dasar mekatronika

230
PENGANTAR MEKATRONIKA DAN PENERAPANYA By.AMIRIN Adopted from Robert H.Bishop, 2006, Mechatronics_an introduction,CRC press Pengantar Mekatronika_Diktat Kuliah, Teknik Mesin Univ.Widyagama Malang Bahan ajar elektronika dasar,2007, ahmad fali oklilas, universitas Sriwijaya Mechatronic systems_devices,design,control,operta.maint.,2008, Clarence de silva,CRC Press,USA Essential of Mechatronics,2006,John Billingsley, wiley & sons, Otomasi system produksi, 2005, Laboratorium Sistem produksi ITB, Bandung Mechatronics handbook,2002, Robert H.Bishop, CRC Press, Washington DC Electromechanical_device & component,2007, Brian S elliot, Mcgraw hill, USA Role of Control in mechatronics,____, job van amerogen, Twente University press, Netherlands Rangkaian digital, Ahmad Yanuar Syauki, PPBA-UMB Teknologi Kontrol moder,___,Agus arif<__ Teknik Produksi Mesin Industri Jilid 3,2008, wirawan sumbodo, DEPDIKNAS Mechatronics_principles and applications, ___,Godfrey Onwubolu, Elsevier Modern Sensor handbook,2007, pavel ripka/alois tipek,ISTE, united states Elektronik_ teori dasar dan penerapannya_jilid 1, 1986, ITB, Bandung Abstraksi Dengan munculnya Integrated Circuit (IC) dan computer, batasan formal antara disiplin ilmu elektronika dengan mekanikal menjadi lebih cair dan semakin tak jelas, dan kebanyakan produk dipasaran dibuat saling ketergantungan pada komponen elektonika dan mekanikal, juga para insinyur elektronika/elektrikal menemukan dirimereka telah bekerja pada sebuah organisas/perusahaan yang melibatkanya pada kedua disipilin ilmu tersebut. System mekatronika tidak saja hanya memadukan electrical dengan system mekanikal dan lebih dari pada system control tetapi mekatronika adalah keterpaduan yang komplet dari semuanya"

Upload: iwan-surachwanto

Post on 01-Dec-2015

348 views

Category:

Documents


33 download

DESCRIPTION

mekatronika

TRANSCRIPT

Page 1: Dasar Mekatronika

PENGANTAR MEKATRONIKA DAN PENERAPANYA

By.AMIRIN Adopted from • Robert H.Bishop, 2006, Mechatronics_an introduction,CRC press • Pengantar Mekatronika_Diktat Kuliah, Teknik Mesin Univ.Widyagama Malang • Bahan ajar elektronika dasar,2007, ahmad fali oklilas, universitas Sriwijaya • Mechatronic systems_devices,design,control,operta.maint.,2008, Clarence de

silva,CRC Press,USA • Essential of Mechatronics,2006,John Billingsley, wiley & sons, • Otomasi system produksi, 2005, Laboratorium Sistem produksi ITB, Bandung • Mechatronics handbook,2002, Robert H.Bishop, CRC Press, Washington DC • Electromechanical_device & component,2007, Brian S elliot, Mcgraw hill, USA • Role of Control in mechatronics,____, job van amerogen, Twente University press,

Netherlands • Rangkaian digital, Ahmad Yanuar Syauki, PPBA-UMB • Teknologi Kontrol moder,___,Agus arif<__ • Teknik Produksi Mesin Industri Jilid 3,2008, wirawan sumbodo, DEPDIKNAS • Mechatronics_principles and applications, ___,Godfrey Onwubolu, Elsevier • Modern Sensor handbook,2007, pavel ripka/alois tipek,ISTE, united states • Elektronik_ teori dasar dan penerapannya_jilid 1, 1986, ITB, Bandung Abstraksi

Dengan munculnya Integrated Circuit (IC) dan computer, batasan formal antara disiplin ilmu elektronika dengan mekanikal menjadi lebih cair dan semakin tak jelas, dan kebanyakan produk dipasaran dibuat saling ketergantungan pada komponen elektonika dan mekanikal, juga para insinyur elektronika/elektrikal menemukan dirimereka telah bekerja pada sebuah organisas/perusahaan yang melibatkanya pada kedua disipilin ilmu tersebut. System mekatronika tidak saja hanya memadukan electrical dengan system mekanikal dan lebih dari pada system control tetapi mekatronika adalah keterpaduan yang komplet dari semuanya"

Page 2: Dasar Mekatronika

DAFTAR ISIAbstraksi

1.1.Perspektif Sejarah 11.2.Manfaat Penerapan Mekatronika 21.3.Komponen Utama Mekatronika 3

2.1.Transmisi mekanik 62.1.1.Roda gigi 7

2.2.Kinematika Dinamika 82.2.1.Diagram kinematis 82.2.2.Mekanisme 92.2.3.Inversi 92.2.4.Pasangan/couple 102.2.5. Bidang Gerakan 102.2.6.Translasi 102.2.7.Putaran 102.2.8Translasi dan rotasi 11

2.3.Pneumatik 112.3.1.Keuntungan & kerugian Udara bertekan 122.3.2.Komponen sistem pneumatik 12

2.4.Hidrolika 142.4.1.Komponen sistem hidrolika 15

BAB.I PENDAHULUAN

BAB.II KONSEP MEKANIKAL

BAB III DASAR ELEKTRONIKA3.1.Konsep rangkaian listrik 17

3.1.1.Definisi-definisi 173.1.2.Arus listrik 183.1.3.Tegangan 193.1.4.Energi dan daya 20

3.2.Elemen rangkaian listrik 213.2.1.Elemen aktip 213.2.2.Elemen Pasif 22

-Resistor 22-Kapasitor 23-Induktor 24

3.3.Hukum rangkaian 253.3.1.Hukum ohm 253.3.2.Hukum Kirchoff 1 253.3.3.Hukum kirchoff 2 26

3.4.Semi konduktor 273.4.1.Prinsip dasar 273.4.2.Dioda 33

3.4.2.1.Kurva karakteristik statik dioda 33

BAB.III DASAR ELEKTRONIKA

Page 3: Dasar Mekatronika

3.4.2.2.Karakteristik statik dioda 333.4.2.3.Pengenalan Vacuum tube 34

3.4.3.Penyearah 393.4.3.1.Penyearah setengah gelombang 393.4.3.2.Penyearah gelombang penuh 40

3.4.4.Dioda Zener 413.4.5.Transistor 41

3.4.5.1.Cara kerja Transistor 433.4.5.2.Jenis-jenis Transistor 443.4.5.3.Penguat differensial 463.4.5.4.Inverting Amplifier 503.4.5.5.Non inverting Amp 513.4.5.6.Integrator 523.4.5.7.Differensiator 543.4.5.8.Dari mikro ke nano 553.4.5.9.Serba kecil 563.4.5.10Beralih ke nano teklnologi 57

