circuit & electronics.pdf

Upload: genesis

Post on 07-Aug-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Circuit & Electronics.pdf

    1/414

    6.002 CIRCUITS AND ELECTRONICS 

    Introduction and Lumped Circuit Abstraction

    6.002 Fall 2000 Lecture 1 1

  • 8/20/2019 Circuit & Electronics.pdf

    2/414

    ADMINISTRIVIA

    Lecturer: Prof. Anant Agarwal  Textbook: Agarwal and Lang (A&L

     

    Readings are important!

    Handout no. 3  Assignments —

    Homework exercisesLabs

    QuizzesFinal exam

    6.002 Fall 2000 Lecture 1 2

  • 8/20/2019 Circuit & Electronics.pdf

    3/414

    Two homework assignments canbe missed (except HW11).

     

    Collaboration policyHomework

    You may collaborate withothers, but do your ownwrite-up.

    LabYou may work in a team oftwo, but do you own write-up.

      Info handout

      Reading for today —Chapter 1 of the book

    6.002 Fall 2000 Lecture 1 3

  • 8/20/2019 Circuit & Electronics.pdf

    4/414

    What is engineering?

    Purposeful use of science

    What is 6.002 about?Gainful employment ofMaxwell’s equations

    From electrons to digital gatesand op-amps

    6.002 Fall 2000 Lecture 1 4

  • 8/20/2019 Circuit & Electronics.pdf

    5/414

           6 .

           0       0       2

     

    Simple amplifier abstraction

    Instruction set abstraction

    Pentium, MIPS

    Software systemsOperating systems, Browsers

    Filters

    Operationalamplifier abstractionabstraction

    -+

    Digital abstraction

    Programming languagesJava, C++, Matlab 6.001

    Combinational logic  f

    Lumped circuit abstraction

     R S

    + –

    Nature as observed in experiments

    …0.40.30.20.1 I

    …12963V

    Physics laws or “abstractions” Maxwell’s Ohm’s

    V = R I

    abstraction fortables of data

    Clocked digital abstraction

    Analog system

    components:Modulators,oscillators,RF amps,power supplies 6.061

    Mice, toasters, sonar, stereos, doom, space shuttle

    6.1706.455

    6.004

    6.033

     M LCV

    6.002 Fall 2000 Lecture 1 5

  • 8/20/2019 Circuit & Electronics.pdf

    6/414

    Lumped Circuit Abstraction

    Consider I

    The Big Jumpfrom physics

    to EECS

    +

    -

    Suppose we wish to answer this question:

    What is the current through the bulb?

    6.002 Fall 2000 Lecture 1 6

  • 8/20/2019 Circuit & Electronics.pdf

    7/414

    We could do it the Hard Way…

    Apply Maxwell’s

    Differential form Integral form

    Faraday’s ∇ ×  E  = −∂ B

    ∫  E  ⋅ dl  = −∂φ  B 

    ∂t   ∂t  

    Continuity ∇ ⋅  J  = − 

     ρ  

    t   ∫  J  ⋅ dS  = −

    ∂ 

    q

    t  

    Others ∇ ⋅  E  =  ρ 

      ∫  E  ⋅ dS  = q

     

    ε 0 ε 0 

     

     

     

    6.002 Fall 2000 Lecture 1 7

  • 8/20/2019 Circuit & Electronics.pdf

    8/414

    Instead, there is an Easy Way… 

    First, let us build some insight:

    Analogy

     F  

    a ?

    I ask you: What is the acceleration?

    You quickly ask me: What is the mass?

    I tell you: m  F 

    You respond: a = m 

    Done ! ! !

    6.002 Fall 2000 Lecture 1 8

  • 8/20/2019 Circuit & Electronics.pdf

    9/414

    Instead, there is an Easy Way… 

    First, let us build some insight:

     F  

    a ?

    Analogy

    In doing so, you ignored  the object’s shape  its temperature 

    its color  point of force application

    Point-mass discretization

    6.002 Fall 2000 Lecture 1 9

  • 8/20/2019 Circuit & Electronics.pdf

    10/414

    The Easy Way… 

    Consider the filament of the light bulb.

     A

     B

    We do not care about

      how current flows inside the filament  its temperature, shape, orientation, etc.

    Then, we can replace the bulb with a

    discrete resistorfor the purpose of calculating the current.

    6.002 Fall 2000 Lecture 1 10

  • 8/20/2019 Circuit & Electronics.pdf

    11/414

    The Easy Way… 

     A

     B

    Replace the bulb with a

    discrete resistorfor the purpose of calculating the current.

    +

    –V  

     A I

     R and  I  =

     

    V  

     R 

     BIn EE, we do things

    the easy way…

     R represents the only property of interest

    Like with point-mass: replace objects F 

    with their mass m  to find a = m

    6.002 Fall 2000 Lecture 1 11

  • 8/20/2019 Circuit & Electronics.pdf

    12/414

    The Easy Way… 

    +

    –V  

     A I 

     R and  I  = V 

     R

     BIn EE, we do things

    the easy way…

     R represents the only property of interest

     R relates element v and i

    V  I  = 

     R 

    called element v-i relationship

    6.002 Fall 2000 Lecture 1 12

  • 8/20/2019 Circuit & Electronics.pdf

    13/414

     R is a lumped element abstraction

    for the bulb.

    6.002 Fall 2000 Lecture 1 13

  • 8/20/2019 Circuit & Electronics.pdf

    14/414

     R is a lumped element abstractionfor the bulb.

    Not so fast, though …

     A

     B

    S  

     B S 

     I

    +

    V  

    black box

    Although we will take the easy wayusing lumped abstractions for the restof this course, we must make sure (atleast the first time) that ourabstraction is reasonable. In this case,ensuring that V   I

    are definedfor the element

    6.002 Fall 2000 Lecture 1 14

  • 8/20/2019 Circuit & Electronics.pdf

    15/414

     A

    V   I 

    must be defined B

     A S  

     B S 

     I

    +

    V  

    for the element

    black box

    6.002 Fall 2000 Lecture 1 15

  • 8/20/2019 Circuit & Electronics.pdf

    16/414

     l

     I must be defined. True when

     I into S  A  =  I out of S  B 

    True only when 

    ∂q =

     0  in the filament!∂t  

    ∫ 

     J  

    ⋅ 

    dS  S  A 

    ∫  J  ⋅ dS  S  B 

    ∫  J  ⋅ dS  − ∫  J  ⋅ dS  = ∂q 

    S  A 

    S  B 

    ∂t  

     I  A   I  B 

     I  A  =  I  B  only if 0 = ∂ 

    ∂ 

    t  

    So let’s assume this

    6.002 Fall 2000 Lecture 1 16

     f r o m

     M a x w e

     l 

  • 8/20/2019 Circuit & Electronics.pdf

    17/414

    V Must also be defined.

     s e e

    A & L 

    So let’s assume this too

    V  AB 

    So V  AB  = ∫ AB   E  ⋅ dl  

    defined when 0= ∂

    t   B φ 

    outside elements

    6.002 Fall 2000 Lecture 1 17

  • 8/20/2019 Circuit & Electronics.pdf

    18/414

    Lumped Matter Discipline (LMD)

    0= ∂

     

    ∂ 

    t   B

    φ  outside

    0= ∂ 

    ∂ 

    t  

    q inside elementsbulb, wire, battery

    Or self imposed constraints:

    More inChapter 1of A & L

    Lumped circuit abstraction applies whenelements adhere to the lumped matterdiscipline.

    6.002 Fall 2000 Lecture 1 18

  • 8/20/2019 Circuit & Electronics.pdf

    19/414

    Demo Lumped element exampleswhosecaptured by their V – Irelationship.

    only for thesorts ofquestions we

    as EEs wouldlike to ask!

    is completelybehavior

    DemoExploding resistor demo

    can’t predict that!Pickle demo

    can’t predict light, smell

    6.002 Fall 2000 Lecture 1 19

  • 8/20/2019 Circuit & Electronics.pdf

    20/414

    So, what does this buy us?

    Replace the differential equationswith simple algebra using lumped

    circuit abstraction (LCA).

    For example —a 

    + –

    2

    3b  d  

     R4

     R5

    c

    What can we say about voltages in a loopunder the lumped matter discipline?

    6.002 Fall 2000 Lecture 1 20

  • 8/20/2019 Circuit & Electronics.pdf

    21/414

    What can we say about voltages in a loopunder LMD?

    + –

    2

    3

    b  d  

     R4

     R5

    ∫ 

     E  ⋅ dl  = t   B 

    ∂∂− 

    φ  under DMD0 

    ∫ 

     E  ⋅ dl  + ∫ 

     E  ⋅ dl  + ∫ 

     E  ⋅ dl  = 0 ca  ab bc 

    +  V ca  +  V ab  +  V bc  =  0 

    Kirchhoff’s Voltage Law (KVL):

    The sum of the voltages in a loop is 0.

    6.002 Fall 2000 Lecture 1 21

  • 8/20/2019 Circuit & Electronics.pdf

    22/414

    What can we say about currents?

    Consider

    S  I ca   I da 

    ba I  

    6.002 Fall 2000 Lecture 1 22

  • 8/20/2019 Circuit & Electronics.pdf

    23/414

    What can we say about currents?

    ca 

    da

    ba  I 

     I  

    S  I 

    S  J  ⋅ dS  = 

    t  

    ∂−

      under LMD0 

    ∫ 

     I ca +

     

     I da +

     

     I ba =

     0 

    Kirchhoff’s Current Law (KCL):

    The sum of the currents into a node is 0.

    simply conservation of charge

    6.002 Fall 2000 Lecture 1 23

  • 8/20/2019 Circuit & Electronics.pdf

    24/414

    KVL and KCL Summary

    KVL: ∑  jν   j  = 0 

    loop

    KCL:

    ∑  j i j  = 0 

    node

    6.002 Fall 2000 Lecture 1 24

  • 8/20/2019 Circuit & Electronics.pdf

    25/414

    6.002 Fall 2000 Lecture 12

    6.002   CIRCUITS ANDELECTRONICS

    Basic Circuit Analysis Method(KVL and KCL method)

  • 8/20/2019 Circuit & Electronics.pdf

    26/414

    6.002 Fall 2000 Lecture 22

    0=∂

     Bφ 

    0=∂

    q

    Outside elements

    Inside elements

    Allows us to create the lumped circuitabstraction

    wires resistors sources

    Review

    Lumped Matter Discipline LMD:Constraints we impose on ourselves to simplifyour analysis

  • 8/20/2019 Circuit & Electronics.pdf

    27/414

    6.002 Fall 2000 Lecture 32

    LMD allows us to create thelumped circuit abstraction

    Lumped circuit element+

    -

    v

    i

    power consumed by element =   vi

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    28/414

    6.002 Fall 2000 Lecture 42

    KVL:

    loop

    KCL:

    node

    0=∑ j   jν 

    0=∑ j   ji

    ReviewReview

    Maxwell’s equations simplify toalgebraic KVL and KCL under LMD!

