Sys Admin Servers & SATMOD Severs

* Not DNP Operations

Design, Build, Assembly, Test (DBAT) Process

CA

E C

ost C

ente

rs

JPL Projects and Technical DivisionsCus

tom

ers

Robin MoncadaRobin MoncadaManagement and Administration

SoapSat Took Kit SDKDoorsApGenFast Flight

Ansoft HPEE SofSonnet

Mentor GraphicsCadenceMathworks MatlabSynopsysSynplicityIlogix StatemateOrcad AutoCad RelexAvant!

Place & Route- Actel- Xilinx - Atmel

(and many more)

PTC Computer VisionPTC Pro-ESDRC IdeasSDRC FemapSolid WorksCosmosNASTRANAdamsSinda/Fluent

PDMS -

EDMGSDRC MetaphaseSherpa

Visual ToolSetsCool JexPercepsRational RoseRuifyHarlequin LISPI-Logix Rhapsody

Code VLensViewTraceProZemax

Software T

ools

ElectronicsElectronicsCAECAE

DIVISION 34DIVISION 34

RF & EMRF & EMCAECAE

DIVISION 33DIVISION 33

MechanicalMechanicalCAECAE

DIVISION 35DIVISION 35

SoftwareSoftwareCAECAE

DIVISION 36DIVISION 36

OpticalOpticalCAECAE

DIVISION 38DIVISION 38

M-CAE Toolsmithsand Workstations

Adapted from “Computer Aided Engineering Tool Service at JPL” - 2001-07-22 - Mike Dickerson -NASA-JPL

Example CAD/E/X Toolset (JPL)

~100 tools

Page 19: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

19

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

O(100) types

Page 20: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

20

Analysis Building Blocks (ABBs)

Analysis Primitives

Beam

q(x)

Distributed Load

RigidSupport

Cantilever Beam System

Analysis Systems- Primitive building blocks - Containers of ABB "assemblies"

Material Models

Specialized

General

- Predefined templates

- User-defined systemsAnalysis VariablesDiscrete Elements

Interconnections

Continua

Plane Strain BodyLinear-Elastic

BilinearPlastic Plate

Low CycleFatigue

N

Mass Spring Damper

x

y q(x)

Beam

Distributed Load

RigidSupport

No-Slipbody 1

body 2

Temperature,

Stress,

Strain,

T

Geometry

Object representation of product-independent analytical engineering concepts

Page 22: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

22

Common Structures Workstation (CSW) Request for Information June 2000, The Boeing Company.

Appendix B: Required Standard Analysis Methods

Available at http://eislab.gatech.edu/projects/boeing-psi/2000-06-csw-rfi/

~110 generic template

groupings

Page 23: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

23

Appendix B: Required Standard Analysis Methods(continued)

Page 24: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

24

COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - Constraint Schematic-S

Material Model ABB

Continuum ABBs

modularre-usage

E

O n e D L in e a rE la s t i c M o d e l

T

G

e

t

m a t e r i a l m o d e l

p o la r m o m e n t o f i n e r t i a , J

r a d iu s , r

u n d e f o r m e d l e n g t h , L o

t w i s t ,

t h e t a s t a r t , 1

t h e t a e n d , 2

r 1

12

r 3

0L

r

J

rT r

t o r q u e , T r

x

TT

G , r , , ,J

L o

y

m ateria l m odel

tem perature, T

reference tem perature, T o

force, F

area, A

undeform ed length, L o

to ta l e longation,L

length, L

start, x1

end, x2

E

O ne D LinearE lastic M odel

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E , A ,

LL o

T , ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, telastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

Page 25: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

25

COB-based Libraries of Analysis Building Blocks (ABBs)Material Model and Continuum ABBs - COB Structure-S

COB one_D_linear_elastic_model SUBTYPE_OF elastic_model;

youngs_modulus, E : REAL;

poissons_ratio, : REAL;

cte, : REAL;

shear_modulus, G : REAL;

strain, : REAL;

stress, : REAL;

shear_stress, : REAL;

shear_strain, : REAL;

thermal_strain, t : REAL;

elastic_strain, e : REAL;

temperature_change, T : REAL;