3.4.6.Kapasitor 593.4.6.1.Prinsip dasar 593.4.6.2.Kapasitansi 593.4.6.2.Tipe kapasitor 603.4.6.3.Toleransi 633.4.6.4.Insulation resistance 633.4.6.5.Dissipation factor 64

3.4.7.Resistor 653.4.8.Induktor 67

3 4 8 1 F it d bilit 713.4.8.1.Ferit dan permeability 713.4.8.2.Kawat tembaga 73

4.1.Pendahuluan 744.1.1.Definisi-definisi 754.1.2.Persyaratan umum sensor & tranduser 754.1.3.Jenis sensor & tranduser 784.1.4.Klasifikasi sensor 804.1.5.Klasifikasi tranduser 81

4.2.Sensor Thermal 824.2.1.Bimetal 854.2.2.Termistor 864.2.3.Resistance Thermal Detector (RTD) 904.2.4.Termokopel 944.2.5.Dioda sbg sensor Suhu 974.2.6.Infrared pyrometer 98

4.3.Sensor Mekanik 994.3.1.Sensor Posisi 99

4.3.1.1.Strain gauge (SG) 99

BAB. IV SENSOR,TRANDUSER DAN AKTUATOR

Page 4: Dasar Mekatronika

4.3.1.2.Sensor induktip & elektomagnet 1014.3.1.3.Linier variable Differetial transformer 1034.3.1.4.Tranduser kapasitip 1044.3.1.5.Tranduser perpindahan digital optis 1064.3.1.6.Tranduser piezoelectric 1074.3.1.7.Tranduser resolve & inductosyn 1094.3.1.8.detector proximity 1104.3.1.9.Potensio meter 1114.3.1.10 Optical lever displacement detector 112

4.3.2.Sensor Kecepatan 1134.3.2.1.Tacho generator 1134.3.2.2.pengukuran kecepatan cara digital 115

4.3.3.Sensor tekanan 1174.3.3.1.Tranduser tekanan silikon 1184.3.3.2.Sensor tekanan tipe bourdon & bellow 1204.3.3.3.Load cell 121

4.3.4.Sensor Aliran fluida 1224.3.4.1Sensor aliran berdasarkan beda tekanan 124

-Orifice plate 125-Pipa Venturi 126-Flow Nozzle 127-Pipa pitot 128-Rotameter 128

4.3.4.2.Cara-cara Thermal 129-Thermometer kawat panas 130-Perambatan panas 131

4 3 4 3 Fl t di kti 1314.3.4.3.Flowmeter radio aktip 1314.3.4.4.Flow meter elektromagnetik 1324.3.4.5.Flow meter Ultrasonic 133

4.3.5.Sensor level 1334.3.5.1.Menggunakan pelampung 1344.3.5.2.Menggunakan tekanan 1344.3.5.3.Menggunakan cara thermal 1354.3.5.4.Menggunakan cara optik 1364.3.5.5.Menggunakan sinar lazer 1364.3.5.6.Menggunakan prisma 1374.3.5.7.Menggunakan fiberoptik 138

4.4.Sensor cahaya 1384.4.1.Divais Elektro optis 1394.4.2.Photo semi konduktor 1414.4.3.Photo transistor 1444.4.4.Sel photovoltaik 1454.4.5.LED 1464.4.6.Photosel 1474.4.7.Photomultiplier 1484.4.8.Lensa dioda photo 150

Page 5: Dasar Mekatronika

4.4.9.Pyrometer optis dan detector radiasi thermal 1504.4.10.isolasi optis & Tx-Rx serat optik 1514.4.11.Display digital dgn LED 1524.4.12.Liquid crystal display 155

4.5.Aktuator 1564.5.1.Solenoid 1574.5.2.Katup 1574.5.3.Silinder 157

4.5.3.1.Silinder penggerak tunggal 1574.5.3.2.Silinder penggerak ganda 157

4.5.4.Motor Listrik 1584.5.4.1.Motor DC 1584.5.4.2.Motor AC 1594.5.4.3.Motor Stepper 160

5.1.Perkenalan sistem kontrol 1625.2.Sistem kontrol 163

5.2.1.Sistem kontrol terbuka 1655.2.2.Fungsi transfer 168

5.3.Sistem kontrol analog digital 1715.4.Pengelompokan sistem kontrol 172

5.4.1.Kontrol proses 1725.4.2.Sistem terkontrol berurutan 1765.4.3.Kontrol gerakan 1775.4.4.Mekanisme servo 1775 4 5 K t l N ik 177

BAB.V SISTEM KONTROL DAN PENGKONDISIAN SINYAL

5.4.5.Kontrol Numerik 1775.4.6.Robotika 179

5.5.Sinyal 1805.5.1.Sinyal waktu kontinyu 181

5.5.1.1.Fungsi step dan Ramp 1815.5.1.2.Sinyal periodik 182

5.5.2.Sinyal diskrit 1835.5.2.1.Sekuen impuls 1845.5.2.2.Sekuen step 1845.5.2.3.Sinus diskrit 185

6.1.Dasar akuisisi data 1866.1.1.Konputer personal 1866.1.2.Tranduser 1866.1.3.Pengkondisian sinyal 187

6.2.Perangkat keras akuisisi data (DAQ) 1876.2.1.Masukan analog 1876.2.2.Keluaran analog 1906.2.3.Pemicuan 191

BAB. VI SOFTWARE DAN AKUISIS DATA

Page 6: Dasar Mekatronika

6.2.4.Digital I/O 1916.2.5.Pewaktuan I/O 192

6.3.Perangkat keras penganalisa (analyzer hardware 1926.4.Perangkat lunak akuisis data (DAQ) 1926.5.DAC (digital to analog converter) 1936.6.ADC (analog to digital converter) 197

7.1.Sistem Logika 2037.1.1.Gerbang AND 2037.1.2.Gerbang NAND (Not AND) 2037.1.3.Gerbang OR 2047.1.4.Gerbang NOR 2047.1.5.Gerbang XOR 2057.1.6.Gerbang NOT 205

7.2.PLC (Program Logic Control) 2057.2.1.Sejarah PLC 2057.2.2.Pengenalan dasar PLC 2067.2.3.Instruksi-instruksi dasar PLC 207

7.2.3.1.Load (LD) dan Load Not (LDNOT) 2077.2.3.2.AND dan NOT AND 2087.2.3.3.OR dan NOT OR 2087.2.3.4.OUT dan OUT NOT 2097.2.3.5.AND LOAD 2097.2.3.6.Timer (TIM) dan COUNTER (CNT) 2107.2.3.7.OR LOAD(ORLD) 210

