competitive and cost effective copper/low-k interconnect ... · competitive and cost effective...

13
Competitive and Cost Effective Copper/Low-k Interconnect (BEOL) for 28nm CMOS Technologies 1 R. Augur , 1 C. Child, 2 J.H. Ahn, 1a T.J. Tang, 3 L. Clevenger, 1 D. Kioussis, 6 H. Masuda, 1a R. Srivastava, 4 Y. Oda, 6 H. Oguma, 3 R. Quon, 5 B. Kim, 1a H. Sheng, 6 S. Hirooka, 1 R. Gupta, 3 A. Thomas, 1a S.M. Singh, 1a Q. Fang, 7 R. Schiwon, 5 B. Hamieh, 3 E. Wornyo, 3 S. Allen, 7 E. Kaltalioglu, 5 G. Ribes, 1a G. Zhang, 1 T. Fryxell, 6 A. Ogino, 6 E. Shimada, 4 H. Aizawa, 4 H. Minda, 7 S.O. Kim, 6 T. Oki, 6 K. Fujii, 7 M. Pallachalil, 4 T. Takewaki. 3 C.K. Hu, 3 B. Sundlof, 1 D. Permana, 1 T. Bolom, 3 B. Engel, 1 C. Labelle, 3 B. Sapp, 3 T. Nogami, 3 A. Simon, 3 H. Shobha, 3 S. Gates, 3 E.T. Ryan, 3 G. Bonilla, 3 T. Daubenspeck, 3 T. Shaw, 3 G. Osborne, 3 A. Grill, 3 D. Edelstein, 3 D. Restaino, 3 S. Molis, 3 T. Spooner, 5 P. Ferreira, 3 G. Biery, 5 R. Sampson 1 GLOBALFOUNDRIES, 1a GLOBALFOUNDRIES Singapore, 2 Samsung Electronics, 3 IBM Microelectronics, 4 Renesas Electronics, 5 STMicroelectronics, 6 Toshiba America, 7 Infineon Technologies. October 5, 2010 email: [email protected]

Upload: vothien

Post on 22-May-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

Competitive and Cost Effective Copper/Low-kInterconnect (BEOL) for 28nm CMOS Technologies1R. Augur, 1C. Child, 2J.H. Ahn, 1aT.J. Tang, 3L. Clevenger, 1D. Kioussis, 6H. Masuda, 1aR. Srivastava, 4Y. Oda, 6H. Oguma,3R. Quon, 5B. Kim, 1aH. Sheng, 6S. Hirooka, 1R. Gupta, 3A. Thomas, 1aS.M. Singh, 1aQ. Fang, 7R. Schiwon, 5B. Hamieh, 3E. Wornyo, 3S. Allen, 7E. Kaltalioglu, 5G. Ribes, 1aG. Zhang, 1T. Fryxell, 6A. Ogino, 6E. Shimada, 4H. Aizawa, 4H. Minda, 7S.O. Kim, 6T. Oki, 6K. Fujii, 7M. Pallachalil, 4T. Takewaki. 3C.K. Hu, 3B. Sundlof, 1D. Permana, 1T. Bolom, 3B. Engel, 1C. Labelle, 3B. Sapp, 3T. Nogami, 3A. Simon, 3H. Shobha, 3S. Gates, 3E.T. Ryan, 3G. Bonilla, 3T. Daubenspeck, 3T. Shaw, 3G. Osborne, 3A. Grill, 3D. Edelstein, 3D. Restaino, 3S. Molis, 3T. Spooner, 5P. Ferreira, 3G. Biery, 5R. Sampson

1 GLOBALFOUNDRIES, 1a GLOBALFOUNDRIES Singapore, 2Samsung Electronics, 3IBM Microelectronics, 4Renesas Electronics, 5STMicroelectronics, 6Toshiba America, 7Infineon Technologies.

October 5, 2010

email: [email protected]

Contents

§Technology Definition.§Challenges of node-on-node scaling for BEOL

interconnect.§Process Optimization (ULK and Etch Profile).§Electrical Performance.§Yield Factors.§Reliability (EM and TDDB).§Summary.

2October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration

Technology Definition

§ BEOL for 28G and 28LP Products.

§ Up to 11 Levels of Cu metal.§ ULK used in 1x and 2x.§ 1x1, 2x1 and 2x2 vias at 1x.§ VNCAP, 8x & 16x Inductors.§ No new tooling vs. 32nm.

3October 5, 2010

Module Pitch (nm)

Line Rs(Ω/μm)

Via Rs(Ω)

Ctot [Dense] (fF/μm)

M1 90 9.5 0.2571x 90 9.5 10 / 5 0.2132x 180 1.7 3 0.2028x 720 0.07 0.4 0.29216x 1440 0.02 0.1 0.250Al

§ Reliability: Allow direct scaling of 32nm designs.

GLOBALFOUNDRIES, 28nm BEOL Integration

Challenges of node-on-node scaling for BEOL interconnect

§Maintain acceptable RC Performance, without degrading Yield or Reliability. § As wire dimensions approach the mean free path of conduction electrons, Cu

resistivity increases significantly.§ Offset this effect by reducing the k-value of the inter-metal dielectrics (ILD) à

ULK.§ ULK ILDs show degraded thermo-mechanical properties vs. dense ILD.§ Poor mechanical strength can lead to premature failure of the BEOL at the

package level. § Especially for large die ( ≥ 200mm2) and Pb-free C4/organic packages.

§ In addition, ULK ILDs tend to be easily damaged during processing àincreased integrated k-value, and re-entrant feature profiles.§ Re-entrant profiles are hard to fill with defect-free metallization;§ the defects degrade Yield and Reliability.

