computational electromagnetics - ee.iitm.ac.in · 0/11 computational electromagnetics : review of...

18
0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

Upload: others

Post on 24-Sep-2019

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

0/11

Computational Electromagnetics :Review of Maxwell’s Equations

Uday Khankhoje

Electrical Engineering, IIT Madras

Page 2: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

1/11

Topics in this module

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 3: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

1/11

Table of Contents

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 4: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

2/11

Maxwell’s equations + continuity relation

Consider real valued physical quantities: E(~r, t), H(~r, t), etc

∇× E(~r, t) = −∂B(~r, t)∂t

−M(~r, t), Faraday, 1843 (1)

∇×H(~r, t) = ∂D(~r, t)∂t

+ J (~r, t), Ampere, 1823 (2)

∇ · D(~r, t) = ρe, Coulomb, 1785 (3)

∇ · B(~r, t) = ρm, Gauss, 1841 (4)

∇ · J (~r, t) = −∂ρe∂t

ρm,M(~r, t) →• Not physical

• Mathematicalconvenience

• Makes symmetric

Page 5: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

3/11

Maxwell’s equations: a wave example

Let’s apply the equations in source/charge free vacuum

∇× E(~r, t) = −∂B(~r, t)∂t

∇×H(~r, t) = ∂D(~r, t)∂t

∇ · D(~r, t) = 0, D(~r, t) = εoE(~r, t)∇ · B(~r, t) = 0, B(~r, t) = µ0H(~r, t)

Take a curl of first eqn:∇× (∇× E(~r, t)) =

Page 6: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

4/11

Time Harmonic form

Electrical Engineers prefer phasors! e.g. E(~r, t) = Re[ ~E(~r)ejωt]

∇× ~E(~r) = −jω ~B(~r)− ~M(~r) (5)

∇× ~H(~r) = jω ~D(~r) + ~J(~r) (6)

∇ · ~D(~r) = ρe (7)

∇ · ~B(~r) = ρm (8)

Constitutive relations:

~D(~r) = ε(~r) ~E(~r), ~B(~r) = µ(~r) ~H(~r), ~J(~r) = σ(~r) ~E(~r)

• ~E(~r) → complex

• EE / Phyconventions

Page 7: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

4/11

Table of Contents

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 8: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

5/11

Tangential Boundary Conditions

Start with ∇× ~E(~r) = −jω ~B(~r)− ~M(~r)

n̂× ( ~E2 − ~E1) = − ~Ms. Similarly n̂× ( ~H2 − ~H1) = ~Js.

Page 9: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

6/11

Normal Boundary Conditions

Start with ∇ · ~D(~r) = −ρe

n̂ · ( ~D2 − ~D1) = ρes. Similarly n̂ · ( ~B2 − ~B1) = ρms.

Page 10: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

6/11

Table of Contents

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 11: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

7/11

Power in a field

Instantaneous Poynting vector defined as S(~r, t) = E(~r, t)×H(~r, t)

Use E(~r, t) = Re[ ~E(~r)ejωt] =

Sav(~r, t) = 12 [Re(

~E(~r)× ~H(~r)∗]

Page 12: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

7/11

Table of Contents

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 13: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

8/11

Uniqueness theorem

Statement: The field ( ~E(~r), ~H(~r)) created by some sources ~J(~r)in a lossy volume V are unique if any one of these are true;

1 ~E(~r)tan over S is known

2 ~H(~r)tan over S is known

3 ~E(~r)tan known over some part,~H(~r)tan known over remaining part of S.

Page 14: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

8/11

Table of Contents

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Page 15: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

9/11

Volume Equivalence Theorem

Say we have some sources in vacuum

∇× ~E0(~r) = −jωµ0 ~H0(~r)− ~M(~r)

∇× ~H0(~r) = jωε0 ~E0(~r) + ~J(~r)

· · · now place an obstacle in the medium

∇× ~E(~r) = −jωµ(r) ~H(~r)− ~M(~r)

∇× ~H(~r) = jωε(r) ~E(~r) + ~J(~r)

Subtract the two sets of Eqns

∇× ( ~E(~r)− ~E0(~r)) =

∇× ( ~H(~r)− ~H0(~r)) =

Define: ~Es(~r) ~Hs(~r)

Page 16: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

10/11

Volume Equivalence Theorem (contd.)

∇× ( ~E(~r)− ~E0(~r)) = −jω(µ ~H(~r)− µ0 ~H0(~r)) =

∇× ( ~H(~r)− ~H0(~r)) = −jω(ε ~E(~r)− ε0 ~E0(~r)) =

Define ~Meq(~r) = ~Jeq(~r) =

Finally gives∇× ~Es(~r) =

∇× ~Hs(~r) =

Have replaced obstacle byequivalent volume sources

Page 17: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

11/11

Surface Equivalence Principle

Recall tangential boundary conditions: n̂× ( ~E2− ~E1) = − ~Ms, n̂× ( ~H2− ~H1) = − ~Js.

The discontinuity of fields is saved by the presence of surface currents

Surface Eqv: Replace object by tangential surface currentsVolume Eqv: Replace object by volume currents

Page 18: Computational Electromagnetics - ee.iitm.ac.in · 0/11 Computational Electromagnetics : Review of Maxwell’s Equations Uday Khankhoje Electrical Engineering, IIT Madras

11/11

Topics that were covered in this module

1 Maxwell’s Equations

2 Boundary Conditions

3 Power in a field

4 Uniqueness theorem

5 Equivalence theorems

Reference: Chapter 7 of Advanced Engineering Electromagnetics - C A Balanis