7 2 4 D i k 211

BAB. VII SISTEM LOGIKA

7.2.4.Device masukan 2117.2.5.Modul masukan 2117.2.6.Device masukan Program 2127.2.7.Device keluaran 2137.2.8.Modul keluaran 2137.2.9.Perangkat lunak PLC 2147.2.10.Ladder Logic 2147.2.11.Perangkat keras PLC 2147.2.12.Hubungan I/O dgn perangkat lunak 2157.2.13.Processor 2157.2.14.Data dan Memori 216

7.2.14.1.Aturan dasar penulisan memori PLC 2167.2.14.2.Memori PLC 217

7.2.15.Pemrograman PLC dasar OMRON dgn komputer 2197.2.16.Cara pengoperasian SYSWIN 220

7.2.16.1.Pembuatan diagram ladder 2207.2.16.2.Cara penyambungan dan logika laddernya 222

Page 7: Dasar Mekatronika

BAB.I PENDAHULUAN

1.1.Perspektif Sejarah Kemajuan microchip dan teknologi computer telah menjembatani kesenjangan antara elektronika klasik, teknik control dan mekanikal. Mekatronika pada industri memberikan tambahan masukan untuk para insinyur-insinyur yang mampu bekerja sekaligus dalam disiplin ilmu elektronika, teknik control dan mekanikal dalam mengidentifikasi dan menggunakan kombinasi teknologi untuk mengoptimalkan penyelesaiaan masalah. Mekatronika diterapkan secara luas dalam lingkungan kehidupan kita termasuk design produk, instrumentasi, proses dan alat control, robot manipulator, simulasi penerbangan, suspensi, otomatisasi system diagnosa, dan sebagainya.

Definisi mekatronika telah ditingkatkan sejak definisi asli yang diperkenalkan oleh Yasakawa Electric Company pada tahun 1969, Yasakawa mendefinisikan mekatronika dalam 2 definisi, sebagaimana yang tercantum dalam dokumentasi trademark-nya yang menyebutkan bahwa kata "Mechatronic adalah kombinasi dari kata "mecha" dari Mechanism dan kata "tronic" dari electronics, dengan kata lain teknologi dan pengembangan produk akan sinergi dengan penggunaan elektronik dalam mekanikal yang saling terikat dan terstruktur". Definisi mekatronika selanjutnya ditingkatkan setelah yasakawa menyarankan definisi asli. Orang seringkali mengutip definisi mekatronika seperti yang telah di presentasikan oleh Harashima, Tomizuka dan Fukuda di tahun 1996, dengan kata lain definisi mekatronika adalah: "sinergisitas yang terpadu antar ilmu mekanikal dengan elektronika, teknik pengatur & kontrol dalam design, industri manufaktur serta proses produksi". Dalam waktu yang bersamaan definisi lainya muncul seperti yang dikenalkan oleh Auslander dan Kemf yang mendefinisikan sbb: " mekatronika adalah aplikasi yang kompleks dalam membuat keputusan dalam operasi system mekanikal" kemudian definisi lain muncul di tahun 1997 oleh shetty dan kolk yang menyebutkan bahwa " mekatronika adalah suatu metodologi yang digunakan untuk mengoptimalkan design produk elektromekanikal", lebih lanjut kita dapat juga menemukan defini yang diperkenalkan oleh W.Bolton yaitu " system mekatronika tidak saja hanya memadukan electrical dengan system mekanikal dan lebih dari pada system control tetapi mekatronika adalah keterpaduan yang komplet dari semuanya", Buur (1990) juga telah mendefinisikan-nya bahwa " Mekatronika adalah teknologi yang mengkombinasikan mekanika dengan elektronik dan teknologi informasi untuk membentuk interaksi fungsi dan keterpaduan ruang dalam komponen, modul, dan system produksi".

Di Indonesia telah diadakan musyawarah Nasional Mekatronika pada tanggal 28 juli 2008 di Bandung dan mendefinisikan "mekatronika adalah sinergi IPTEK dari teknik mesin, teknik elektronika, teknik informatika dan teknik pengaturan yang bermanfaat untuk

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 1

Page 8: Dasar Mekatronika

merancang, membuat/memproduksi,mengoperasikan dan memlihara sebuah system agar dicapai tujuan yang diinginkan." Mekatronika telah menghasilkan banyak produk-produk baru dan membuat cara-cara yang lebih jitu dalam memperbaiki effisiensi pada produk, juga mekatronika banyak digunakan pada kehidupan sehari-hari kita. Saat ini tidak ada keraguan tentang pentingnya mekatronika sebagi disiplin ilmu dan sains, walau bagaimanapun mekatronika tidak mudah dipahami seperti kelihatnya.munculnya pemahaman beberapa orang yang berfikir bahwa mekatronika adalah salahsatu aspek sains dan teknologi yang di hadapkan dengan system itu termasuk juga ilmu mekanika, elektronika, computer, sensor dan lain-lain. Kelihatanya orang paling bnyal mendefinisikan mekatronika hanya dengan mempertimbangkan komponen-komponen apa saja yang termasuk didalam system dan atau bagaimana fungsi mekanikal direalisasikandengan software computer, sebagaimana definisi yang dijelaskan memberi kesan bahwa mekatronika hanya sebuah koleksi atau aspek sains dan teknologi yang sudah ada sebelumnya seperti halnya elektronika, mekanika, teknik control, teknik computer, intelejensi buatan, mesin mikro, dsb., yang tidak mempunyai nilai orsinilitas sebagai sebuah teknologi. Ada beberapa buku-buku mekatronika yang kebanyakan hanyalah menjelaskan subjek-subjek yang diambil dari teknologi yang sudah ada sebelumnya, dan ini juga akan memberikan anggapan bahwa mekatronika tidak mempunyai keunikan tersendiri pada teknologi. Mekatronika menyelesaikan permasalahan teknologi dengan menggunakan penggabungan atau kombinasi pengetahuan yang terdiri dari mekanikal, elektronika, dan teknologi computer dalam menyelesaikan masalah. Insinyur-insinyur terdahulu hanya dapat menyelesaikan permasalahan satu dari beberapa disiplin ilmu tersebut diatas, contohnya engineer mekanikal menggunakan metode-metode mekanika dalam menyelesaikan masalah, kemudian karena adanya kesukaran2 tambahan yang tidak bisa diselesaikan dan dengan mengedepankan pengembangan produk, maka para peneliti dan insinyur dituntut untuk menemukan solusi dalam penelitian dan pengembangan, dan ini memotivasi para insinyur mekanika untuk mempelajari pengetahuan lain dan teknologi pengembangan produk baru contohnya insinyur mekanika mencoba mengenalkan elektonika dalam menyelesaikan masalah-masalah mekanikal. Pengembangan mikroprosessor juga memberikan banyak kontribusi dalam inovasi-inovasi yang berani yang berdampak para insinyur dapat mempertimbangkan penyelesaian masalah dengan pandangan luas dan lebih efisien,hasilnya diperoleh produk baru berdasar integritas disiplin ilmu teknologi. 1.2.Manfaat Penerapan Mekatronika

Beberapa manfaat penerapan mekatronik adalah sebagai berikut: 1. Meningkatkan fleksibilitas. Manfaat terbesar yang dapat

diperoleh dari penerapan mekatronik adalah meningkatkan fleksibilitas mesin dengan menambahkan fungsi-fungsi baru yang mayoritas merupakan kontribusi mikro-prosesor. Sebagai contoh,

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 2

Page 9: Dasar Mekatronika

lengan robot industri dapat melakukan berbagai jenis pekerjaan dengan merubah program peranti lunak di mikro-prosesornya seperti halnya lengan manusia. Ini yang menjadi faktor utamadimungkinkannya proses produksi produk yang beraneka ragam tipenya dengan jumlah yang sedikit-sedikit.