RELATIONS

r1 : "<shear_modulus> * ( 2 * (1 + <poissons_ratio> ) )

== <youngs_modulus> ";

r2 : "<strain> == <elastic_strain> + <thermal_strain>";

r3 : "<elastic_strain> == <stress> / <youngs_modulus>";

r4 : "<thermal_strain> == <cte> * <temperature_change>";

r5 : "<shear_strain> == <shear_stress> / <shear_modulus>";

END_COB;

COB one_D_linear_elastic_model_isothermal SUBTYPE_OF one_D_linear_elastic_model;

RELATIONS

r6 : "<temperature_change> == 0";

END_COB;

COB slender_body SUBTYPE_OF deformable_body;

undeformed_length, L0 : REAL;

reference_temperature, T0 : REAL;

temperature, T : REAL;

RELATIONS

sb1 : "<material_model.temperature_change>

== <temperature> - <reference_temperature>";

END_COB;

COB extensional_rod SUBTYPE_OF slender_body;

start, x1 : REAL;

end, x2 : REAL;

length, L : REAL;

total_elongation, &Delta;L : REAL;

force, F : REAL;

area, A : REAL;

material_model : one_D_linear_elastic_model_noShear;

RELATIONS

er1 : "<length> == <end> - <start>";

er2 : "<total_elongation> == <length> - <undeformed_length>";

er3 : "<material_model.strain> == <total_elongation> / <undeformed_length>";

er4 : "<material_model.stress> == <force> / <area>";

END_COB;

Page 26: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

26

Multi-Representation Architecture for Design-Analysis Integration

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model O(10,000)

Page 27: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

27

Analysis Tools

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

rear spar fitting attach point

BLE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef D6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

Flexible High Diversity Design-Analysis Integration Phases 1-3 Airframe Examples:

“Bike Frame” / Flap Support Inboard Beam

Analysis Modules (CBAMs) of Diverse Feature:Mode, & Fidelity

Design Tools

Materials DBFEA

Elfini*MATDB-like

Analyzable Product Model

XaiTools

XaiTools

Fitting:Bending/Shear

3D

1.5D

Modular, ReusableTemplate Libraries

MCAD ToolsCATIA v4, v5

Lug:Axial/Oblique; Ultimate/Shear

1.5D

Assembly:Ultimate/

FailSafe/Fatigue*

* = Item not yet available in toolkit (all others have working examples)

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, Dover

D

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

BDM 6630

Fasteners DB

FASTDB-like

General Math Mathematica

In-HouseCodes

Image API(CATGEO);

VBScript

Page 28: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

28

Lug Template (CBAM)Applied to an Airframe Problem

diagonal brace lug jointj = top

0.7500 in

0.35 in

0.7500 in

1.6000 in

2

0.7433

14.686 K

2.40

4.317 K

8.633 K

k = norm

Max. torque brake settingdetent 30, 2=3.5º

7050-T7452, MS 7-214

67 Ksi

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Diagonal Brace Lug Joint

Program

Part

Feature

Lug JointAxial Ultimate Strength Model

Template

j = top lugk = normal diameter (1 of 4)

Dataset

material

deformation model

max allowable ultimate stress, FtuL

effective width, W

analysis context

objective

mode (ultimate static strength)

condition

estimated axial ultimate strength

Margin of Safety(> case)

allowable

actual

MS

normal diameter, Dnorm

thickness, t

edge margin, e

Plug joint

size,n

lugs

lugj hole

diameters

product structure (lug joint)

r1

n

P jointlug

L [ j:1,n ]

Plug

L [ k]Dk

oversize diameter, DoverD

PaxuW

e

t

Ftuax

Kaxu

Lug Axial UltimateStrength Model

DM 6630

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)

CAD-CAE Associativity (idealization usage)

Material Models

Model-based Documentation

Geometry

P KW

DDtFaxu axu tuax ( )1

Requirements

Legend: Annotations highlight model knowledge capture capabilities. Other notation is COB constraint schematics notation.