  • 8/20/2019 Circuit & Electronics.pdf

    29/414

    6.002 Fall 2000 Lecture 52

    KVL0=++   bcabca   vvv

    0=++   badaca   iii KCLDEMO 

    1

    2

    4

    5

    3

    a

    b

    c

    +

     –

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    30/414

    6.002 Fall 2000 Lecture 62

    Method 1: Basic KVL, KCL method ofCircuit analysis

    Goal: Find all element v’s and i’s

    write element v-i relationships(from lumped circuit abstraction)

    write KCL for all nodeswrite KVL for all loops

    1.

    2.3.

    lots of unknownslots of equationslots of funsolve

  • 8/20/2019 Circuit & Electronics.pdf

    31/414

    6.002 Fall 2000 Lecture 72

    Method 1: Basic KVL, KCL method ofCircuit analysis

    For R,

    For voltage source,

    For current source,

    Element Relationships

     IRV  =

    0V V  =

    0 I =

    3 lumped circuit elements

    0V 

    o I 

    + –

  • 8/20/2019 Circuit & Electronics.pdf

    32/414

    6.002 Fall 2000 Lecture 82

    KVL, KCL Example

    The Demo Circuit

    + –

    1

    2

    4

    5

    3

    a

    b d 

    c

    00   V =ν +

    1ν +–

    5ν 

    +

    3ν + –

    2ν +

    4ν +–

  • 8/20/2019 Circuit & Electronics.pdf

    33/414

    6.002 Fall 2000 Lecture 92

    Associated variables discipline

    ν 

    i +

    -

    Element e

    Then power consumed

    by element e

    iν = is positive

    Current is taken to be positive goinginto the positive voltage terminal

  • 8/20/2019 Circuit & Electronics.pdf

    34/414

    6.002 Fall 2000 Lecture 102

    KVL, KCL Example

    The Demo Circuit

    + –

    1

    2

    4

    5

    3

    a

    b d 

    c

    00   V =ν +

    1ν +–

    5ν 

    +

    3ν + –

    1 L

    2 L

    4 L

    3 L2ν 

    +

    4ν +–

    2i

    1i

    0i

    5i

    3i

    4i

  • 8/20/2019 Circuit & Electronics.pdf

    35/414

    6.002 Fall 2000 Lecture 112

    Analyze12 unknowns

    5050   ,   ι ι ν ν    ……

    1. Element relationships

    3. KVL for loops

    00   V v   =111   iv   =

    222   iv   =

    333   iv   =444   iv   =

    555   iv   =

    given

    2. KCL at the nodes

    redundant

    0431   =−+   vvv

    0210   =++−   vvv

    0253   =−+   vvv0540   =++−   vvv redundant

    0410   =++   iii0132   =−+   iii0435   =−−   iii0520   =−−−   iii

    a:b:

    d:

    e:

    6 equations

    3 independentequations

    3 independentequations

     1 2  u n k n o w n

     s

      1  2  e q  u a

     t  i o n s

    u g h  @ # ! 

    ( )iv,

    L1:

    L2:

    L3:

    L4:

  • 8/20/2019 Circuit & Electronics.pdf

    36/414

    6.002 Fall 2000 Lecture 122

    Other Analysis MethodsMethod 2— Apply element combination rules

    B

    C

    D

    ⇔+++   21

    ⇔1G 2G  N G   GGG   ++  21

    i

    i R

    G  1=

    ⇔+ –   + –   + –1V  2V  21   V V   +

    1   2   21 +

    A  1 2   3   N 

    Surprisingly, these rules (along with superposition, which you will learn about later) can solve the circuit on page 8

  • 8/20/2019 Circuit & Electronics.pdf

    37/414

    6.002 Fall 2000 Lecture 132

    Other Analysis MethodsMethod 2— Apply element combination rules

    32

    32

     R R   +

    32

    32

    1  R R R R

    ++=

    + –

    ?=

    1

    32

    + –

    + –

    Example

    1

     R

    V  I  =

  • 8/20/2019 Circuit & Electronics.pdf

    38/414

    6.002 Fall 2000 Lecture 142

    1.

    2.

    3.

    4.

    5.

    Select reference node ( ground)from which voltages are measured.

    Label voltages of remaining nodeswith respect to ground.These are the primary unknowns.

    Write KCL for all but the ground

    node, substituting device laws andKVL.

    Solve for node voltages.

    Back solve for branch voltages andcurrents (i.e., the secondary unknowns)

    Particular application of KVL, KCL method

    Method 3—Node analysis

  • 8/20/2019 Circuit & Electronics.pdf

    39/414

    6.002 Fall 2000 Lecture 152

    Example: Old Faithfulplus current source

    0V 

    1

    2

    4

    5

    3

        1 I 

    0V 

    + –   1e

    2e

    Step 1Step 2

  • 8/20/2019 Circuit & Electronics.pdf

    40/414

    6.002 Fall 2000 Lecture 162

    Example: Old Faithfulplus current source

    0)()()( 21321101   =+−+−   GeGeeGV eKCL at 1e

    0)()()( 152402312  =−+−+−  I GeGV eGee

    KCL at 2e

    for

    conveniencewrite

    i

    i R

    G  1=

    0V 

    1

    2

    4

    5

    3

        

    1e

    1

    0V 

    + –

    2e

    Step 3

  • 8/20/2019 Circuit & Electronics.pdf

    41/414

    6.002 Fall 2000 Lecture 172

    Example: Old Faithfulplus current source

    0)()()( 21321101   =+−+−   GeGeeGV e

    KCL at 1e

    0)()()( 152402312   =−+−+−   I GeGV eGeeKCL at 2l 

    move constant terms to RHS & collect unknowns

    )()()( 10323211   GV GeGGGe   =−+++

    140543231   )()()(   GV GGGeGe   +=+++−

    i

    i R

    G   1=

    2 equations, 2 unknowns Solve for e’s(compare units)

    0V 

    1

    2

    4

    5

    3

        

    1e

    1

    0V 

    + –

    2e

    Step 4

  • 8/20/2019 Circuit & Electronics.pdf

    42/414

    6.002 Fall 2000 Lecture 182

    In matrix form:

    +=

    ++−

    −++

    104

    01

    2

    1

    5433

    3321

     I V G

    V G

    e

    e

    GGGG

    GGGG

    conductivitymatrix

    unknownnode

    voltages

    sources

    ( )( )   23543321

    104

    01

    3213

    3543

    2

    1

    GGGGGGG

     I V G

    V G

    GGGG

    GGGG

    e

    e

    −++++

    +

    ++

    ++

    =

    Solve

    5G3G4G3G2

    3G5G2G4G2G3G2G5G1G4G1G3G1G

    1 I 0V 4G3G

    0V 1G5G4G3G

    1e

    ++++++++

    ++++=

    ( )( ) ( )( )

    5343

    2

    3524232514131

    1043210132

    GGGGGGGGGGGGGGGGG

     I V GGGGV GGe

    ++++++++

    ++++=

    (same denominator)

    Notice: linear in , , no negativesin denominator

    0V  1

  • 8/20/2019 Circuit & Electronics.pdf

    43/414

    6.002 Fall 2000 Lecture 192

    Solve, given

     K 2.8

    1

    G

    G

    5

    1

    =

     K 9.3

    1

    G

    G

    4

    2

    =

     K 5.1

    1G3 =

    01 = I 

    ( ) ( )   23G5G4G3G3G2G1G

    10

    4

    G

    3

    G

    2

    G

    1

    G

    0

    1

    G

    3

    G

    2e −+++++

    ++++

    =

    15.1

    1

    9.3

    1

    2.8

    1

    3G2G1G   =++=++

    12.81

    9.31

    5.11GGG 543   =++=++

    0

    2

    2   V 

    5.1

    11

    9.3

    115.1

    1

    2.8

    1

    e

    ×+×=

    02   6.0   V e   =

    If , thenV V    30 =   02   8.1   V e   =

    Check out the

    DEMO 

  • 8/20/2019 Circuit & Electronics.pdf

    44/414

    6.002 Fall 2000 Lecture 13

    6.002   CIRCUITS ANDELECTRONICS

    Superposition, Thévenin and Norton

  • 8/20/2019 Circuit & Electronics.pdf

    45/414

    6.002 Fall 2000 Lecture 23

    0=∑loop

    iV 

    Review

    Circuit Analysis Methods

    Circuit composition rules

    Node method – the workhorse of 6.002KCL at nodes using V ’s referencedfrom ground(KVL implicit in “ ”) ji   ee  −   G

    KVL: KCL:

    0=∑node

    i

    VI

  • 8/20/2019 Circuit & Electronics.pdf

    46/414

    6.002 Fall 2000 Lecture 33

    Consider

    Linearity

    Write node equations –

    V  I 

    1

    2+ –

        

    021

    =−+−

     I  R

    e

     R

    V e

    Notice:linear in   V e   ,,

    VI  ,eV No

    terms

    e

  • 8/20/2019 Circuit & Electronics.pdf

    47/414

    6.002 Fall 2000 Lecture 43

    Consider

    Linearity

    Write node equations --

    Rearrange --

    V  I 

    1

    2+ –

        

    021

    =−+−

     I  R

    e

     R

    V e

     I  R

    V e R R +=

    +121

    11

    e   S =

    conductance

    matrix

    node

    voltages

    linear sum

    of sources

    linear in   IV e   ,,

  • 8/20/2019 Circuit & Electronics.pdf

    48/414

    6.002 Fall 2000 Lecture 53

    Linearity

    or   I  R RV  R Re21

    21

    21

    2

    +++=

    ……   +++++=   22112211   bbV aV ae

    Write node equations --

    Rearrange --

    021

    =−+−

     I  R

    e

     R

    V e

     I  RV e

     R R+=

    +

    121

    11

    e   S =

    conductancematrix nodevoltages linear sumof sources

    linear in   IV e   ,,

    Linear!

  • 8/20/2019 Circuit & Electronics.pdf

    49/414

    6.002 Fall 2000 Lecture 63

    LinearityHomogeneitySuperposition⇒

  • 8/20/2019 Circuit & Electronics.pdf

    50/414

    6.002 Fall 2000 Lecture 73

    LinearityHomogeneitySuperposition

    Homogeneity

    1 x2

     x   y...

    1 xα 2 xα    yα ...

  • 8/20/2019 Circuit & Electronics.pdf

    51/414

    6.002 Fall 2000 Lecture 83

    LinearityHomogeneitySuperposition

    Superposition

    a x1a x2 a y... ...

    b x1b x2   b y

    ba   x x 11   +

    ba   x x 22   + ba   y y   +

    ...