2. Meningkatkan kehandalan. Pada mesin-mesin konvensional

(manual) muncul berbagai masalah yang diakibatkan oleh berbagai jenis gesekan pada mekanisme yang digunakan seperti: keusangan, masalah sentuhan, getaran dan kebisingan. Pada penggunaan mesin-mesin tersebut diperlukan sarana dan operator yang jumlahnya banyak untuk mencegah timbulnya masalah-masalah tersebut. Dengan menerapkan switch semikonduktor misalnya,maka masalah-masalah akibat sentuhan tersebut dapat diminimalkan sehingga meningkatkan kehandalan. Selain itu, dengan menggunakan komponen-komponen elektronika untuk mengendalikan gerakan, maka komponen-komponen mesin pengendali gerak bisa dikurangi sehingga meningkatkan kehandalan.

3. Meningkatkan presisi dan kecepatan. Pada mesin-mesin

konvensional (manual) yangsebagian besar menggunakan komponen-komponen mesin sebagai pengendali gerak, tingkat presisi dan kecepatan telah mencapai garis saturasi yang sulit untuk diangkat lagi.Dengan menerapkan kendali digital dan teknologi elektronika, maka tingkat presisi mesin dan kecepatan gerak mesin dapat diangkat lebih tinggi lagi sampai batas tertentu. Batas ini misalnya adalah rigiditas mesin yang menghalangi kecepatan lebih tinggi karena munculnyagetaran. Hal ini melahirkan tantangan baru yaitu menciptakan sistem mesin yang memiliki rigiditas lebih tinggi. Struktur mekatronik dapat dipilah menjadi 2 buah dunia yaitu dunia mekanika dan duniaelektronika. Di dunia mekanika terdapat mekanisme mesin sebagai objek yang dikendalikan.Di dunia elektronika terdapat beberapa elemen mekatronika yaitu: sensor, kontroler,rangkaian penggerak, aktuator dan sumber energi.

1.3.Komponen utama mekatronika

System mekatronika dapat dibagi dalam beberapa area khusus yaitu:

1. Physical system modeling (Konsep mekanikal) 2. Sensors and Actuators (sensor dan Aktuator) 3. Signal and system (Sistem Kontrol) 4. Computer and Logic system ( computer dan system logic) 5. Software and data acquisition (piranti lunak dan Akuisisi data)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 3

Page 10: Dasar Mekatronika

Komponen utama dari system mekatronika dapat di jelaskan pada gambar dibawah ini dari berbagai sumber

(sumber:Mechatronics handbook,2002, Robert H.Bishop)

(sumber mechatronic_principle_&_application,Godfrey Onwubolu, Elsevier)

Gbr,Komponen utama Mekatronika

Gbr,Komponen utama Mekatronika

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 4

Page 11: Dasar Mekatronika

Sumber lain juga membuat lingkup mekatronika seperti gambar di bawah ini (sumber: mechatronic system_devices_design_control_&_OM, 2008, Clarence de silva, CRC press)

Gbr,Komponen utama Mekatronika

Sumber lain juga membuat lingkup mekatronika seperti di bawah ini

(sumber: role of control in mechatronic, job van amerongen)

Gbr,Komponen utama Mekatronika

Dan masih banyak lagi sumber-sumber lain yang menjelaskan tentang komponen-komponen utama dari ilmu mekatronika sesuai dengan persepsi dan karakteristik dari masing-masing sumber tersebut, namun dalam penulisan ini kita tidak dapat membahas satu persatu dari sub-sub bagian seperti yang di jelaskan dari gambar-gambar diatas, akan tetapi bab-bab yang akan di jelaskan nanti sudah representative dari komponen-komponen utama dari bidang mekatronik

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 5

Page 12: Dasar Mekatronika

II.KONSEP MEKANIKAL

Mekanika mempelajari keadaan gerak dari suatu sistem fisis (benda). Mekanika dapat dipecah menjadi dua berdasarkan ada atau tidaknya gaya yang bekerja pada sistem yaitu :Kinematika dan Dinamika. Besar-besaran fisis yang menggambarkan keadaan gerak dari suatu benda (partikel, sistem partikel) secara umum dapat diwakili oleh koordinat posisi, kecepatan, percepatan, momenatum dll.

Lebih lanjut formulasi persamaan gerak dalam sistem gerak dapat ditelaah berdasarkan mekanika Newtonian, Mekanika Lagrangian atau Mekanika Hamiltonian. Dalam hal ini akan membahas transmisi, kinematika dan pneumatik hidrolika. 2.1.Transmisi mekanik

Sistem transmisi, dalam otomotif, adalah sistem yang menjadi penghantar energi dari mesin ke diferensial dan as. Dengan memutar as, roda dapat berputar dan menggerakkan mobil.

Gambar. Transmisi Transmisi diperlukan karena mesin pembakaran yang umumnya

digunakan dalam mobil merupakan mesin pembakaran internal yang menghasilkan putaran (rotasi) antara 600 sampai 6000 rpm. Sedangkan, roda berputar antara 0 sampai 2500 rpm. Sekarang ini, terdapat dua sistem transmisi yang umum, yaitu transmisi manual dan transmisi otomatis. Terdapat juga sistem-sistem transmisi yang merupakan gabungan antara kedua sistem tersebut, namun ini merupakan perkembangan terakhir yang baru dapat ditemukan pada mobil-mobil berteknologi tinggi. Transmisi manual merupakan salah satu jenis transmisi yang banyak dipergunakan dengan alasan perawatan yang lebih

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 6

Page 13: Dasar Mekatronika

mudah. Biasanya pada transimi manual terdiri dari 3 sampai dengan 7 speed.

Transmisi semi otomatis adalah transmisi yang dapat membuat kita dapat merasakan system transmisi manual atau otomatis, bila kita sedang menggunakan sistem transmisi manual kita tidak perlu menginjak pedal kopling karena pada sistem transmisi ini pedal kopling sudah teratur secara otomatis. Transmisi otomatis terdiri dari 3 bagian utama, yaitu : Torque converter, Planetary gear unit, dan Hydraulic control unit. Torque converter berfungsi sebagai kopling otomatis dan dapat memperbesar momen mesin. Sedangkan Torque converter terdiri dari Pump impeller, Turbine runner, dan Stator. Stator terletak diantara impeller dan turbine. Torque converter diisi dengan ATF (Automatic Transmition Fluid). Momen mesin dipindahkan dengan adanyaaliran fluida.