Page 29: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

29

Appendix B: Required Standard Analysis Methods(continued)

e

setr

Pf

02

21

e

beht

PCf

),,( 13 hbrfK

e

setr

Pf

02

e

setr

Pf

02

21

e

beht

PCf

21

e

beht

PCf

),,( 13 hbrfK ),,( 13 hbrfK

Page 30: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

30

“Bike Frame” Bulkhead Fitting Analysis TemplateUsing Constrained Object (COB) Knowledge/Info Representation

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

18 associativity relations

Page 31: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

31

Quantity estimates by MRA representation type

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

O(100) tools

O(100) types

O(10,000)

Page 32: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

32

CAD-CAE associativity relations are represented as APM-ABB relations (in CBAMs)

1 Solution Method Model

ABB SMM

2 Analysis Building Block

4 Context-Based Analysis Model3

SMMABB

APM ABB

CBAM

APM

Design Tools Solution Tools

Printed Wiring Assembly (PWA)

Solder Joint

Component

PWB

body3body2

body1

body4

T0

Printed Wiring Board (PWB)

SolderJoint

Component

AnalyzableProduct Model

O(1,000,000) relations

An associativity gap is a computer-insensible relation

Page 33: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

33

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

Channel Fitting Analysis

Associativity Gapsbetween CAD and CAE Models

Analysis Model (with Idealized Features)

Detailed Design Model

Idealizations

1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/2

“It is no secret that CAD models are driving more of today’s product development processes ... With the growing number of design tools on the market, however, the interoperability gap with downstream applications, such as finite element analysis, is a very real problem. As a result, CAD models are being recreated at unprecedented levels.” Ansys/ITI press Release, July 6 1999

http://www.ansys.com/webdocs/VisitAnsys/CorpInfo/PR/pr-060799.html

No explicit

fine-grained

CAD-CAE

associativity

Page 34: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

34

“Bike Frame” Bulkhead Fitting Analysis TemplateUsing Constrained Object (COB) Knowledge/Info Representation

0.4375 in

0.5240 in

0.0000 in

2.440 in

1.267 in

0.307 in

0.5 in

0.310 in

2.088 in

1.770 in

67000 psi

65000 psi

57000 psi

52000 psi

39000 psi

0.067 in/in

0.030 in/in

5960 Ibs

1

10000000 psi

9.17

5.11

9.77

bulkhead fitting attach point

LE7K18

2G7T12U (Detent 0, Fairing Condition 1)

L29 -300

Outboard TE Flap, Support No 2;Inboard Beam, 123L4567

Bulkhead Fitting Joint

Program

Part

Feature

Channel FittingStatic Strength Analysis

Template

1 of 1Dataset

strength model

r1

e

b

h

tb

te

Pu

Ftu

E

r2

r0

a

FtuLT

Fty

FtyLT

epuLT

tw

MSwall

epu

jm

MSepb

MSeps

Channel FittingStatic Strength Analysis

Fsu

IAS FunctionRef DM 6-81766

end pad

base

material

wall

analysis context

mode: (ultimate static strength)

condition:

heuristic: overall fitting factor, Jm

bolt

fitting

headradius, r1

hole radius, ro

width, b

eccentricity, e

thickness, teheight, h

radius, r2

thickness, tb

hole

thickness, twangled height, a

max allowable ultimate stress,

allowable ultimate long transverse stress,

max allowable yield stress,

max allowable long transverse stress,

max allowable shear stress,

plastic ultimate strain,

plastic ultimate strain long transverse,

young modulus of elasticity,

load, Pu

Ftu

Fty

FtyLT

Fsu

epu

epuLT

E

FtuLT

product structure (channel fitting joint)

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

18 CAD-CAE associativity relations

Page 35: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

35

~1M Associativity GapsReference: http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/

Categories of Gap Costs• Associativity time & labor - Manual maintenance - Little re-use - Lost knowledge• Inconsistencies• Limited analysis usage - Fewer parts analyzed - Fewer iterations per part• “Wrong” values - Too conservative: Extra part costs and performance inefficiencies - Too loose: Re-work, failures, law suits

e

se

tr

Pf

02

21

e

be

ht

PCf

),,( 13 hbrfK

Analysis Model(with Idealized Features)

