cis 601 image fundamentals longin jan latecki

46
CIS 601 Image Fundamentals Longin Jan Latecki Slides by Dr. Rolf Lakaemper

Upload: sebastian-spears

Post on 02-Jan-2016

57 views

Category:

Documents


3 download

DESCRIPTION

CIS 601 Image Fundamentals Longin Jan Latecki. Slides by Dr. Rolf Lakaemper. Fundamentals. Parts of these slides base on the textbook Digital Image Processing by Gonzales/Woods Chapters 1 / 2. Fundamentals. Today we will - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CIS 601 Image Fundamentals  Longin Jan Latecki

CIS 601Image Fundamentals

Longin Jan Latecki

Slides by Dr. Rolf Lakaemper

Page 2: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Parts of these slides base on the textbook

Digital Image Processingby Gonzales/Woods

Chapters 1 / 2

Page 3: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Today we will

• Learn some basic concepts about digital images (Textbook chapters 1 / 2)

• Show how MATLAB can help in understanding these concepts

• Build a simple video – surveillance system using MATLAB !

Page 4: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

In the beginning…

we’ll have a look at the human eye

Page 5: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Page 6: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

We are mostly interested in the retina:

• consists of cones and rods• Cones• color receptors• About 7 million, primarily in the retina’s

central portion • for image details

• Rods• Sensitive to illumination, not involved in

color vision• About 130 million, all over the retina• General, overall view

Page 7: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Distribution of cones and rods:

Page 8: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye is sensible to electromagnetic waves in the ‘visible spectrum’ :

Page 9: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye is sensible to electromagnetic waves in the ‘visible

spectrum’ , which is around a wavelength of

0.000001 m = 0.001 mm

Page 10: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The human eye

• Is able to perceive electromagnetic waves in a certain spectrum

• Is able to distinguish between wavelengths in this spectrum (colors)

• Has a higher density of receptors in the center

• Maps our 3D reality to a 2 dimensional image !

Page 11: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

…or more precise:

maps our continous (?) reality to a (spatially) DISCRETE 2D image

Page 12: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Some topics we have to deal with:

• Sharpness• Brightness

• Processing of perceived visual information

Page 13: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Sharpness

The eye is able to deal with sharpness in different distances

Page 14: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Brightness

The eye is able to adapt to different ranges of brightness

Page 15: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Processing of perceived information: optical illusions

Page 16: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

optical illusions:

Digital Image Processing does NOT (primarily) deal with cognitive

aspects of the perceived image !

Page 17: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

What is an image ?

Page 18: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The retinal model is mathematically hard to handle (e.g. neighborhood ?)

Page 19: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Easier: 2D array of cells, modelling the cones/rods

Each cell contains a numerical value (e.g. between 0-255)

Page 20: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• The position of each cell defines the position of the receptor

• The numerical value of the cell represents the illumination received by the receptor

5 7 1 0 12 4 ………

Page 21: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• With this model, we can create GRAYVALUE images

• Value = 0: BLACK (no illumination / energy)

• Value = 255: White (max. illumination / energy)

Page 22: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

A 2D grayvalue - image is a 2D -> 1D function,

v = f(x,y)

Page 23: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

As we have a function, we can apply operators to this function, e.g.

H(f(x,y)) = f(x,y) / 2

Operator Image (= function !)

Page 24: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

H(f(x,y)) = f(x,y) / 2

6 8 2 0

12 200 20 10

3 4 1 0

6 100 10 5

Page 25: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Remember: the value of the cells is the illumination (or brightness)

6 8 2 0

12 200 20 10

3 4 1 0

6 100 10 5

Page 26: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

As we have a function, we can apply operators to this function…

…but why should we ?

some motivation for (digital) image processing

Page 27: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Transmission of images

Page 28: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Image Enhancement

Page 29: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

• Image Analysis / Recognition

Page 30: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

The mandatory steps:

Image Acquisition and Representation

Page 31: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Acquisition

Page 32: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Acquisition

Page 33: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Typical sensor for images:

CCD Array (Charge Couple Devices)

• Use in digital cameras• Typical resolution 1024 x 768

(webcam)

Page 34: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD

Page 35: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD

Page 36: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

CCD: 3.2 million pixels !

Page 37: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Representation

The Braun Tube

Page 38: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Representation

Black/White and Color

Page 39: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Color Representation: Red / Green / Blue

Model forColor-tube

Note: RGB is not the ONLY color-model, in fact its use is quiet restricted. More about that later.

Page 40: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Color images can be represented by3D Arrays (e.g. 320 x 240 x 3)

Page 41: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

But for the time being we’ll handle

2D grayvalue images

Page 42: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Digital vs. Analogue Images

Analogue:Function v = f(x,y): v,x,y are REAL

Digital:Function v = f(x,y): v,x,y are INTEGER

Page 43: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Stepping down from REALity to INTEGER coordinates x,y: Sampling

Page 44: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Stepping down from REALity to INTEGER grayvalues v : Quantization

Page 45: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

Samplingand

Quantization

Page 46: CIS 601 Image Fundamentals  Longin Jan Latecki

Fundamentals

MATLAB demonstrations of sampling and quantization effects in sampling.m