  • 8/20/2019 Circuit & Electronics.pdf

    52/414

    6.002 Fall 2000 Lecture 93

    LinearityHomogeneitySuperposition

    Specific superposition example:

    1V 0   1 y 02V    2 y

    01  +V 

    20   V +   21 y   +

  • 8/20/2019 Circuit & Electronics.pdf

    53/414

    6.002 Fall 2000 Lecture 103

    Method 4: Superposition method

    The output of a circuit is

    determined by summing theresponses to each sourceacting alone.

     i n d e p e n d e n

     t  s o u rc e s

     o n l y

  • 8/20/2019 Circuit & Electronics.pdf

    54/414

    6.002 Fall 2000 Lecture 113

    + –0=V 

    +

    -

    v

    short

    +

    -

    v

    0= I   

    +

    -

    v

    open

    +

    -

    v

  • 8/20/2019 Circuit & Electronics.pdf

    55/414

    6.002 Fall 2000 Lecture 123

    Back to the exampleUse superposition method

    1

    2+ –

        

    e

  • 8/20/2019 Circuit & Electronics.pdf

    56/414

    6.002 Fall 2000 Lecture 133

    Back to the exampleUse superposition method

    acting alone

    V 0= I 

    2+ –

    e

    1

     I  acting alone

    0=V 

    1

    2  

    e

    V  R R

    eV 21

    2

    +=

     I  R R

    e I 21

    21

    +=

     I  R R

    V  R R

    eee  I V 21

    21

    21

    2

    ++

    +=+=

    sum superposition

    Voilà !

  • 8/20/2019 Circuit & Electronics.pdf

    57/414

    6.002 Fall 2000 Lecture 143

    saltwater

    output showssuperposition

    Demo

    constant

    + –

    sinusoid

    + –

    ?

  • 8/20/2019 Circuit & Electronics.pdf

    58/414

    6.002 Fall 2000 Lecture 153

    Consider Yet another method…

    resistors

    nounits

    By setting

    0

    ,0

    =

    =∀

    i

    nn

    0

    ,0

    =

    =∀

    i

    V mm

    All

    0

    ,0=∀=∀

    mm

    nn

     

      +  –

    mV n

    A r b i t r a r

     y n e t w o r k  N 

    By superpositioni I V v n

    nnm

    mm   ++=   ∑∑   β α 

    +

    -v  

    i

    i

    resistanceunits

    independent of externalexcitation and behaves like avoltage “ ”TH v

    alsoindependentof externalexcitement &behaves likea resistor

  • 8/20/2019 Circuit & Electronics.pdf

    59/414

    6.002 Fall 2000 Lecture 163

    Orivv TH TH  +=

    As far as the external world is concerned(for the purpose of I-V relation),

    “Arbitrary network N” is indistinguishable

    from:

    i + –

    TH 

    TH v     

    +

    -

    v

    Théveninequivalentnetwork

    TH 

    TH v open circuit voltageat terminal pair (a.k.a. port)

    resistance of network seenfrom port( ’s, ’s set to 0)

    mV    n

    N

  • 8/20/2019 Circuit & Electronics.pdf

    60/414

    6.002 Fall 2000 Lecture 173

    Method 4:

    The Thévenin Method

    Replace network N with its Thévenin

    equivalent, then solve external network E.

    E

    Thévenin equivalent

    + –

    TH 

    TH v

    +

    -

    v

    E

    + –

    + –

    +

    -v

    N

  • 8/20/2019 Circuit & Electronics.pdf

    61/414

    6.002 Fall 2000 Lecture 183

    Example:1

    V +

     –

    1i

    1

    +

     –

    1i

    TH 

    TH 

     R RV V i

    +−=

    1

    1

    2  

    TH 

    TH V    + –

  • 8/20/2019 Circuit & Electronics.pdf

    62/414

    6.002 Fall 2000 Lecture 193

    Example:

    :TH 

    :TH V 

    2 IRV TH    =

    2TH    =

    +

    -TH V    2  

    +

    -TH    2

  • 8/20/2019 Circuit & Electronics.pdf

    63/414

    6.002 Fall 2000 Lecture 203

    Graphically,   ivv TH TH  +=

    i

    Open circuit( )0≡i

    TH vv   =   OC V 

    Short circuit( )0≡v   TH 

    TH 

     R

    vi  −=

      SC  I −

    v

    TH  R

    1

    TH v

    SC  I −

    OC V “ ”

  • 8/20/2019 Circuit & Electronics.pdf

    64/414

    6.002 Fall 2000 Lecture 213

    Method 5:

    The Norton Method

    in recitation,see text

    + –

    + –

    +

    -v

    Nortonequivalent

    TH 

    TH  N 

     R

    V  I    =

     N TH  = N   

  • 8/20/2019 Circuit & Electronics.pdf

    65/414

    6.002 Fall 2000 Lecture 223

    Summary

    … 101100 …

    Discretize matterLMD LCA

    Physics EE

    R, I, V Linear networks

    Analysis methods (linear)KVL, KCL, I — VCombination rulesNode methodSuperpositionThéveninNorton

    NextNonlinear analysis

    Discretize voltage

  • 8/20/2019 Circuit & Electronics.pdf

    66/414

    6.002 Fall 2000 Lecture 14

    6.002   CIRCUITS ANDELECTRONICS

    The Digital Abstraction

  • 8/20/2019 Circuit & Electronics.pdf

    67/414

    6.002 Fall 2000 Lecture 24

    Review

    Discretize matter by agreeing toobserve the lumped matter discipline

    Analysis tool kit: KVL/KCL, node method,superposition, Thévenin, Norton

    (remember superposition, Thévenin,Norton apply only for linear circuits)

    Lumped Circuit Abstraction

  • 8/20/2019 Circuit & Electronics.pdf

    68/414

    6.002 Fall 2000 Lecture 34

    Discretize value Digital abstraction

    Interestingly, we will see shortly that thetools learned in the previous threelectures are sufficient to analyze simpledigital circuits

    Reading: Chapter 5 of Agarwal & Lang

    Today

  • 8/20/2019 Circuit & Electronics.pdf

    69/414

    6.002 Fall 2000 Lecture 44

    Analog signal processing

    But first, why digital?In the past …

    By superposition,

    The above is an “adder” circuit.

    2

    21

    11

    21

    20

      V  R R

    V  R R

    V +

    +

    +

    =

    If   ,21   R R   =

    2

    21

    0

    V V V 

      +=

    1V 

    1

    2+ –

    2V  + –

    0V 

    and

    might represent the

    outputs of two

    sensors, for example.

    1V  2V 

  • 8/20/2019 Circuit & Electronics.pdf

    70/414

    6.002 Fall 2000 Lecture 54

    Noise Problem

    … noise hampers our ability to distinguishbetween small differences in value —e.g. between 3.1V and 3.2V.

    Receiver:

    huh?

    add noise onthis wire

  • 8/20/2019 Circuit & Electronics.pdf

    71/414

    6.002 Fall 2000 Lecture 64

    Value Discretization

    Why is this discretization useful?

    Restrict values to be one of two

    HIGH

    5V

    TRUE

    1

    LOW

    0V

    FALSE

    0

    …like two digits 0 and 1

    (Remember, numbers larger than 1 can berepresented using multiple binary digits andcoding, much like using multiple decimal digits torepresent numbers greater than 9. E.g., thebinary number 101 has decimal value 5.)

  • 8/20/2019 Circuit & Electronics.pdf

    72/414

    6.002 Fall 2000 Lecture 74

    Digital System

    sender receiverS 

    V  RV 

    noise

    S V 

    “0” “0”“1”

    0V 

    2.5V 

    5V  HIGH

    LOW

     RV 

    “0” “0”“1”

    0V 

    2.5V 

    5V 

    t

    V V  N 

      0=

     N V 

    S V 

    “0” “0”“1”

    2.5V    t

    With noiseV V 

     N   2.0=

    S V 

    “0” “0”“1”

    0V 

    2.5V 

    5V 

    0.2V 

  • 8/20/2019 Circuit & Electronics.pdf

    73/414

    6.002 Fall 2000 Lecture 84

    Digital System

    Better noise immunityLots of “noise margin”

    For “1”: noise margin 5V to 2.5V = 2.5V For “0”: noise margin 0V to 2.5V = 2.5V 

  • 8/20/2019 Circuit & Electronics.pdf

    74/414

    6.002 Fall 2000 Lecture 94

    Voltage Thresholdsand Logic Values

    1

    0

    1

    0

    sender receiver

    1

    0

    0V 

    2.5V 

    5V 

  • 8/20/2019 Circuit & Electronics.pdf

    75/414

    6.002 Fall 2000 Lecture 104

    forbidden

    region

    VH

    V L

    3V 

    2V 

    But, but, but …

    What about 2.5V?

    Hmmm… create “no man’s land”or forbidden region

    For example,

    sender receiver

    0V 

    5V 

    1 1

    0 0

    “1” V 5V

    “0” 0V V

    H

    L

  • 8/20/2019 Circuit & Electronics.pdf

    76/414

    6.002 Fall 2000 Lecture 114

    sender receiver

    But, but, but …Where’s the noise margin?

    What if the sender sent 1: ?VHHold the sender to tougher standards!

    5V

    0V

    11

    00

    V

    0H

    V0L

    VIH

    VIL

  • 8/20/2019 Circuit & Electronics.pdf

    77/414

    6.002 Fall 2000 Lecture 124

    sender receiver

    VH

    But, but, but …Where’s the noise margin?

    What if the sender sent 1: ?Hold the sender to tougher standards!

    5V

    0V

    “1” noise margin:

    “0” noise margin:

    VIH

    - V0H

    VIL

    - V0L

    11

    00

    V

    0H

    V0L

    VIH

    VIL

    Noise margins

  • 8/20/2019 Circuit & Electronics.pdf

    78/414

    6.002 Fall 2000 Lecture 134

    Digital systems follow static discipline: ifinputs to the digital system meet valid inputthresholds, then the system guarantees itsoutputs will meet valid output thresholds.

    sender

    receiver

    0 1 0 1

    5VV

    0H

    V0L

    0V

    VIH

    VIL

    0 1 0 1

    5VV

    0H

    V0L

    0V

    VIH

    VIL

  • 8/20/2019 Circuit & Electronics.pdf

    79/414

    6.002 Fall 2000 Lecture 144

    Processing digital signals

    Recall, we have only two values —

    Map naturally to logic: T, F

    Can also represent numbers

    1,0

  • 8/20/2019 Circuit & Electronics.pdf

    80/414

    6.002 Fall 2000 Lecture 154

    Processing digital signalsBoolean Logic

    If X is true and  Y is trueThen Z is true else Z is false.