4October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration

Process Optimization

§Trench First Hard Mark (TFHM) Integration Approach selected for minimum pitch ULK module.§Properties of ULK optimized for mechanical strength,

adhesion, k-value and damage resistance.§Feature profile optimized to enable PVD-only liner/seed

deposition for defect-free metal fill.§Cu-alloy seed used to meet EM targets.§TFHM approach used to provide tighter control of via-top to

adjacent metal spacing, in order to address TDDB.

5October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration

Process Optimization (ULK)

6October 5, 2010

§Optimized ULK Film Properties

§Optimized for Response to Chip-Package Interaction

§ GL = Graded adhesion Layer

Property Initial OptimizedCure process UV UVBreakdown @

1500C (MV/cm)> 7 > 7

Modulus, E @ 0.4-0.5 μm (GPa) 4.5 - 5.0 7.5 - 8.0

Hardness, H @ 0.4-0.5 μm (GPa)

1.0 - 1.5 1.5 - 2.0

% Porosity 25% 18%SiCH3/SiOSi ratio 0.034 0.030SiH/SiOSi ratio 0.46 0.25Relative Plasma Induced Damage

1 0.8

o

GLOBALFOUNDRIES, 28nm BEOL Integration

% Module FailsFail Density

% F

ails

% F

ails

7October 5, 2010

§Cross-section of 1x features, post Cu plating.

§Partially Self Aligned Via.

§Defect-free Metal Fill, various layouts.

Iso-Dense line Dense VCHN1 Dense VCHN2 Fully constrained Dense SRAMtransition line-end, with via

Process Optimization (Profile and Fill)

Random Logic

GLOBALFOUNDRIES, 28nm BEOL Integration

y >

x x

s

w y >

x x

Electrical Performance

8October 5, 2010

§ 1x R, C and Via_R on target.

GLOBALFOUNDRIES, 28nm BEOL Integration

8 9 10 11 12Resistance [Ohms]

Cap

acita

nce

0.16

0

.18

0.

20

0.2

2 0

.24

0.

26

0.2

8

M2 RCtot

M2 R

7E LSL 9.5 USLResistance [Ohms]

Cum

Pro

b0.

00

0.2

5

0.5

0

0.7

1.0

7E LSL 10 USLResistance [Ohms]

Cum

Pro

b0.

00

0.2

5

0.5

0

0.7

0

1.0

V1 R

Yield Factors

9October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration

Total Resistance of 6.7M Vx Chain

Leakage between Large intertwined Vx Chains

5E7 7E7 9E7 1.1E8Resistance [Ohms]

Cum

Pro

b0.

00

0.25

0.5

0

0

.75

1.0

Cum

Pro

b0.

00

0.25

0.5

0

0

.75

1.0

1E-12 1E-11 1E-10Leakage

Reliability – Electro-Migration

10October 5, 2010

§Via and Line Depletion EM pass with margin.

GLOBALFOUNDRIES, 28nm BEOL Integration

0.5 1 5 10 50 100 500 1000Time to Fail (hrs.)

1

10

50

90

99

99.9

elitnecreP

10% dR/R,normalized to 25mA/um2 & 300C V1->M2 (narrow) , I=0.105mA, T=300 C 28nm Highlander Lot 25HI16

AAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBB 0VSEB4

A 0XSEC5Comment300C

10% dR/R

V1-M2 (45nm)

Lifetime

Per

cent

Fai

ls

0.5 1 5 10 50 100 500 1000Time to Fail (hrs.)

1

10

50

90

99

99.9

elitnecreP

10% dR/R,normalized to 25mA/um2 & 300C V2->M2 (narrow) , I=0.105mA, T=300 C 28nm Highlander Lot 25HI16

AAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBB

B 0VSEB4A 0XSEC5

Comment300C10% dR/R

Lifetime

Per

cent

Fai

ls

V2-M2 (45nm)

§ Fail Rate = 2.7E-5 ppm

Reliability – Time Dependent Dielectric Breakdown

11October 5, 2010

§Vx TDDB passes with margin.

GLOBALFOUNDRIES, 28nm BEOL Integration

V2-M3

100000100001000100

99

90807060504030

20

10

5

3

2

1

Lifetime

Perc

ent 1.44806 11056.5 1.359 18 0

1.44806 3366.1 0.917 18 01.44806 1057.0 1.521 18 0

Shape Scale A D* F CTable of S tatistics

4.242644.358904.47214

sqrt Voltage

Probability Plot (Fitted Linear) for Lifetime

Complete Data - ML EstimatesWeibull

18V19V20V

125C

Lifetime

Per

cent

Fai

ls

Summary

§A cost effective Interconnect technology was presented, for 28G and 28LP applications.§ 1x, 2x, 8x and 16x modules can be combined up to 11 total

copper wiring levels. §The technology uses conventional tools and processes for

metallization. §ULK inter-metal dielectric is used at minimum pitch (1x) and

2x levels. §Properties of the ULK were optimized for mechanical

strength, adhesion, k-value and damage resistance.§Full capacitance entitlement of the ULK was demonstrated.§Etch profile was optimized to enable defect-free metal fill. §High yields and robust reliability were achieved.

12October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration

Acknowledgements

Trademark Attribution

GLOBALFOUNDRIES, the GLOBALFOUNDRIES logo and combinations thereof are trademarks of GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective owners.

©2009 GLOBALFOUNDRIES Inc. All rights reserved.

This work was performed at the IBM Microelectronics Div., Semiconductor Research & Development Centre, Hopewell Junction, NY 12533. The authors would like to thank W. Chu, I. Brooks, J. Benedict and their teams for technical assistance. The authors would also like to thank E. Kaste, R. Divakaruni, P. Gilbert, G. Patton and S. Venkatesan for their support.

13October 5, 2010 GLOBALFOUNDRIES, 28nm BEOL Integration