Detailed Design Model

Channel Fitting Analysis

idealizations

No explicit

fine-grained

CAD-CAE

associativity

000,000,10$gap

$10 gaps000,000,1

gaps000,000,1analysis

variables 10

part

analyses 10parts 000,10

OOO

OOOO

Initial Cost Estimate per Complex Product (only for manual maintenance costs of structural analysis problems)

Page 36: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

36

Cost Estimate per Complex Product p.1/2 Manual Maintenance of Associativity Gaps in Structural Analysis Problems

000,000,10$gap

$10 gaps000,000,1

gaps000,000,1analysis

variables 10

part

analyses 10parts 000,10

OOO

OOOO

Reference: http://eislab.gatech.edu/pubs/reports/EL004/

Page 37: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

37

Cost Estimate per Complex Product p.2/2Manual Maintenance of Associativity Gaps in Structural Analysis Problems

000,000,10$gap

$10 gaps000,000,1

gaps000,000,1analysis

variables 10

part

analyses 10parts 000,10

OOO

OOOO

Reference: http://eislab.gatech.edu/pubs/reports/EL004/

Page 38: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

38

Characterizing Complex Model Interoperability Using the Multi-Representation Architecture (MRA)

MRA: Similar to “software design patterns” for CAD-CAE domain– Identifies patterns between CAD and CAE

(including new types of objects)– Captures multi-fidelity explicit associativity

Provides hybrid top-down & bottom-up methodology for characterizing problems & solutions – O(1,000,000) CAD-CAE gap estimate

Page 39: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

39

For Further Information ...

Contact: [email protected]

Web site: http://eislab.gatech.edu/– Publications, project overviews, tools, etc.– See: X-Analysis Integration (XAI) Central

http://eislab.gatech.edu/research/XAI_Central.doc

XaiTools™ home page: http://eislab.gatech.edu/tools/XaiTools/

Pilot commercial ESB: http://www.u-engineer.com/– Internet-based self-serve analysis– Analysis module catalog for electronic packaging– Highly automated front-ends to general FEA & math tools

Page 40: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

Backup Slides

Page 41: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

41

An Introduction to X-Analysis Integration (XAI) Short Course Outline

Part 1: Constrained Objects (COBs) Primer– Nomenclature

Part 2: Multi-Representation Architecture (MRA) Primer – Analysis Integration Challenges – Overview of COB-based XAI– Ubiquitization Methodology

Part 3: Example Applications» Airframe Structural Analysis (Boeing)» Circuit Board Thermomechanical Analysis

(DoD: ProAM; JPL/NASA)» Chip Package Thermal Analysis (Shinko)

– Summary

Part 4: Advanced Topics & Current Research

Page 42: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

42

Constrained Object (COB) RepresentationCurrent Technical Capabilities - Generation 2

Capabilities & features:– Various forms: computable lexical forms, graphical forms, etc.

» Enables both computer automation and human comprehension– Sub/supertypes, basic aggregates, multi-fidelity objects– Multi-directionality (I/O changes)– Reuses external programs as white box relations– Advanced associativity added to COTS frameworks & wrappers

Analysis module/template applications (XAI/MRA): – Analysis template languages– Product model idealizations– Explicit associativity relations with design models & other analyses– White box reuse of existing tools (e.g., FEA, in-house codes)– Reusable, adaptable analysis building blocks

– Synthesis (sizing) and verification (analysis)

Page 43: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

43

Constrained Objects (cont.) Representation Characteristics & Advantages - Gen. 2

Overall characteristics– Declarative knowledge representation (non-causal)– Combining object & constraint graph techniques– COBs = (STEP EXPRESS subset) +

(constraint graph concepts & views)

Advantages over traditional analysis representations– Greater solution control– Richer semantics

(e.g., equations wrapped in engineering context)– Unified views of diverse capabilities (tool-independent)– Capture of reusable knowledge – Enhanced development of complex analysis models

Toolkit status (XaiTools v0.4)– Basic framework, single user-oriented, file-based

See Advanced Topics

for Gen.3 Extensions

Page 44: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

44

COB Modeling LanguagesLexical and Graphical Formulations

StructureLevel(Template)

InstanceLevel

Subsystem-S

Object Relationship Diagram-S

COB StructureDefinition Language

(COS)