    Z = X AND YX, Y, Z

    are digital signals“0” , “1”

    Z = X • YBoolean equation

    Enumerate all input combinations

    Truth table representation:

    ZX Y

    AND gateZX

    Y

    0 0 0

    0 1 01 0 0

    1 1 1

  • 8/20/2019 Circuit & Electronics.pdf

    81/414

    6.002 Fall 2000 Lecture 164

    Adheres to static discipline Outputs are a function of

    inputs alone.

    Combinational gateabstraction

    Digital logic designers do not

    have to care about what is

    inside a gate.

  • 8/20/2019 Circuit & Electronics.pdf

    82/414

    6.002 Fall 2000 Lecture 174

    Demo

    Noise

    ZXY

    Z = X • Y

    Z

    Y

    X

  • 8/20/2019 Circuit & Electronics.pdf

    83/414

    6.002 Fall 2000 Lecture 184

    Z = X • Y

    Examples for recitation

    X

    Y

    Z

  • 8/20/2019 Circuit & Electronics.pdf

    84/414

    6.002 Fall 2000 Lecture 194

    In recitation…

    Another example of a gateIf (A is true) OR (B is true)

    then C is true

    else C is false

    C = A + B Boolean equation

    OR

    OR gate

    CA

    B

    ZX

    Y NAND

    Z = X • Y

    More gates

    B B

    Inverter

  • 8/20/2019 Circuit & Electronics.pdf

    85/414

    6.002 Fall 2000 Lecture 204

    Boolean Identities

    AB + AC = A • (B + C)

    X • 1 = XX • 0 = XX + 1 = 1X + 0 = X

    1 = 0

    0 = 1

    output

    BC B • C

    A

    Digital Circuits

    Implement: output = A + B • C

  • 8/20/2019 Circuit & Electronics.pdf

    86/414

    6.002 Fall 2000 Lecture 15

    6.002   CIRCUITS ANDELECTRONICS

    Inside the Digital Gate

  • 8/20/2019 Circuit & Electronics.pdf

    87/414

    6.002 Fall 2000 Lecture 25

    Review

    Discretize value 0, 1

    Static disciplinemeet voltage thresholds

    Specifies how gates must be designed

    sender receiver

    forbiddenregion

    OLV 

    OH V 

     LV 

     IH V 

    The Digital Abstraction

  • 8/20/2019 Circuit & Electronics.pdf

    88/414

    6.002 Fall 2000 Lecture 35

    Review

    C  A B

    0 0 10 1 11 0 11 1 0

     A

     B  C 

    NAND

    Combinational gate abstractionoutputs function of input alonesatisfies static discipline

  • 8/20/2019 Circuit & Electronics.pdf

    89/414

    6.002 Fall 2000 Lecture 45

    For example:a digital circuit

    Demo

     D

     A

     B

    A Pentium III class microprocessoris a circuit with over 4 million gates !!

    The RAW chipbeing built at theLab for Computer Science at MIThas about 3 million gates.

    3 gates here

    ( )( ) B AC  D   ⋅⋅=

     B A ⋅

  • 8/20/2019 Circuit & Electronics.pdf

    90/414

    6.002 Fall 2000 Lecture 55

    How to build a digital gate

    Analogy

    A B

    C

     li ke po wer

    s u p p l y

    (  l i ke  s w i tc he

     s )

    taps

    if A=ON AND B=ON

    C has H 0

    else C has no H 0

    2

    2

    Use this insight to build an AND gate.

  • 8/20/2019 Circuit & Electronics.pdf

    91/414

    6.002 Fall 2000 Lecture 65

    How to build a digital gate

    C

    B

    A

    OR gate

  • 8/20/2019 Circuit & Electronics.pdf

    92/414

    6.002 Fall 2000 Lecture 75

    Electrical Analogy

    + –

    Bulb C is ON if A AND B are ON,else C is off

    Key: “switch” device

     BC 

  • 8/20/2019 Circuit & Electronics.pdf

    93/414

    6.002 Fall 2000 Lecture 85

    Electrical Analogy

    Key: “switch” device

    in

    out

    control

    3-Terminal deviceif C = 0

    short circuit between in and outelse

    open circuit between in and out

    For mechanical switch,control mechanical pressure

    in

    out

    1=C 

    equivalent ck

    0=C 

    in

    out

  • 8/20/2019 Circuit & Electronics.pdf

    94/414

    6.002 Fall 2000 Lecture 95

    Consider

    =S 

    V  “1”

    + –   S 

     L R

     IN 

    OUT 

    OUT V 

    S V 

    0=C 

    OUT V 

    S V 

    1=C 

    OUT V 

    S V 

     L R

    OUT V 

    Truth table for

    0 1

    1 0

    OUT V 

  • 8/20/2019 Circuit & Electronics.pdf

    95/414

    6.002 Fall 2000 Lecture 105

    What about?Truth table for

    OV 2c

    0 0 10 1 11 0 1

    1 1 0

    1c

    Truth table for

    OV 2c

    0 0 1

    0 1 01 0 01 1 0

    1c

    S V 

    OUT V 

    1c

    2c

    S V 

    OUT V 

    1c

    2c

  • 8/20/2019 Circuit & Electronics.pdf

    96/414

    6.002 Fall 2000 Lecture 115

    What about?

    can also build compound gates

    S V 

     D

     B

    C  ( )   C  B A D   +⋅=

  • 8/20/2019 Circuit & Electronics.pdf

    97/414

    6.002 Fall 2000 Lecture 125

    The MOSFET Device

    3 terminal lumped elementbehaves like a switch

    Metal-OxideSemiconductorField-EffectTransistor

    : control terminal: behave in a symmetricmanner (for our needs)

    G

    S  D,

    gate≡

    source

     D

    G

    drain

  • 8/20/2019 Circuit & Electronics.pdf

    98/414

    6.002 Fall 2000 Lecture 135

    The MOSFET Device

    Understand its operation by viewing it

    as a two-port element —

    “Switch” model (S model) of the MOSFET

     D

    Gi

    G

    GS v+

     – 

     DS v

     DS i +

     – 

    Ch ec k  o u t

    th e  t e x t b

     o o k

    f o r  i t s  i n

     t e r n a l

    s t r uc t u r

     e.

    T GS   V v   <

    T GS   V v   ≥

    V V T  1≈ typically

    onG

     D

     DS i

    G off

     D

  • 8/20/2019 Circuit & Electronics.pdf

    99/414

    6.002 Fall 2000 Lecture 145

    Check the MOS deviceon a scope.

    Demo

    GS v+

     – 

     DS v

     DS i

    +

     – 

    T GS   V v   ≥

     DS i

     DS v

    T GS   V v   <

     DS i

     DS vvs

  • 8/20/2019 Circuit & Electronics.pdf

    100/414

    6.002 Fall 2000 Lecture 155

    A MOSFET Inverter

    S V 

     L

     IN 

     B

     B

    V 5=

    Note the power of abstraction.

    The abstract inverter gate representationhides the internal details such as powersupply connections, , , etc.

    (When we build digital circuits, theand are common across all gates!)

     L GND

    vOUT 

  • 8/20/2019 Circuit & Electronics.pdf

    101/414

    6.002 Fall 2000 Lecture 165

    The T1000 model laptop desires gates that satisfythe static discipline with voltage thresholds. Doesout inverter qualify?

     IN v

    OUT v

    OUT v

     IN v

    5V

    5V

    0V=1VT V 

    = 0.5VOL

    = 4.5VOH 

    = 0.9V IL

    = 4.1V IH 

    Our inverter satisfies this.

    receiver

    OLV 

    OH V 

     LV 

     IH V 

    54.5

    0.5

    0

    sender

    5

    4.1

    0.9

    0

    1:

    0:

    1

    0

    Example

  • 8/20/2019 Circuit & Electronics.pdf

    102/414

    6.002 Fall 2000 Lecture 175

    E.g.:

    Does our inverter satisfy the staticdiscipline for these thresholds:

    = 0.2VOL

    = 4.8VOH V 

    = 0.5V IL

    = 4.5V IH V 

    = 0.5VOLV 

    = 4.5VOH 

    = 1.5V L

    = 3.5V H 

     yes

    no

    x

  • 8/20/2019 Circuit & Electronics.pdf

    103/414

    6.002 Fall 2000 Lecture 185

    Switch resistor (SR) modelof MOSFET 

    …more accurate MOS model

     D

    G

     D

    S T GS 

      V v   <

    G

    T GS   V v   ≥

    ON 

     D

    G

    e.g.   Ω=   K ON 

    5

  • 8/20/2019 Circuit & Electronics.pdf

    104/414

    6.002 Fall 2000 Lecture 195

    SR Model of MOSFET 

    MOSFET S model

    T GS   V v   ≥

    T GS   V v   <

     DS i

     DS v

    MOSFET SR model

    T GS    V v   ≥

    T GS   V v   <

     DS i

     DS v

    ON  R

    1

     D

    G

     D

    S T GS 

      V v   <

    G

    T GS   V v   ≥

    ON 

     D

    G

  • 8/20/2019 Circuit & Electronics.pdf

    105/414

    6.002 Fall 2000 Lecture 205

    Using the SR model

    =S 

    V  “1”

    + –   S 

     L R

     IN 

    OUT 

    OUT v

    S V 

    0=C 

    OUT v

    S V 

    1=C OUT 

    v

    S V 

     L R

    OUT v

    Truth table for

    0 11 0

    OUT 

    T GS   V v   ≥

    ON 

    ON  OLV 

     RON 

     R

    ON  R

    S V 

    OUT v   ≤

    +=

     L R

     L R Choose RL, RON, VS such that:

  • 8/20/2019 Circuit & Electronics.pdf

    106/414

    6.002 Fall 2000 Lecture 16

    6.002   CIRCUITS ANDELECTRONICS

    Nonlinear Analysis

  • 8/20/2019 Circuit & Electronics.pdf

    107/414

    6.002 Fall 2000 Lecture 26

    Discretize matter LCA

    m1   KVL, KCL, i-v

    m2 Composition rules

    m3

    Node methodm4 Superposition

    m5 Thévenin, Norton

    anycircuit

    linearcircuits

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    108/414

    6.002 Fall 2000 Lecture 36

    Discretize value

    Digital abstraction Subcircuits for given “switch”

    setting are linear! So, all 5methods (m1 – m5) can be

    applied

    1

    1

    =

    =

     B

     B

    S V 

     L

    S V 

     L

    ON ON  

    SR MOSFET Model

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    109/414

    6.002 Fall 2000 Lecture 46

    Today

    Nonlinear Analysis

    Analytical methodbased on m1, m2, m3

    Graphical method

    Introduction to incremental analysis

  • 8/20/2019 Circuit & Electronics.pdf

    110/414

    6.002 Fall 2000 Lecture 56

    How do we analyze nonlinearcircuits, for example:

     Dv+   -

     D

     Di

     Dv

     Di

    0,0

     Dbv

     D   aei   =

    a

     Dv+

    -V    +

     –

    Hypotheticanonlineardevice D

     Di

    (Expo Dweeb ☺)

    (Curiously, the device supplies power whenv D  is negative)

  • 8/20/2019 Circuit & Electronics.pdf

    111/414

    6.002 Fall 2000 Lecture 66

    Method 1: Analytical Method

    Using the node method,(remember the node method applies for linear ornonlinear circuits)

     Dbv

     D   aei   = 2

    0=+−

     D D i

    V v1

    2 unknowns 2 equations

    Solve the equation by trial and error numerical methods

  • 8/20/2019 Circuit & Electronics.pdf

    112/414

    6.002 Fall 2000 Lecture 76

    Method 2: Graphical Method

    Notice: the solution satisfies equations

    and 21

     Dv

     Di

    a

     Dbv D   aei   =2

     Dv

     Di 1  vV 

    i   D D   −=

     slope  1−=

  • 8/20/2019 Circuit & Electronics.pdf

    113/414

    6.002 Fall 2000 Lecture 86

    Combine the two constraints

    1

    4

    1

    1

    1

    =

    =

    =

    =

    b

    a

     R

    V e.g.