Fungsi Transmisi Manual • Merubah dan mengatur Moment putar dan putaran pada roda

penggerak sesuai dengan kebutuhan (posisi 1, 2, 3 ……… n) • Memungkinkan kendaraan berhenti meskipun mesin dalam

keadaan hidup (Posisi Netral) • Memungkinkan kendaraan berjalan mundur (posisi R / mundur)

2.1.1.Roda gigi Roda gigi adalah sebuah konstruksi mekanikal yang menginteraksikan gigi-gigi dalam mentransmisikan gerakan atau merubah tingkat atau arah gerakan. Gigi-gigi dari rodagigi harus maching bentuknya sebelum mereka akan berinteraksi dengan baik. Faktor bentuk yang penting dari sebuah roda gigi adalah Pitch dan sudut tekan. Soal sudut tekan akan di bahas lebih lanjut dalam matakuliah elemen mesin III, tapi untuk pitch adalah sebuah konsep sederhana:

Gear pitch (modulus) = jumlah gigi / diameter pitch (dlm mm)

Dalam SI unit gear biasanyadikenal dengan modulus sebagai nama lain dari Pitch, tetapi konsepnya sama yaitu jumlah gigi dibagi dengan diameter pitch. -Diameter Pitch

Lihatlah bagaimana gigi-gigi berinteraksi, mereka tidak hanya berinteraksi pada ujung-ujung sentuhan gigi, maka diameter luar tidak begitu menarik, sama dengan root diameter (diameter seberang gigi bawah), apa kegunaanya dimana kontak antara dua gigi-gigi terjadi? Lihat gambar di bawah ini

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 7

Page 14: Dasar Mekatronika

Sebagai contoh

-Gear ratio (rasio gigi)

Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin -Direction of rotation (Arah putaran)

Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin - Stacked gears (roda gigi bertingkat) Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin - Force (Gaya) Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin -Speed and Torque (Torsi dan kecepatan) Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin -Gear types (tipe-tipe roda gigi) Xxxxxxxxxxxxxxxxxxxxxxx lihat pd matakuliah elemen mesin 2.2.Kinematika

Kinematika adalah cabang dari mekanika yang membahas gerakan benda tanpa mempersoalkan gaya dinamika, yang mempersoalkan gaya yang mempengaruhi gerakan. penyebab gerakan. Hal terakhir ini berbeda dari dinamika, yang mempersoalkan gaya yang dipengaruhi oleh gerakan. Setiap hari kita selalu melihat sepeda motor, mobil, pesawat atau kendaraan beroda lainnya.

2.2.1 DIAGRAM KINEMATIS

Dalam mempelajari gerakan -gerakan dari bagian -bagian mesin, biasanya kita gambarkan bagian-bagian tersebut dalam bentuk sketsa sehingga hanya bagian-bagian yang akan memberi efek pada gerakan yang diperhatikan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 8

Page 15: Dasar Mekatronika

Gambar diatas menyatakan elemen-elemen utama dalam sebuah mesin diesel. Bagian -bagian yang diam, terdidri dari bantalan -bantalan kruk as dan dinding silinder diberi label 1. Engkol dan kruk as adalah batang penghubung 2, batang penghubung 3, dan torak atau peluncur adalah penghubung 4. Batang penghubung (link0 adalah suatu nama yang diberikan pada setiap benda yang mempunyai gerakan relatif terhadap yang lainnya. Posisi, kecepatan dan percepatan sudut dari batang tergantung hanya pada panjang dari engkol dan batang hubung dan tidak dipenguruhi oleh lebar atau ketebalan dari batang. Gambar sksla yang menyatakan suatu mesin sehingga hanya dimensi yang memberi efek pada gerakannya disebut diagram kinematis. 2.2.2 MEKANISME

Sebuah rantai kinematis adalah sebuah system dari batang batang penghubung yang berupa benda benda kaku yang apakah digabungkan bersama atau dalam keadaan saling bersinggungan sehingga memungkinkan mereka untuk bergerak relatif satu terhadap yang lain . Jika salah satu dari batang penghubungnya tetap dan gerakan dari sebarang batang penghubung yang lain ke posisinya yang baru akan menyebabkan setiap batang penghubung yang lain bergerak ke posisi posisi tertentu yang telah diramalkan system tersebut adalah sebuah rantai kinematis yang dibatasi .Jika salah satu dari batang penghubung ditahan tetap gerakan dari batang penghubung yang lain ke posisinya yang baru tidak akan menyebabkan setiap batang batang penghubung yang lain bergerakke posisi tertentu yang telah diramalkan maka system tersebut adalah suatu rantai kinematis tak terbatas. 2.2.3 INVERSI

Dengan membuat suatu batang penghubung yang berbeda dalam rantai kinematis sebagai bagian yang tidak bergerak, kita memperoleh mekanisme yang berbeda. Penting untuk dicatat bahwa inverse dari suatu mekanisme tidak akan mengubah gerakan antara batang-batang penghubungnya. Sebagai contoh, gambar diatas jika batang penghubung 2 berputar ?

0 searah jarum jam relatif terhadap batang penghubung 1,

batang penghubung 4 akan bergerak kekanan sepanjang garis lurus pada

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 9

Page 16: Dasar Mekatronika

penghubung1. Hal ini akan selalu demikian tidak peduli batang penghubung mana yang ditahan tetap.

2.2.4 PASANGAN Dua benda yang saling kontak akan membentuk suatu pasangan.

Pasangan lebih rendah (lower pairing) terjadi jika dua permukaan saling kontak. Contohnya dari pasangan lebih rendah adalah sebuah torak dengan dinding silindernya.

Pasangan lebih tinggi (higher pairing) menyatakan suatu kontak yang berupa titik atau garis. Contohnya dari pasangan lebih tinggi adalah torak dengan silindernya tetapi toraknya dibuat seperti bola, maka toraknya akan kontak dengan dinding silinder sepanjang suatu lingkaran.