I/O Table-S

Constraint Graph-S

Constraint Schematic-S

STEPExpress

Express-G

Lexical Formulations

OWL UMLXML

COB InstanceDefinition Language

(COI)

Constraint Graph-I

Constraint Schematic-I

STEPPart 21

200 lbs

30e6 psi

100 lbs 20.2 in

R101

R101

100 lbs

30e6 psi 200 lbs

20.2 in OWL UML

Lexical Formulations

XML

OWL, XML, and UML formulationsare envisioned extensions

Page 45: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

45

Triangle

dh

Ab

Triangle

dh

Ab

COB Structure: Graphical Forms

Tutorial: Triangle Primitive

v a r i a b l e s u b v a r i a b l es u b s y s t e m

e q u a l i t y r e l a t i o n

r e l a t i o n

s

a b

dc

a

b

d

c

e

a . das

r 1r 1 ( a , b , s . c )

e = f

s u b v a r i a b l e s . b

[ 1 . 2 ]

[ 1 . 1 ]o p t i o n 1 . 1

ff = s . d

o p t i o n 1 . 2

f = g

o p t i o n c a t e g o r y 1

gcbe

r 2

h o f c o b t y p e h

wL [ j : 1 , n ]

w j

a g g r e g a t e c . we l e m e n t w j

Basic Constraint Schematic-S Notation

c. Constraint Schematic-Sa. Shape Schematic-S

2222

1

:

21:

hbdr

bhAr

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

h

b

Ad

base, br1

r2

bhA 21

height, h

222 hbd

area, A

diagonal, d

Aside: This is a “usage view” in AP210 terminology (vs. the above “design views”)

Page 46: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

46

TriangularPrism

Vh

b

l

COBs as Building Blocks Tutorial: Triangular Prism COB Structure

c. Constraint Schematic-Sa. Shape Schematic-S

b. Relations-S

d. Subsystem-S(for reuse by other COBs)

T ria n g le

dh

Ab

T ria n g le

dh

Ab

le n g th , l vo lu m e , Vr1

AlV

c ro s s -s e c tio nh

b

V l

AlVr :1

e. Lexical COB Structure (COS)

COB triangular_prism SUBTYPE_OF geometric_shape; length, l : REAL; cross-section : triangle; volume, V : REAL;RELATIONS r1 : "<volume> == <cross-section.area> * <length>";END_COB;

Page 47: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

47

200 lbs

30e6 psiResult b = 30e6 psi (output or intermediate variable)

Result c = 200 lbs (result of primary interest)

X

Relation r1 is suspended X r1

100 lbs Input a = 100 lbs

Equality relation is suspended

a

b

c

Example COB InstanceTutorial: Triangular Prism

Constraint Schematic-I Lexical COB Instance (COI)

state 1.0 (unsolved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; length : 5.0; volume : ?;END_INSTANCE;

state 1.1 (solved):INSTANCE_OF triangular_prism; cross-section.base : 2.0; cross-section.height : 3.0; cross-section.area : 3.0; length : 5.0; volume : 15.0;END_INSTANCE;

Basic Constraint Schematic-I Notation

example 1, state 1.1

Triangle

dh

Ab

Triangle

dh

Ab

length, l volume, Vr1

AlV

cross-section

3 in2

2 in

3 in

15 in35 in

Page 48: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

48

COB-based Constraint Schematic for Multi-Fidelity CAD-CAE Interoperability

Flap Link Benchmark Example

Material Model ABB:

Continuum ABBs:

E

One D LinearElastic Model

T

G

e

t

material model

polar moment of inertia, J

radius, r

undeformed length, Lo

twist,

theta start, 1

theta end, 2

r1

12

r3

0L

r

J

rTr

torque, Tr

x

TT

G, r, , ,J

Lo

y

material model

temperature, T

reference temperature, To

force, F

area, A

undeformed length, Lo

total elongation,L

length, L

start, x1

end, x2

E

One D LinearElastic Model

(no shear)

T

e

t

r1

12 xxL

r2

oLLL

r4

A

F

edb.r1

oTTT

r3

L

L

x

FF

E, A,

LLo

T, ,

yL

Torsional Rod

Extensional Rod

temperature change,T

cte,

youngs modulus, E

stress,

shear modulus, G

poissons ratio,

shear stress, shear strain,

thermal strain, t

elastic strain, e

strain,

r2

r1)1(2

EG

r3

r4Tt

Ee

r5

G

te

1D Linear Elastic Model

material

effective length, Leff

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

cross section area, A

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

Analysis Modules of Diverse Behavior & Fidelity

(CBAMs) MCAD Tools

Materials LibrariesIn-House, ...