     Ai

    V v

     D

     D

    4.0

    5.0

    =

    =

     Dv

     Di

    5.0~

    4.0~

    V 1

    1

    called “loadline”for reasons youwill see later

  • 8/20/2019 Circuit & Electronics.pdf

    114/414

    6.002 Fall 2000 Lecture 96

    Method 3: Incremental AnalysisMotivation: music over a light beam

    Can we pull this off?

    LED: LightEmittingexpoDweep ☺

     Dv+

    -

    )(t v   + –

     Di

    LED

    i

    AMP

    light intensity  I  Rin photoreceiver

     Ri   ∝lightintensity

     D D   i I    ∝

     I v

    music signal

    )(t v I  light sound)(t i R)(t i D

    nonlinearlinear

    problem! will result in distortion

  • 8/20/2019 Circuit & Electronics.pdf

    115/414

    6.002 Fall 2000 Lecture 106

    Problem:The LED is nonlinear distortion

     D   vv  =

     Dv

     Di

     vD

     t  

     Di v D

     Di

  • 8/20/2019 Circuit & Electronics.pdf

    116/414

    6.002 Fall 2000 Lecture 116

    If only it were linear …

     vD

     t  

     Di

     Dv

     Di

    it would’ve been ok.What do we do?

    Zen is the answer

    … next lecture!

  • 8/20/2019 Circuit & Electronics.pdf

    117/414

    6.002 Fall 2000 Lecture 17

    6.002   CIRCUITS ANDELECTRONICS

    Incremental Analysis

  • 8/20/2019 Circuit & Electronics.pdf

    118/414

    6.002 Fall 2000 Lecture 27

    Nonlinear Analysis

    Analytical method

    Graphical method

    Today

    Incremental analysis

    Reading: Section 4.5

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    119/414

    6.002 Fall 2000 Lecture 37

    Method 3: Incremental AnalysisMotivation: music over a light beam

    Can we pull this off?

    LED: LightEmittingexpoDweep ☺

     Dv+

    -

    )(t v   + –

     Di

    LED

    i

    AMP

    light intensity I  Rin photoreceiver

     Ri   ∝lightintensity

     D D   i I    ∝

     I v

    music signal

    )(t v I  light sound)(t i R)(t i D

    nonlinearlinear

    problem! will result in distortion

  • 8/20/2019 Circuit & Electronics.pdf

    120/414

    6.002 Fall 2000 Lecture 47

    Problem:The LED is nonlinear distortion

     D   vv  =

     Dv

     Di

     vD

     t  

     Di v D

     Di

  • 8/20/2019 Circuit & Electronics.pdf

    121/414

    6.002 Fall 2000 Lecture 57

    Insight:

     D

    v

     Di

     D I 

     DV 

    DC offsetor DC bias

    Trick:

    d  D D   ii   +=

     I V 

     Dv+

    -

    )(t vi+ –

    LED+ –

    v

    d  D D   vV v   +=

     I V  iv

    small regionlooks linear(about V  D , I  D)

  • 8/20/2019 Circuit & Electronics.pdf

    122/414

    6.002 Fall 2000 Lecture 67

    Result

     v d  very small

     Di

     Dv

    d i

     D

     DV 

  • 8/20/2019 Circuit & Electronics.pdf

    123/414

    6.002 Fall 2000 Lecture 77

    Result

     Dv DV 

     I  D   vv   =

     D

     Di

    ~linear!

    Demo

    d v

    d i Di

  • 8/20/2019 Circuit & Electronics.pdf

    124/414

    6.002 Fall 2000 Lecture 87

    total

    variable

    DC

    offset

    small

    superimposedsignal

    The incremental method:(or small signal method)

    1. Operate at some DC offsetor bias point V  D, I  D .

    2. Superimpose small signal vd (music) on top of V  D .

    3. Response id  to small signal vd is approximately linear.

    Notation:

    d  D D   i I i   +=

  • 8/20/2019 Circuit & Electronics.pdf

    125/414

    6.002 Fall 2000 Lecture 97

    ( ) D D   v f i   =

    What does this meanmathematically?

    Or, why is the small signal responselinear?

    We replaced

     D D D   vV v   ∆+=

    using Taylor’s Expansion to expand

     f(v D ) near v D=V  D :( )   D

    V v D

     D D D   v

    dv

    vdf V  f i

     D D

    ∆⋅+=

    =

    )(

    +∆⋅+

    =

    2

    2

    2 )(

    !2

    1 D

    V v D

     D

    vdv

    v f d 

     D D

    large DC

    incrementabout V  D

    nonlinear

    d v

    neglect higher order terms

    because is small Dv∆

  • 8/20/2019 Circuit & Electronics.pdf

    126/414

    6.002 Fall 2000 Lecture 107

    ( )   DV v D

     D D D   v

    vd 

    v f d V  f i

     D D

    ∆⋅+≈

    =

    )(

    equating DC and time-varying parts,

     D

    V v D

     D D   v

    vd 

    v f d i

     D D

    ∆⋅=∆

    =

    )(

    constantw.r.t. ∆v D

    constant w.r.t. ∆v Dslope at V  D, I  D

    ( ) D D   V  f = operating point

    constant w.r.t. ∆v D

    X :We can write

    ( )   DV v D

     D D D D   v

    vd 

    v f d V  f i I 

     D D

    ∆⋅+≈∆+

    =

    )(

    so, D D   vi   ∆∝∆

    By notation,

    d  D   ii   =∆

    d  D   vv   =∆

  • 8/20/2019 Circuit & Electronics.pdf

    127/414

    6.002 Fall 2000 Lecture 117

    Equate DC and incremental terms,

     Dbv

     D   eai   =

    From X :

    constant

    In our example,

    bV bV 

    d  D   vbeaeai I    D D ⋅⋅+≈+

     DbV 

     D   ea I    =

    bV 

    d    vbeai  D ⋅⋅=

    operating point

    d  Dd    vbi  ⋅⋅=

    small signalbehaviorlinear!

    aka bias pt.aka DC offset

  • 8/20/2019 Circuit & Electronics.pdf

    128/414

    6.002 Fall 2000 Lecture 127

     DbV 

     D   ea I    = operating point

    d  Dd    vb I i   ⋅⋅=

     Dv

     Di

     D I 

     DV 

    slope at

    V  D, I  D

    operating

    point

    we areapproximatingA with B

    A

    B

    d v

    d i

    Graphical interpretation

  • 8/20/2019 Circuit & Electronics.pdf

    129/414

    6.002 Fall 2000 Lecture 137

    We saw the small signal

     D I 

     I V   DV +

    -

    + – LED   DbV 

     D   ea I    =

    Large signal circuit:

    Small signal response:   d  Dd    vbi   =

    graphically

    mathematically

    now, circuit

    small signal circuit:

    Linear!

    d i

    iv d v+

    -   b I  D

    1+ –

    behaves like:d v+   -

    d i

    b I 

    1 R

     D

    =

  • 8/20/2019 Circuit & Electronics.pdf

    130/4146.002 – Fall 2002: Lecture 8 1

    6.002   CIRCUITS ANDELECTRONICS

    Dependent Sources

    and Amplifiers

  • 8/20/2019 Circuit & Electronics.pdf

    131/4146.002 – Fall 2002: Lecture 8 2

    Nonlinear circuits — can use thenode method

    Small signal trick resulted in linearresponse

    Today

    Dependent sources

    Reading: Chapter 7.1, 7.2

    Review

    Amplifiers

  • 8/20/2019 Circuit & Electronics.pdf

    132/4146.002 – Fall 2002: Lecture 8 3

    Dependent sources

    +   –v

    ivi  =Resistor

    2-terminal 1-port devices

    +   –v

    i  i  = I 

    IndependentCurrent source

    Seen previously

    controlport

    outputport

    i

     I v

    Oi

    Ov

    +

     –

    +

     –

    New type of device: Dependent source

    2-port device

    E.g., Voltage Controlled Current SourceCurrent at output port is a function of voltage

    at the input port

     )v(  f    I 

  • 8/20/2019 Circuit & Electronics.pdf

    133/4146.002 – Fall 2002: Lecture 8 4

    Dependent Sources: Examples

    independentcurrentsource

    Example 1: Find V

    0=

    +

     –V 

    V 0

    =

  • 8/20/2019 Circuit & Electronics.pdf

    134/4146.002 – Fall 2002: Lecture 8 5

    voltagecontroledcurrent

    source

    Example 2: Find V

    ( ) V  K 

    V  f  I    ==

    +

     –V 

    i

     I v

    Oi

    Ov

    +

     –

    +

     –

    +

     –V 

    ( ) I 

     I v

     K v f    =

    Dependent Sources: Examples

  • 8/20/2019 Circuit & Electronics.pdf

    135/4146.002 – Fall 2002: Lecture 8 6

    voltagecontroledcurrentsource

     RV 

     K  IRV    ==

     KRV    =2

     KRV   =33

    1010   ⋅=  −

    Volt 1=

    oror

    Example 2: Find V

    ( ) V  K 

    V  f  I    ==

    +

     –V 

    e.g. K = 10-3 Amp·Volt  R = 1k Ω

    Dependent Sources: Examples

  • 8/20/2019 Circuit & Electronics.pdf

    136/4146.002 – Fall 2002: Lecture 8 7

    Another dependent source example

    v   + –

    ( ) IN  D   v f i   =

     L

    + –S 

    e.g. ( ) N  D   v f i   =

    ( )2 IN    1v2

     K −= for v IN ≥  1

     IN i

     IN v

     Di

    Ov

    +

     –

    +

     –

    otherwise0i D   =

    Find vO as a function of v I .