2.2.5 BIDANG GERAKAN Sebuah benda mempunyai bidang gerakan jika semua titik-titiknya

bergerak dalam bidang-bidang parallel terhadap bidang referensinya. Bidang referensi tersebut dise but bidang gerakan (plane motion). Bidang gerakan dapat merupakan salah satu dari 3 tipe : gerakan menurut garis lurus (translasi0, putaran atau kombinasi dari translasi dan rotasi. 2.2.6 TRANSLASI

Sebuah benda mempunyai gerakan berupa translasi, jika ia bergerak sedemikian hingga semua garis-garis lurus dalam benda tersebut bergerak mengikuti posisi-posisi yang sejajar. Translasi garis lurus (rectilinear translation) adalah suatu gerakan dimana semua titik dari suatu benda bergerak dalam jalur garis lurus. Suatu translasi dimana titik-titik dalam suatu benda bergerak sepanjang jalur yang berupakurva disebut translasi menurut kurva (curvilinear translation). 2.2.7 PUTARAN

Dalam putaran (rotasi) semua titik dalam sebuah benda selalu mempunyai jarak yang tetap dari sebuah garis yang tegak lurus terhadap bidang geraknya. Garis ini adalah sumbu putaran (axis of rotation) dan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 10

Page 17: Dasar Mekatronika

titik-titik dalam benda tersebut membuat lintasan menurut jalur berupa lingkaran terhadap garis tersebut.

2.2.8 TRANSLASI DAN ROTASI

Kebanyakan bagian -bagian mesin mempunyai gerakan yang merupakan kombinasi dari rotasi dan translasi. Dalam gambar (a) perhatikan gerakan dari batang hubung sewaktu ia bergerak dari posisi BC ke B’C’. Posisi -posisi ini ditunjukkan dalam gambar (b). Disini kita lihat bahwa gerakannya ekivalen terhadap suatu translasi dari BC ke B’’C’’ yang diikuti oleh sutu rotasi dari B’’C’’ ke B’C’. Gerakan ekivalen yang lain diilukiskan dalam ga mbar (c). Disini ditunjukkan suatu putaran dari suatu batang terhadap C dari posisi BC ke B’’C’’, diikuti dengan suatu translasi dari B’’C’’ ke B’C’. Jadi gerakan dari batang hubung dapat dianggap sebagai suatu putaran terhadap beberapa titik ditambah suatu translasi. 2.3.Pneumatik Pneumatik berasal dari bahasa Yunani “pneuma” yang berarti tiupan atau hembusan. Sistem pneumatik itu sendiri mempunyai beberapa kelebihan dan kekurangan yang dipengaruhi terutama oleh sifat udara terkompresi sebagai penggeraknya. Sifat-sifat udara yang mempengaruhi sifat-sifat pengontrolan sistem pneumatik antara lain :

• Udara tidak mempunyai bentuk khusus. Bentuknya selalu sesuai dengan tempatnya/wadahnya.

• Dapat dimampatkan /kompresible.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 11

Page 18: Dasar Mekatronika

• Memenuhi semua ruang dengan sama rata - Dapat dikontrol baik laju alirannya maupun tekanan dan gaya yang bekerja.

2.3.1.Keuntungan dan Kerugian Udara Bertekanan

Udara bertekanan memiliki banyak sekali keuntungan, tetapi dengan sendirinya juga terdapat segi-segi yang merugikan atau pembatasan-pembatasan pada penggunaan nya. Hal-hal yang menguntungkan dari pneumatik pada mekanisasi yang sesuai dengan tujuan sudah diakui oleh cabang-cabang industri yang lebih banyak lagi. Pneumatik mulai digunakan untuk pengendalian maupun penggerakan mesin-mesin dan alat-alat. 2.3.2.Komponen system pneumatic

1. Kompresor digunakan untuk menghisap udara di atmosfer dan menyimpannya kedalam tangki penampung atau receiver. Kondisi udara dalam atmosfer dipengaruhi oleh suhu dan tekanan. Kompressor adalah mesin untuk memampatkan udara atau gas. Secara umum biasanya mengisap udara dari atmosfer, yang secara fisika merupakan campuran beberapa gas dengan susunan 78% Nitrogren, 21% Oksigen dan 1% Campuran Argon, Carbon Dioksida, Uap Air, Minyak, dan lainnya. Namun ada juga kompressor yang mengisap udara/ gas dengan tekanan lebih tinggi dari tekanan atmosfer dan biasa disebut penguat (booster). Sebaliknya ada pula kompressor yang menghisap udara/ gas bertekanan lebih rendah dari tekanan atmosfer dan biasanya disebut pompa vakum. Jika suatu gas/ udara didalam sebuah ruangan tertutup diperkecil volumenya, maka gas/ udara tersebut akan mengalami kompresi. Kompressor yang menggunakan azas ini disebut kompressor jenis displacement dan prinsip kerjanya dapat dilukiskan seperti pada gambar dibawah ini :

Disini digunakan torak yang bergerak bolak balik oleh sebuah penggerak mula (prime mover) didalam sebuah silinder untuk menghisap, menekan dan mengeluarkan udara secara berulang-ulang. Dalam hal ini udara tidak boleh bocor melalui celah antara dinding torak dengan dinding silinder yang saling bergesekan. Untuk itu digunakan cincin torak sebagai perapat.Jika torak ditarik keatas, tekanan dalam silinder dibawah torak akan menjadi negatif (kecil dari tekanan atmosfer) sehingga udara akan masuk melalui celah katup isap. Kemudian bila torak ditekan kebawah, volume udara yang terkurung dibawah torak akan mengecil sehingga tekanan akan naik.Berdasarkan prinsip kerjanya, kompressor terdiri

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 12

Page 19: Dasar Mekatronika

dari 2 (dua) jenis yaitu Displacement (torak) seperti dijelaskan diatas dan Dynamic (rotary) yang mengalirkan udara melalui putaran sudu berkecepatan tinggi. Kompresi Udara Proses kompresi udara yang terjadi pada kompressor torak dapat dijelaskan dengan menggunakan pendekatan seperti terlihat pada gambar di bawah ini :

Torakmemulai langkah kompresinya pada titik (1) diagram P-V, kemudian bergerak kekiri dan udara dimampatkan hingga tekanan naik ke titik (2). Pada titik ini tekanan dalam silinder mencapai harga tekanan Pd yang lebih tinggi dari pada tekanan dalam pipa keluar (atau tangki tekan) sehingga katup keluar pada kepala silinder akan terbuka. Jika torak terus bergerak ke kiri, udara akan didorong keluar silinder pada tekanan tetap sebesar Pd. Di titik (3) torak mencapai titik mati atas, yaitu titik akhir gerakan torak pada langkah kompresi dan pengeluaran.

Kondensasi Uap air Udara yang dihisap dan dimampatkan didalam kompressor akan mengandung uap air dalam jumlah cukup besar. Jika uap ini didinginkan udara yang keluar dari kompressor maka uap akan mengembun menjadi air. Air ini akan terbawa ke mesin/ peralatan yang menggunakannya dan mengakibatkan gangguan pada pelumasan, korosi dan peristiwa water hammer pada piping system. Aftercooler adalah heat-exchanger yang berguna untuk mendinginkan udara/ gas keluaran kompresor untuk membuang uap air yang tidak diinginkan sebelum dikirim ke alat lain. Uap air dipisahkan dari udara dengan cara pendinginan dengan air atau oli pendingin. Sumber Ingersoll-Rand [--]. Dapat dilihat pada gambar dibawah ini

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 13

Page 20: Dasar Mekatronika

2. Fungsi dari Oil and Water Trap adalah sebagai pemisah oli dan air dari udara yang masuk dari kompresor. Jumlah air persentasenya sangat kecil dalam udara yang masuk kedalam sistem Pneumatik, tetapi dapat menjadi penyebab serius dari tidak berfungsinya sistem.