FEA Ansys

Abaqus*

CATIA Elfini*

MSC Nastran*

MSC Patran*

...

General MathMathematica

Matlab*

MathCAD*

...

Analyzable Product Model(APM)

Extension

Torsion

1D

1D

Analysis Building Blocks(ABBs)

CATIA, I-DEAS* Pro/E* , UG *, ...

Analysis Tools(via SMMs)

Design Tools

2D

flap_link

critical_section

critical_simple

t2f

wf

tw

hw

t1f

area

effective_length

critical_detailed

stress_strain_model linear_elastic

E

cte area

wf

tw

hw

tf

sleeve_1

b

h

t

b

h

t

sleeve_2

shaft

rib_1

material

rib_2

w

t

r

x

name

t2f

wf

tw

t1f

cross_section

w

t

r

x

R3

R2

R1

R8

R9

R10

6R

R7

R12

11R

1R

2

3

4

5

R

R

R

R

name

linear_elastic_model

wf

tw

tf

inter_axis_length

sleeve_2

shaft

material

linkage

sleeve_1

w

t

r

E

cross_section:basic

w

t

rL

ws1

ts1

rs2

ws2

ts2

rs2

wf

tw

tf

E

deformation model

x,max

ParameterizedFEA Model

stress mos model

Margin of Safety(> case)

allowable

actual

MS

ux mos model

Margin of Safety(> case)

allowable

actual

MS

mode: tensionux,max

Fcondition reaction

allowable inter axis length change

allowable stress

ts1

B

sleeve1

B ts2

ds2

ds1

sleeve2

L

shaft

Leff

s

rib1 rib2

material

effective length, Leff

deformation model

linear elastic model

Lo

Torsional Rod

G

J

r

2

1

shear modulus, G

cross section:effective ring polar moment of inertia, J

al1

al3

al2a

linkage

mode: shaft torsion

condition reactionT

outer radius, ro al2b

stress mos model

allowable stress

twist mos model

Margin of Safety(> case)

allowable

actual

MS

Margin of Safety(> case)

allowable

actual

MS

allowabletwist

Flap Link Extensional Model

Flap Link Plane Strain Model

Flap Link Torsional Model* = Item not yet available in toolkit (all others have working examples)

Parts LibrariesIn-House*, ...

LegendTool AssociativityObject Re-use

Page 49: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

49

(1) Extension Analysisa. 1D Extensional Rod

1. Behavior: Shaft Tension

2. Conditions:

Flaps down : F =

3. Part Features: (idealized)

4. Analysis Calculations:

1020 HR Steel

E= 30e6 psi

Leff = 5.0 in

10000 lbs

AF

ELL eff

5. Conclusion:

A = 1.125 in2

allowable 18000 psi

1

allowableMS 1.025

(2) Torsion Analysis

Flap Link Analysis Documentation

b. 2D Plane Stress FEA...

m a t e r i a l

e f f e c t i v e l e n g t h , L e f f

d e f o r m a t i o n m o d e l

l i n e a r e l a s t i c m o d e l

L o

E x t e n s i o n a l R o d( i s o t h e r m a l )

F

L

A

L

E

x 2

x 1

y o u n g s m o d u l u s , E

c r o s s s e c t i o n a r e a , A

a l 1

a l 3

a l 2

l i n k a g e

m o d e : s h a f t t e n s i o n

c o n d i t i o n r e a c t i o n

a l l o w a b l e s t r e s s

y

xPP

E , A

LL e f f

,

Lt s 1

A

S l e e v e 1

A t s 2

d s 2

d s 1

S l e e v e 2

L

S h a f t

L e f f

s

s t r e s s m o s m o d e l

M a r g i n o f S a f e t y( > c a s e )

a l l o w a b l e

a c t u a l

M S

(1a) Analysis Template: Flap Link Extensional Model

APMABB

ABB

CBAM

SMM

Tutorial Example:Flap Link Analysis Template (CBAM)