  • 8/20/2019 Circuit & Electronics.pdf

    137/4146.002 – Fall 2002: Lecture 8 8

    Another dependent source example

    v   + –

    ( ) IN  D   v f i   =

     L

    S V 

    e.g.   ( ) N  D   v f i   =

    ( )2 IN    1v2

     K −= for v IN ≥  1

     IN i

     IN v

     Di

    Ov

    +

     –

    +

     –

    otherwise0i D   =

    Find vO as a function of v I .

  • 8/20/2019 Circuit & Electronics.pdf

    138/4146.002 – Fall 2002: Lecture 8 9

    Another dependent source example

    Find vO as a function of v I .

     I v   + –

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

  • 8/20/2019 Circuit & Electronics.pdf

    139/4146.002 – Fall 2002: Lecture 8 10

    Another dependent source example

    0=++− O L DS    viV 

    KVL

     L DS O   iV v   −=

    ( )   L I S O   Rv K 

    V v  2

    12

    −−= for v I ≥  1

    S O   V v   = for v I < 1

     I v   + –

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

    Hold that thought

  • 8/20/2019 Circuit & Electronics.pdf

    140/4146.002 – Fall 2002: Lecture 8 11

    Next, Amplifiers

  • 8/20/2019 Circuit & Electronics.pdf

    141/4146.002 – Fall 2002: Lecture 8 12

    Why amplify?Signal amplification key to both analogand digital processing.

    Analog:

    Besides the obvious advantages of being

    heard farther away, amplification is keyto noise tolerance during communication

     AMP  IN OUT 

    InputPort

    OutputPort

  • 8/20/2019 Circuit & Electronics.pdf

    142/4146.002 – Fall 2002: Lecture 8 13

    Why amplify?

    Amplification is key to noise toleranceduring communication

    usefulsignal

    huh?

    1 mV   n o i

     s e10 mV 

    No amplification

  • 8/20/2019 Circuit & Electronics.pdf

    143/4146.002 – Fall 2002: Lecture 8 14

     AMP 

    Try amplification

    not bad!

     n o i s e

  • 8/20/2019 Circuit & Electronics.pdf

    144/4146.002 – Fall 2002: Lecture 8 15

    Why amplify?Digital:

     IN    OUT 

    Digital System

     LV  IH V 

    5V 

    0V   OLV 

    OH V 5V 

    0V 

    5V 

    0V 

     ILV 

     IH V 

     IN    OUT 

    5V 

    0V OL

    OH V 

    Valid region

  • 8/20/2019 Circuit & Electronics.pdf

    145/4146.002 – Fall 2002: Lecture 8 16

    Why amplify?Digital:

    Static discipline requires amplification!

    Minimum amplification needed:

     ILV  IH V 

    OLV 

    OH V 

     L H 

    OLOH 

    V V 

    V V 

  • 8/20/2019 Circuit & Electronics.pdf

    146/4146.002 – Fall 2002: Lecture 8 17

    An amplifier is a 3-ported device, actually

    We often don’t show the power port.

    Also, for convenience we commonly observe“the common ground discipline.”

    In other words, all ports often share acommon reference point called “ground.”

    How do we build one?

     POWER

     IN OUT 

    Amplifier

    Power port

    Inputport

    Outputport

    i

     I v

    Oi

    Ov+ –

    +

     –

  • 8/20/2019 Circuit & Electronics.pdf

    147/4146.002 – Fall 2002: Lecture 8 18

    Remember?

    0=++− O L DS    viV 

    KVL

     L DS O   iV v   −=

    ( )   L I S O   Rv K 

    V v  2

    12

    −−= for v I ≥  1

    S O   V v   = for v I < 1

    Claim: This is an amplifier

     I v   + –

     I v

    S V 

    Ov

     L

    ( )2 IN  D   1v2

     K i   −= for v IN ≥  1

    otherwise0i D   =

  • 8/20/2019 Circuit & Electronics.pdf

    148/4146.002 – Fall 2002: Lecture 8 19

    So, where’s the amplification?

    Let’s look at the vO versus v I  curve.

    amplification1>∆

    ∆ O

    v

    v

    Ω===

      k 5 R ,V 

    mA

    2 K  ,V 10V   L2S e.g.

    Ov∆

     I v∆

    ( )212

    −−=  I  LS O   v R K 

    V v

    ( )21510   −−=O   vv

    ( )233 110510

    2

    210   −⋅⋅⋅−=

      −

     I v

    1  I v

    S V 

    Ov

  • 8/20/2019 Circuit & Electronics.pdf

    149/4146.002 – Fall 2002: Lecture 8 20

    Plot vO versus v I 

    ( )

    2

    O   1v510v  −−=

    10.001.0

    ~ 0.002.4

    1.502.3

    2.802.2

    4.002.1

    5.002.0

    8.751.5

    10.000.0

    vOv I 

    0.1 changein v I 

    1V changein vO

    Gain!

    Measure vO .Demo

  • 8/20/2019 Circuit & Electronics.pdf

    150/4146.002 – Fall 2002: Lecture 8 21

    One nit …

    1

    v

    Ov

    Mathematically,

    ( )212

    −−=  I  LS O   v R K V v

    Whathappenshere?

    So is mathematically predicted behavior

  • 8/20/2019 Circuit & Electronics.pdf

    151/4146.002 – Fall 2002: Lecture 8 22

    One nit …

     Di

    S V 

    Ov L

    VCCS 

    1

    v

    Ov

    For vO>0, VCCS  consumes power: vO i DFor vO

  • 8/20/2019 Circuit & Electronics.pdf

    152/4146.002 – Fall 2002: Lecture 8 23

    If VCCS is a device that can sourcepower, then the mathematicallypredicted behavior will be observed —

    ( )212

    −−=  I  LS O   v R K 

    V vi.e.

    where vO goes -ve I v

    Ov

  • 8/20/2019 Circuit & Electronics.pdf

    153/4146.002 – Fall 2002: Lecture 8 24

    If VCCS is a passive device,then it cannot source power,so vO cannot go -ve.So, something must give!

    Turns out, our model breaks down.

    ( )212

    −=  I  D   v K 

    iCommonly

    will no longer be valid when vO  ≤ 0 .

    e.g. i D saturates (stops increasing)

    and we observe:

     I v

    Ov

    1

  • 8/20/2019 Circuit & Electronics.pdf

    154/414

    6.002 Fall 2000 Lecture 19

    6.002   CIRCUITS ANDELECTRONICS

    MOSFET Amplifier

    Large Signal Analysis

  • 8/20/2019 Circuit & Electronics.pdf

    155/414

    6.002 Fall 2000 Lecture 29

    Amp constructed using dependent source

    Superposition with dependent sources:one way leave all dependent sources in;solve for one independent source at a

    time [section 3.5.1 of the text] Next, quick review of amp …

    Reading: Chapter 7.3–7.7

         +   –+

     –a′

    a

    v

    b′

    b

    )(vi =

    a′a

    b′bcontrol

    port   DS outputport

    Dependent source in a circuit

    Review

  • 8/20/2019 Circuit & Electronics.pdf

    156/414

    6.002 Fall 2000 Lecture 39

    Amp review

     L DS O   iV v   −=

    ( )2 I    1v2

     K −

    forv I   ≥  1V 

    = 0 otherwise

    S V 

    Ov

     L

    + –

    ( )2 I  D   1v2

     K i   −=

    v

    VCCS

  • 8/20/2019 Circuit & Electronics.pdf

    157/414

    6.002 Fall 2000 Lecture 49

    Key device Needed:

    Let’s look at our old friend, the MOSFET …

    A

    Bv

    C

    ( )v f i =voltage controlled

    current source

  • 8/20/2019 Circuit & Electronics.pdf

    158/414

    6.002 Fall 2000 Lecture 59

    Key device Needed:

    Our old friend, the MOSFET …

    First, we sort of lied. The on-state behavior of theMOSFET is quite a bit more complex than either theideal switch or the resistor model would have you believe.

     D

    G

     D

    T GS    V v   <

    G

    T GS    V v   ≥?

  • 8/20/2019 Circuit & Electronics.pdf

    159/414

    6.002 Fall 2000 Lecture 69

    Graphically

     DS v

     DS i

    T GS    V v   ≥

    T GS    V v   <

    T GS 

      V v   ≥

    1GS v

    Saturationregion

             T      r         i      o

            d      e

           r      e      g            i      o

           n 

    S MODEL

     DS v

     DS i

    SR MODEL

     Dv

     DS i

    Demo

    T GS    V v   <

    T GS    V v   <

    2GS v

    3GS v

    + – DS v

    +

     –

     DS iGS v

     .

     .

     .

    GS  DS    Vvv   −=

    Cutoff

    region

  • 8/20/2019 Circuit & Electronics.pdf

    160/414

    6.002 Fall 2000 Lecture 79

    Graphically

     DS v

     DS i

    T GS    V v   ≥

    T GS    V v   <

    T GS 

      V v   ≥

    1GS v

    Saturationregion

             T      r         i      o

            d      e

           r      e      g            i      o

           n 

    S MODEL

     DS v

     DS i

    SR MODEL

     DSv

     DS i

    T GS    V v   <

    T GS    V v   <

    2GS v

    3GS v

    + – DS v

    +

     –

     DS iGS v

     .

     .

     .

    TGS  DS    V vv   −=

    Notice thatMOSFETbehaves like a

    current source

    whenT GS  DS    V vv   −≥

  • 8/20/2019 Circuit & Electronics.pdf

    161/414

    6.002 Fall 2000 Lecture 89

    MOSFET SCS Model

     D

    G

     D

    T GS    V v   <

    G

    ( )22

      T GS    V v K 

    −=

    whenT GS  DS    V vv   −≥

    ( )GS  DS    v f i   =

    T GS    V v   ≥

     D

    G

    When

    the MOSFET is in its saturation region, and theswitch current source (SCS) model of the MOSFET ismore accurate than the S or SR model

    T GS  DS    V vv   −≥

  • 8/20/2019 Circuit & Electronics.pdf

    162/414

    6.002 Fall 2000 Lecture 99

    Reconciling the models…

    T GS  DS    V vv   −≥

    T GS  DS    V vv   −<use SCS modeluse SR model

    Note: alternatively (in more advanced courses)

    or, use SU Model (Section 7.8 of A&L)

    S MODEL SR MODEL SCS MODELfor fun!

    for digitaldesigns

    for analogdesigns

    When to use each model in 6.002?