3. Fungsi unit ini adalah sebagai pemisah kimia untuk memisahkan sisa uap lembab yang mana boleh jadi tertinggal waktu udara melewati unit Oil and Water Trap.

4. Setelah udara yang dikompresi melewati unit Oil and Water Trap dan unit Dehydrator, akhirnya udara yang dikompresi akan melewati Filter untuk memisahkan udara dari kemungkinan adanya debu dan kotoran yang mana munkin tedapat dalam udara.

5. Sistem tekanan udara siap masuk pada tekanan tinggi menambah tekanan pada bilik dan mendesak beban pada piston.

6. Restrictor adalah tipe dari pengontrol klep yang digunakan dalam system Pneumatik, Restrictor yang biasa digunakan ada dua (2) tipe, yaitu tipe Orifice dan Variable Restrictor.

Perawatan sistem Pneumatik terdiri dari memperbaiki, mencari

gangguan, pembersihan dan pemasangan komponen, dan uji coba pengoperasian. Tindakan pencegahan untuk menjaga udara dalam sistem selalu terjaga kebersihannya. Saringan dalam komponen harus selalu dibersihkan dari partikel-partikel metal yang mana hal tersebut dapat menyebabkan keausan pada komponen. Setiap memasang komponen Pneumatik harus dijaga kebersihannya dan diproteksi dengan pita penutup atau penutup debu dengan segera setelah pembersihan. Memastikan ketika memasang kembali komponen tidak ada partikel metal yang masuk kedalam sistem. Sangat penting mencegah masuknya air, karena dapat menjadi penyebab sistem tidak dapat memberikan tekanan. Operasi dalam temperatur rendah, walaupun terdapat jumlah air yang sangat kecil dapat menjadi penyebab serius tidak berfungsinya sistem. Setiap tahap perawatan harus memperhatikan masuknya air kedalam sistem. Kebocoran bagian dalam komponen, selama kebocoran pada O-Ring atau posisinya, yang mana ketika pemasangan tidak sempurna atau tergores oleh partikel metal atausudah batas pemakaian 2.4.Hidrolika

Bertahun-tahun lalu manusia telah menemukan kekuatan dari perpindahan air, meskipunmereka tidak mengetahui hal tersebut merupakan prinsip hidrolik. Sejak pertama digunakan prinsip ini, mereka terus menerus mengaplikasikan prinsip ini untuk banyak hal untuk kemajuan dan kemudahan umat manusia.

Hidrolik adalah ilmu pergerakan fluida, tidak terbatas hanya pada fluida air. Jarang dalam keseharian kita tidak menggunakan prinsip hidrolik, tiap kali kita minum air, tiap kali kita menginjak rem kita mengaplikasikan prinsip hidrolik. Sistem hidrolik banyak memiliki keuntungan. Sebagai sumber kekuatan untuk banyak variasi pengoperasian. Keuntungan sistem hidrolik antara lain:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 14

Page 21: Dasar Mekatronika

a. Ringan b. Mudah dalam pemasangan c. Sedikit perawatan d. Sistem hidrolik hampir 100 % efisien, bukan berarti mengabaikan

terjadinya gesekan fluida.

Untuk mengerti prinsip hidrolik kita harus mengetahui perhitungan dan beberapa hokum yang berhubungan dengan prinsip hidrolik.

• Area adalah ukuran permukaan (in2, m2) - Force adalah jumlah dorongan atau tarikan pada objek (lb, kg)

• Unit pressure adalah jumlah kerkuatan dalam satu unit area (lb/in2, Psi)

• Stroke (panjang) adalah diukur berdasarkan jarak pergerakan pistin dalam silinder (in,m)

• Volume diukur berdasarkan jumlah dalam in3, m3 yang dihitung berdasarkan jumlah

fluida dalam reservoir atau dalam pompa atau pergerakan silinder.

Fluida yang digunakan dalam bentuk liquid atau gas. Fluida yang digunakan dalam system hidrolik umumnya oli. Suatu aliran didalam silinder yang dilengkapi dengan sebuah penghisap yang mana kita dapat memakaikan sebuah tekanan luar po tekanan p disuatu titik P yang sebarang sejarak h dibawah permukaan yang sebelah atas dari cairan tersebut diberikan oleh persamaan.

p = po + gh.

Prinsip Pascal, tekanan yang dipakaikan kepada suatu fluida tertutup diteruskan tanpa berkurang besarnya kepada setiap bagian fluida dan dinding-dinding yang berisi fluida tersebut. Hasil ini adalah suatu konsekuensi yang perlu dari hokum-hukum mekanika fluida, dan bukan merupakan sebuah prinsip bebas. Komponen Sistem Hidrolika

Motor hidrolik berfungsi untuk mengubah energi tekanan cairan hidrolik menjadi energi mekanik. Pompa umumnya digunakan untuk memindahkan sejumlah volume cairan yang digunakan agar suatu cairan tersebut memiliki bentuk energi. Katup pada sistem dibedakan atas fungsi, disain dan cara kerja katup Pompa hidrolik berfungsi untuk mentransfer energi mekanik menjadi energi hidrolik. Pompa hidrolik bekerja dengan cara menghisap oli dari tangki hidrolik dan mendorongnya kedalam sistem hidrolik dalam bentuk aliran (flow).

Aliran ini yang dimanfaatkan dengan cara merubahnya menjadi tekanan. Tekanan dihasilkan dengan cara menghambat aliran oli dalam sistem hidrolik. Hambatan ini dapat disebabkan oleh orifice, silinder, motor hidrolik, dan aktuator.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 15

Page 22: Dasar Mekatronika

Pompa hidrolik yang biasa digunakan ada dua macam yaitu Positive dan Non - positive Displacement Pump. Cara Memanfaatkan Tenaga Pada Sistem hidrolik

Ada dua macam peralatan yang biasanya digunakan dalam merubah energi hidrolik menjadi energi mekanik yaitu motor hidrolik dan aktuator. Motor hidrolik mentransfer energi hidrolik menjadi energi mekanik dengan cara memanfaatkan aliran oli dalam sistem merubahnya menjadi energi putaran yang dimanfaatkan untuk menggerakan roda, transmisi, pompa dll. Perawatan dari sistem hidrolik, memerlukan penggunaan fluida hidrolik yang layak, pemilihan tube dan seal yang layak. Dan kita harus dapat mengetahui bagaimana pengecekan untuk kebersihan nya yang layak. Perbaikan pada sistem hidrolik, adanya satu prosedur perawatan dilakukan pada mekanik hidrolik. Sebelum perbaikan dimulai, spesifikasi tipe fluida harus diketahui . warna dari fluida pada sistem dapat juga digunakan sebagai penentu dari tipe fluida. Perawatan efektif dari sistem hidrolik yang diperlukan adalah melihat kelayakan seal, tube, selang yang digunakan. Untuk sistem hidrolik (3000 psi) digunakan tube stainless steel, dan untuk sistem hidrolik tekanan rendah dapat digunakan tube dari alumunium alloy.