* Boundary condition objects & pullable views are WIP concepts*

Solution Tool Interaction

Boundary Condition Objects(links to other analyses)*

CAD-CAEAssociativity (idealization usage)

Material Models

PullableViews*

Geometry

Page 50: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

50

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross

_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, Abasic

example 1, state 1

steel

10000 lbs

flaps mid position

1.125 in2

18000 psi

30e6 psi

1.025

5.0 in

8888 psi

1.43e-3 inFlap Link #3

material

effective length, Leff

deformation model

linear elastic model

Lo

Extensional Rod(isothermal)

F

L

A

L

E

x2

x1

youngs modulus, E

shaftcritical_cross_section

al1

al3

al2

linkage

mode: shaft tension

condition reaction

allowable stress

stress mos model

Margin of Safety(> case)

allowable

actual

MS

description

area, AbasicX

3.00e-3 in

1.125 in2

5.0 inFlap Link #3

0.0

steel10000 lbs

flaps mid position

18000psi

example 1, state 3

30e6 psi18000 psi

0.555 in2

Flap Linkage Instancewith Multi-Directional I/O States

Design Verification- Input: design details- Output: i) idealized design parameters ii) physical response criteria

Design Synthesis- Input: desired physical response criteria- Output: i) idealized design parameters (e.g., for sizing), or ii) detailed design parameters

Page 51: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

51

Flap Link Extensional Model (CBAM)Example COB Instance in XaiTools (object-oriented spreadsheet)

Detailed CAD datafrom CATIA

Idealized analysis features in APM

Explicit multi-directional associativity between design & analysis

Modular generic analysis templates(ABBs)

Library data for materials

Focus Point ofCAD-CAE Integration

example 1, state 1

Page 52: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

52

Using Internet/Intranet-based Analysis SolversWeb Services Architecture

Client PCs

XaiTools

Thick Client

Users

Internet

June’99-Present:EIS Lab - Regular internal use

U-Engineer.com - Demo usage: - US - Japan

Nov.’00-Present:Electronics Co. - Production usage (dept. Intranet)

Future:Company Intranet and/or

U-Engineer.com(commercial) - Other solvers

Iona orbixdj

Mathematica

Ansys

Internet/Intranet

XaiTools AnsysSolver Server

XaiTools AnsysSolver Server

XaiTools Math.Solver Server

CORBA Daemon

XaiTools AnsysSolver Server

FEA Solvers

Math Solvers

CORBA Servers

CO

RB

A IIO

P..

.

Engineering Service BureauHost Machines

Current Version: XaiTools Web Services - SOAP (adds Patran & Abaqus, ACIS, …)

Page 53: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

53

Convergence of Representations

Database Techniques(data structure, storage …)

Software Development(algorithms …)

Artificial Intelligence& Knowledge-Based Techniques

(structure combined with algorithms/relations/behavior)

EER

STEP Express

ER

UML

Flow Charts

OMT

Objects

Rules

Constraint graphs

Constrained Object - likeRepresentations

COBs, OCL, ...

Page 54: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

54

Short Course: Using Standards-based Engineering Frameworks forElectronics Product Design and Life Cycle Support

Page 55: Characterizing Fine-Grained Associativity Gaps: A Preliminary Study of CAD-CAE Model Interoperability Russell.Peak@marc.gatech.edu

55

Technique Summary Tool independent model interoperability

– Application focus: analysis template methodology

Multi-representation architecture (MRA) & constrained objects (COBs):– Addresses fundamental gaps:

» Idealizations & CAD-CAE associativity: multi-fidelity, multi-directional, fine-grained

– Based on information & knowledge theory– Structured, flexible, and extensible

Improved quality, cost, time:– Capture engineering knowledge in a reusable form – Reduce information inconsistencies– Increase analysis intensity & effectiveness

» Reducing modeling cycle time by 75% (production usage)