     DS v

     DS i

    T GS    V v   ≥

    T GS    V v   <

    T GS    V v   ≥

    1GS v

    Saturationregion

             T      r         i      o

            d      e

           r      e      g            i      o

           n 

     DS v

     DS i

     Dv

     DS i

    T GS    V v   <

    T GS    V v   <

    2GS v

    3GS v .

     .

     .

    GS  DS 

      Vvv   −=

  • 8/20/2019 Circuit & Electronics.pdf

    163/414

    6.002 Fall 2000 Lecture 109

    Back to Amplifier

    in saturationregion

     I 

    v  O

    v MP 

    S V 

    S V 

     L

     I v

    Ov

    G   D

    ( )2

    2  T  I  DS    V v

     K i   −=

    To ensure the MOSFET operates as a VCCS

    we must operate it in its saturation regiononly. To do so, we promise to adhere to the

    “saturation discipline”

  • 8/20/2019 Circuit & Electronics.pdf

    164/414

    6.002 Fall 2000 Lecture 119

    MOSFET Amplifier

    in saturationregion

    S V 

     L

     I v

    Ov

    G   D

    S ( )2

    2  T  I  DS    V v

     K i   −=

    To ensure the MOSFET operates as a VCCS,

    we must operate it in its saturation regiononly. We promise to adhere to the“saturation discipline.”

    In other words, we will operate the amp

    circuit such that

    vGS 

      ≥  V T 

    and v DS 

      ≥  vGS 

     –  V T 

    at all times.vO  ≥  v

     I  –  v

  • 8/20/2019 Circuit & Electronics.pdf

    165/414

    6.002 Fall 2000 Lecture 129

    Let’s analyze the circuitFirst, replace the MOSFET with its

    SCS model.

    forT  I O   V vv   −≥GS 

      vv   =

    G

     I v+

     –

    + –

    S V 

    Ov

     L

     D

    A( )22

      T  I  DS    V v K 

    i   −=

  • 8/20/2019 Circuit & Electronics.pdf

    166/414

    6.002 Fall 2000 Lecture 139

    Let’s analyze the circuit

    forT  I O   V vv   −≥GS 

      vv   =

    G

     I v+

     –

    + –

    S V 

    Ov

     L

     D

    A( )2

    2

      T  I  DS    V v K 

    i   −=

    or   ( )   LT  I S O   RV v K 

    V v2

    2−−= for T  I    V v   ≥

    T O   V vv   −≥

    S O   V v   =for T V v   <

    (MOSFET turns off)

     L DS S O   iV v   −= B1 Analytical method:   I O   vvsv

    (vO = v DS  DS  in our examplein our example ) )

  • 8/20/2019 Circuit & Electronics.pdf

    167/414

    6.002 Fall 2000 Lecture 149

    2 Graphical method

    :B

    From A   ( ) ,2

    2

    T  I  DS    V v K 

    i   −=:

    2

    O DS 

     DS O

    T  I O

    v2

     K i

     K 

    i2v

    V vv

    −≥for 

     I O   vvsv

     L

    0

     L

    S  DS 

     R

    v

     R

    V i   −=

  • 8/20/2019 Circuit & Electronics.pdf

    168/414

    6.002 Fall 2000 Lecture 159

    2 Graphical method

    :B

    Constraints and must be metA B

    A   ( ) ,2

    2

    T  I  DS    V v K 

    i   −=:

    S V 

     DS i

    Ov

    2

    2  O DS    v

     K i   ≤

     L

     R

    L o a d   l  i  n e 

    B

    for

    GS v=

     I v

    A

    2

    2  O DS    v

     K i   ≤

     L

    O

     L

    S  DS 

     R

    v

     R

    V i   −=

     I O   vvsv

  • 8/20/2019 Circuit & Electronics.pdf

    169/414

    6.002 Fall 2000 Lecture 169

    2 Graphical method

    Constraints and must be met.Then, given V  I , we can find V O, I  DS .A B

    S V 

     DS i

    Ov

     L

     R

    B I v

    A

    2

    2  O DS    v

     K i   ≤

     I O   vvsv

     I V  DS  I 

    OV 

  • 8/20/2019 Circuit & Electronics.pdf

    170/414

    6.002 Fall 2000 Lecture 179

    Large Signal Analysisof Amplifier

    (under “saturation discipline”)

    1   vO versus v I 

    2 Valid input operating range andvalid output operating range

  • 8/20/2019 Circuit & Electronics.pdf

    171/414

    6.002 Fall 2000 Lecture 189

    Large Signal Analysis

    1   vO versus v I 

    v

    S V 

    ( )   LT  I S    RV v K 

    V 2

    2

    −−Ov

    T V 

    gets intotriode region

    T O   V vv   −=

  • 8/20/2019 Circuit & Electronics.pdf

    172/414

    6.002 Fall 2000 Lecture 199

    2 What are valid operating ranges

    under the saturation discipline?

     DS i

    Ov

    2

    2  O DS    v

     K i   ≤

    S V 

     L

     R

     L

    O

     L

    S  DS 

     R

    v

     R

    V i   −=

    Large Signal Analysis

    T  I O

    T  I 

    V vv

    V v

    −≥

    ≥2

    2  O DS    v

     K i   ≤

    OurConstraints

    =T  I 

    0=

     DS i=

    S O   V v

    V v

    and

    ?

     I v

    ( )22

      T  I  DS    V v K 

    i   −=

  • 8/20/2019 Circuit & Electronics.pdf

    173/414

    6.002 Fall 2000 Lecture 209

    =T  I 

    0= DS i= S O   V v

    V v

    and

    2 What are valid operating rangesunder the saturation discipline?

     DS i

    Ov

    2

    2  O DS    v

     K i   ≤

     L

    O

     L

    S  DS 

     R

    v

     R

    V i   −=

    Large Signal Analysis

     I v

    ( )2

    2  T  I  DS    V v

     K i   −=

     L

    S  LT  I 

     KR

    V  KRV v

    211   ++−+=

     L

    S  LO

     KR

    V  KRv

    211   ++−=

     L

    O

     L

    S  DS 

     R

    v

     R

    V i   −=

  • 8/20/2019 Circuit & Electronics.pdf

    174/414

    6.002 Fall 2000 Lecture 219

    Valid input range:

     L

    S  L

    T   KR

    V  KR

    211   ++−+

    v I : V T  to

    corresponding output range:

     L

    S  L

     KR

    V  KR211   ++−

    vO : V S  to

    2 Valid operating ranges under thesaturation discipline?

    Large Signal AnalysisSummary

    1   vO versus v I 

    ( )   L2

    T  I S O   RV v2

     K V v   −−=

  • 8/20/2019 Circuit & Electronics.pdf

    175/414

    6.002 CIRCUITS AND ELECTRONICS 

    Amplifiers --

    Small Signal Model

    6.002 Fall 2000 Lecture 10  1

  • 8/20/2019 Circuit & Electronics.pdf

    176/414

    Review

      MOSFET amp

    SV 

     L

     DSi

    vO

    v I 

     

    Saturation discipline — operateMOSFET only in saturation region

    Large signal analysis1. Find vO vs v I under saturation discipline.

    2. Validv I, v

    O ranges under saturation discipline.

    Reading: Small signal model -- Chapter 8

    6.002 Fall 2000 Lecture 10  2

  • 8/20/2019 Circuit & Electronics.pdf

    177/414

    Large Signal Review

    1 vO vs v I

    vO = V S −  K

    (v I −1)2 R L

    2

    valid for v I ≥   V TandvO ≥  v I – V T(same as i DS ≤ 

     KvO

    2 )2

    6.002 Fall 2000 Lecture 10  3

  • 8/20/2019 Circuit & Electronics.pdf

    178/414

    Large Signal Review

    2 Valid operating ranges

    v

    5V corresponding v I −V T 

    interesting v I −V Tregion for vO v I −V T

    S

    O

    Ov = 

    Ov > 

    Ov

  • 8/20/2019 Circuit & Electronics.pdf

    179/414

    But…

    S V

    Ov

    Ov = 

     I v

    5V 

    1V 

    v I −V T 

    v I 

    vO

    Demo

    V T 1V 2V 

    Amplifies alright,but distortsv I 

    vO

    Amp is nonlinear … / 

    6.002 Fall 2000 Lecture 10  5

  • 8/20/2019 Circuit & Electronics.pdf

    180/414

    Small Signal Model

    ~ 5V V S

    ~1V

    Hmmm …

    ( ) L

    T I

    SO  R

    V v K

    V v 2

    2−

    − 

    Amp all right, but nonlinear!

     Iv

    Ov

    TV 

    V1 V2~

    Insight:

    ( ) 

    O I V  ,V 

    Focus on this line segment

    So what about our linear amplifier ???

    But, observe v I vs vO about somepoint (V  I , V O) … looks quite linear !

    6.002 Fall 2000 Lecture 10  6

  • 8/20/2019 Circuit & Electronics.pdf

    181/414

    Trickov

    iv

     I V

    OV

    )OV V ,Ov∆ 

    lookslinear

    ∆v I

      Operate amp at V  I

     , V O

    Æ 

    DC “bias” (good choice: midpointof input operating range)

      Superimpose small signal on top of V  I   Response to small signal seems to be

    approximately linear

    6.002 Fall 2000 Lecture 10  7

  • 8/20/2019 Circuit & Electronics.pdf

    182/414

    Trickov

    iv

     I V

    OV

    )OV V ,Ov∆ 

    lookslinear

    ∆v I  Operate amp at V  I , V OÆ 

    DC “bias” (good choice: midpointof input operating range)

      Superimpose small signal on top of V  I  Response to small signal seems to be

    approximately linear

    Let’s look at this in more detail —I

    III from a circuit viewpoint

    graphically nextII mathematically week

    6.002 Fall 2000 Lecture 10  8

  • 8/20/2019 Circuit & Electronics.pdf

    183/414

    I Graphically

    We use a DC bias V  I to “boost” interesting inputsignal above V T , and in fact, well above V T .

    interestinginput signal

     – 

    +  –

     

    SV 

     L

    vO

    ∆v I

    V  I 

    Offset voltage or bias

    6.002 Fall 2000 Lecture 10  9

  • 8/20/2019 Circuit & Electronics.pdf

    184/414

    Graphically

    interesting

    vO∆v I

    SV 

     L

    +  –

     

    +  –

     

    input signal

    V  I 

    SV Ov

    OV 

    operatingpoint

    O I V V  ,

     IV 

    TV 

    O vv   = 

    0

     I −V Tv

     I 

    Good choice for operating point:midpoint of input operating range

    6.002 Fall 2000 Lecture 10  10

  • 8/20/2019 Circuit & Electronics.pdf

    185/414

    Small Signal Modelaka incremental modelaka linearized model

    Notation —Input:

    total

    v I = V  I + vi

    DC smallvariable bias signal (like  ∆v I )

    bias voltage aka operating point voltage

    Output: vO = V O + vo

    Graphically,v vvi vo

    V  IV O

    O

    0  

    t 0  

    6.002 Fall 2000 Lecture 10  11

  • 8/20/2019 Circuit & Electronics.pdf

    186/414

    II Mathematically(… watch my fingers)

    vO = 

    V S − 

     R L K

    (v I −V T )2

    V O = 

    V S − 

     R L

     K

    (V  I −V T2 2

    substituting v I = V  I + vi vi

  • 8/20/2019 Circuit & Electronics.pdf

    187/414

    Mathematically

    vo = − R L K (  T I )V −V vi

     g m related to V  I 

    vo = − g m R L vi

    For a given DC operating point voltage V  I ,

    V  I – V T is constant. So,

    vo = −  A vi

    constant w.r.t. vi

    In other words, our circuit behaves like a linear amplifier

    for small signals

    6.002 Fall 2000 Lecture 10  13

  • 8/20/2019 Circuit & Electronics.pdf

    188/414

      

    Another way

    vO

    = V S

    −  R L K (v

     I

    −V T

    )2

    2

    vo = 

    dv

     I

    V S

    −  R

     L2

     K(v I

    −V T

    )2 

    ⋅ vi

     Iv = V 

    slope at V  I 

    vo = − R L K (V  I −V T ) ⋅ vi

     g m =  K (V  I −V T ) 

     A = − g m R L amp gain

    Also, see Figure 8.9 in the course notes

    for a graphical interpretation of this result

    6.002 Fall 2000 Lecture 10  14

  • 8/20/2019 Circuit & Electronics.pdf

    189/414

    More next lecture …

    Demo DS i

     I V

    Ov

    load line

    operating pointinput signal response

    V O

    How to choose the bias point:

    1. Gain component  g m ∝ V  I2. vi gets big Æ  distortion.

    So bias carefully3. Input valid operating range.

    Bias at midpoint of input operatingrange for maximum swing.

    6.002 Fall 2000 Lecture 10  15

  • 8/20/2019 Circuit & Electronics.pdf

    190/414

    6.002 Fall 2000 Lecture 111

    6.002   CIRCUITS ANDELECTRONICS

    Small Signal Circuits

  • 8/20/2019 Circuit & Electronics.pdf

    191/414

    6.002 Fall 2000 Lecture 211

    Small signal notation

    v A = V  A + va

    total operatingpoint

    smallsignal

    ( )   iV v

     I 

     I 

    out 

     I OUT 

    vv f dv

    d v

    v f v

     I  I 

    ⋅=

    =

    =

    )(

    S V 

     L

    oOO   vV v  +=

     I V 

    + –

    + –

    i I  I    vV v   +=

    iv

    Review:

  • 8/20/2019 Circuit & Electronics.pdf

    192/414

    6.002 Fall 2000 Lecture 311

    I Graphical view

    (using transfer function)

    behaves linear

    for smallperturbations

     I v

    Ov

    Review:

  • 8/20/2019 Circuit & Electronics.pdf

    193/414

    6.002 Fall 2000 Lecture 411

    II Mathematical view

    ( ) L

    T  I S O   R

    V v K V v

    2

    2−

    −=

    ( )

    i

    V v

     LT  I S 

     I 

    o   v

     RV v K 

    dv

    d v

     I  I 

    −−

    =

    =

    2

    2

    related to V  Iconstant for fixed

    DC bias

    ( )   i LT  I o   vV V  K v   ⋅−−=

     g m

    Review:

  • 8/20/2019 Circuit & Electronics.pdf

    194/414

    6.002 Fall 2000 Lecture 511

    Demo

    Choosing a bias point:

     DS i

    Ov

     L

    S  LT  I 

     KR

    V  KRV v

    211   ++−+=

    T  I    V v   =

    2

    O DS    v2

    i   <

    load line L

    O

     L

    S  DS 

     R

    v

     R

    V i   −=

    How to choose the bias point,using yet another graphical viewbased on the load line

    OV 

     I V 

    input signalresponse

     I  Lm   V ∝1. Gain

    2. Input valid operating range for amp.

    3. Bias to select gain and input swing.

  • 8/20/2019 Circuit & Electronics.pdf

    195/414

    6.002 Fall 2000 Lecture 611

    III The Small Signal Circuit View

    We can derive small circuit equivalentmodels for our devices, and thereby conductsmall signal analysis directly on circuits

    ( )2T  I  D   V v2

     K i   −=

    +

     –OUT v   V S 

    + –

    v 1

    e.g. large signalcircuit modelfor amp

    We can replace large signal models withsmall signal circuit models.

    Foundations: Section 8.2.1 and also in the

    last slide in this lecture.

  • 8/20/2019 Circuit & Electronics.pdf

    196/414

    6.002 Fall 2000 Lecture 711

    Small Signal Circuit Analysis

    1 Find operating point using DC bias

    inputs using large signal model.

    Develop small signal (linearized)models for elements.

    Replace original elements with smallsignal models.

    2

    3

    Analyze resulting linearized circuit…

    Key: Can use superposition and otherlinear circuit tools with linearizedcircuit!

  • 8/20/2019 Circuit & Electronics.pdf

    197/414

    6.002 Fall 2000 Lecture 811

    Small Signal Models

    MOSFET A

    largesignal   ( )

    2

    2  T GS  DS    V v

     K i   −=

     D

    GS v

    Small signal?

  • 8/20/2019 Circuit & Electronics.pdf

    198/414

    6.002 Fall 2000 Lecture 911

    Small Signal Models

    MOSFET A

    largesignal   ( )

    2

    2  T GS  DS    V v

     K i   −=

     D

    GS v

    Small signal:

    smallsignal

     D

     gsv

    ( )   gsT GS ds   vV V  K i   −=

     gsmds   vi   =

    ( )22

      T GS  DS    V v K 

    i   −=

    ( )  gsV v

    T GS GS 

    ds

      vV v K 

    vi

    GS GS 

    −∂

    ∂=

    =

    2

    2

    ( )   gsT GS ds   vV V  K i   ⋅−=

     g m

    ids is linear in v gs !

  • 8/20/2019 Circuit & Electronics.pdf

    199/414

    6.002 Fall 2000 Lecture 1011

    DC Supply   V  S 

    B

    largesignal

    S S    V v   =

     s

     I iS 

    S  s   i

    i

    V v

    S S 

    ⋅∂

    ∂=

    =

    0v s  =

    + –   S S 

      V v   =

    S i

    +

     – sv

     si

    DC source behaves

    as short to smallsignals.

    Small signal

  • 8/20/2019 Circuit & Electronics.pdf

    200/414

    6.002 Fall 2000 Lecture 1111

    Similarly,  RC

    largesignal

    smallsignal

    +

     –

    vi

    +

     –r v

    r i

     R   iv   =

    ( )r 

     I i R

     Rr    i

    i

     Riv

     R R

    ⋅∂

    ∂=

    =

    r r    iv   ⋅=

  • 8/20/2019 Circuit & Electronics.pdf

    201/414

    6.002 Fall 2000 Lecture 1211

    Large signal

    ( )22

      T  I  DS    V v K 

    i   −=

    ( )   LT  I S O   RV v K 

    V v2

    2−−=

     L

    Ov

    + –   I v

    + –   S V 

     DS i

     L

    ov

    + –   i

    v   dsi

    ( )   iT  I ds   vV V  K i   ⋅−=

    0=+   o Lds   vi

     Ldso   iv   −=

    ( )   i LT  I o   vV V  K v   ⋅−−=

    i Lm   v g    ⋅−=

    Small signal

    Amplifier example:

    Notice, first we need to find operatingpoint voltages/currents.

    Get these from a large signal analysis.

  • 8/20/2019 Circuit & Electronics.pdf

    202/414

    6.002 Fall 2000 Lecture 1311

    To find the relationship between the small signal parameters ofa circuit, we can replace large signal device models withcorresponding small signal device models, and then analyze theresulting small signal circuit.

    Foundations: (Also see section 8.2.1 of A&L)

    KVL, KCL applied to some circuit C yields:

    III The Small Signal Circuit View

    b Bout OUT a A   vV vV vV    +++++++  

    Replace total variables withoperating point variables plus small signal variables

    Operating point variables themselves satisfy thesame KVL, KCL equations

     BOUT  A   V V V    ++++   so, we can cancel them out

     BOUT  A   vvv   ++++++     1

    bout a   vvv   ++++  

    Leaving

    2

    Since small signal models are linear, our linear tools will nowapply…

    But is the same equation as with small signalvariables replacing total variables, so must reflect sametopology as in C, except that small signal models are used.

    2   1

    2

  • 8/20/2019 Circuit & Electronics.pdf

    203/414

    6.002 Fall 2000 Lecture 112

    6.002   CIRCUITS ANDELECTRONICS

    Capacitorsand First-Order Systems

  • 8/20/2019 Circuit & Electronics.pdf

    204/414

    6.002 Fall 2000 Lecture 212

    5V 

    0V 

     A

     B

    5V 

    A

    B

    5

    0

    5

    0

    5

    0

    Reading:

    Chapters 9 & 10

    Demo   5V 

    Expected

    Observed

    Expect this, right?But observe this!

    Delay!

    Motivation

  • 8/20/2019 Circuit & Electronics.pdf

    205/414

    6.002 Fall 2000 Lecture 312

    The Capacitor

    G

     D

    n-channel MOSFET symbol

    n-channelMOSFET 

    n-channel

    s

    i

    l

    i

    co

    n

    n

    met

    al

    ++++++

    oxi

    de

    drain

    gate

    source

    C GS 

    G D

    n

    p

  • 8/20/2019 Circuit & Electronics.pdf

    206/414

    6.002 Fall 2000 Lecture 412

    Ideal Linear Capacitor

    obeys DMD!

    total charge oncapacitor0qq   =−+=

     EAC  =

    + ++ + + +

    - -- - - - -

     A

     E 

    coulombs farads volts

    vC q   =

    i

    q   +

     –v

  • 8/20/2019 Circuit & Electronics.pdf

    207/414

    6.002 Fall 2000 Lecture 512

    Ideal Linear Capacitor

    dt dqi =

    ( )dt 

    Cvd =

    dt dvC =

    i

    vC q   =

    C q   +

     –v

    A capacitor is an energy storage device memory device history matters!

    =   22

    1Cv E 

  • 8/20/2019 Circuit & Electronics.pdf

    208/414

    6.002 Fall 2000 Lecture 612

    Apply node method:

    +

     –( )t vC 

    ( )t v I  + –

    Thévenin Equivalent:

    0=+−dt dv