BAB III

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 16

Page 23: Dasar Mekatronika

DASAR ELEKTRONIKA

3.1.Konsep rangkaian listrik

3.1.1 Definisi - Definisi Rangkaian listrik adalah suatu kumpulan elemen atau komponen

listrik yang saling dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan tertutup. Elemen atau komponen yang akan dibahas pada mata kuliah Rangkaian Listrik terbatas pada elemen atau komponen yang memiliki dua buah terminal atau kutub pada kedua ujungnya. Untuk elemen atau komponen yang lebih dari dua terminal dibahas pada mata kuliah Elektronika.

Pembatasan elemen atau komponen listrik pada Rangkaian Listrik dapat dikelompokkan kedalam elemen atau komponen aktif dan pasif. Elemen aktif adalah elemen yang menghasilkan energi dalam hal ini adalah sumber tegangan dan sumber arus, mengenai sumber ini akan dijelaskan pada bab berikutnya. Elemen lain adalah elemen pasif dimana elemen ini tidak dapat menghasilkan energi, dapat dikelompokkan menjadi elemen yang hanya dapat menyerap energi dalam hal ini hanya terdapat pada komponen resistor atau banyak juga yang menyebutkan tahanan atau hambatan dengan simbol R, dan komponen pasif yang dapat menyimpan energi juga diklasifikasikan menjadi dua yaitu komponen atau lemen yang menyerap energi dalam bentuk medan magnet dalam hal ini induktor atau sering juga disebut sebagai lilitan, belitan atau kumparan dengan simbol L, dan kompone pasif yang menyerap energi dalam bentuk medan magnet dalam hal ini adalah kapasitor atau sering juga dikatakan dengan kondensator dengan symbol C, pembahasan mengenai ketiga komponen pasif tersebut nantinya akan dijelaskan pada bab berikutnya. Elemen atau komponen listrik yang dibicarakan disini adalah :

1. Elemen listrik dua terminal a) Sumber tegangan b) Sumber arus c) Resistor ( R ) d) Induktor ( L ) e) Kapasitor ( C )

2. Elemen listrik lebih dari dua terminal a) Transistor b) Op-amp

Berbicara mengenai Rangkaian Listrik, tentu tidak dapat dilepaskan

dari pengertian dari rangkaian itu sendiri, dimana rangkaian adalah interkoneksi dari sekumpulan elemen atau komponen penyusunnya ditambah dengan rangkaian penghubungnya dimana disusun dengan cara-cara tertentu dan minimal memiliki satu lintasan tertutup. Dengan kata lain hanya dengan satu lintasan tertutup saja kita dapat menganalisis suatu rangkaian.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 17

Page 24: Dasar Mekatronika

Yang dimaksud dengan satu lintasan tertutup adalah satu lintasan saat kita mulai dari titik yang dimaksud akan kembali lagi ketitik tersebut tanpa terputus dan tidak memandang seberapa jauh atau dekat lintasan yang kita tempuh. Rangkaian listrik merupakan dasar dari teori rangkaian pada teknik elektro yang menjadi dasar atay fundamental bagi ilmu-ilmu lainnya seperti elektronika, sistem daya, sistem computer, putaran mesin, dan teori control. 3.1.2. Arus listrik

Pada pembahasan tentang rangkaian listrik, perlu kiranya kita mengetahui terlebih dahulu beberapa hal megenai apa itu yang dimaksud dengan listrik. Untuk memahami tentang listrik, perlu kita ketahui terlebih dahulu pengertian dari arus. Arus merupakan perubahan kecepatan muatan terhadap waktu atau muatan yang mengalir dalam satuan waktu dengan simbol i (dari kata Perancis : intensite), dengan kata lain arus adalah muatan yang bergerak. Selama muatan tersebut bergerak maka akan muncul arus tetapi ketika muatan tersebut diam maka arus pun akan hilang. Muatan akan bergerak jika ada energi luar yang memepengaruhinya. Muatan adalah satuan terkecil dari atom atau sub bagian dari atom. Dimana dalam teori atom modern menyatakan atom terdiri dari partikel inti (proton bermuatan + dan neutron bersifat netral) yang dikelilingi oleh muatan elektron (-), normalnya atom bermuatan netral. Muatan terdiri dari dua jenis yaitu muatan positif dan muatan negative Arah arus searah dengan arah muatan positif (arah arus listrik) atau berlawanan dengan arah aliran elektron. Suatu partikel dapat menjadi muatan positif apabila kehilangan elektron dan menjadi muatan negatif apabila menerima elektron dari partikel lain.

Coulomb adalah unit dasar dari International System of Units (SI) yang digunakan untuk mengukur muatan listrik.

Satuannya : Ampere (A) Dalam teori rangkaian arus merupakan pergerakan muatan positif. Ketika terjadi beda potensial disuatu elemen atau komponen maka akan muncul arus dimaan arah arus positif mengalir dari potensial tinggi ke potensial rendah dan arah arus negatif mengalir sebaliknya. Macam-macam arus :

1. Arus searah (Direct Current/DC) Arus DC adalah arus yang mempunyai nilai tetap atau konstan

terhadap satuan waktu, artinya diaman pun kita meninjau arus tersebut pada wakttu berbeda akan mendapatkan nilai yang sama

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 18

Page 25: Dasar Mekatronika

2. Arus bolak-balik (Alternating Current/AC)

Arus AC adalah arus yang mempunyai nilai yang berubah terhadap satuan waktu dengan karakteristik akan selalu berulang untuk perioda waktu tertentu (mempunyai perida waktu : T).

3.1.3 Tegangan

Tegangan atau seringkali orang menyebut dengan beda potensial dalam bahasa Inggris voltage adalah kerja yang dilakukan untuk menggerakkan satu muatan (sebesar satu coulomb) pada elemen atau komponen dari satu terminal/kutub ke terminal/kutub lainnya, atau pada kedua terminal/kutub akan mempunyai beda potensial jika kita menggerakkan/memindahkan muatan sebesar satu coulomb dari satu terminal ke terminal lainnya.

Keterkaitan antara kerja yang dilakukan sebenarnya adalah energi yang dikeluarkan, sehingga pengertian diatas dapat dipersingkat bahwa tegangan adalah energi per satuan muatan.

Pada gambar diatas, jika terminal/kutub A mempunyai potensial

lebih tinggi daripada potensial di terminal/kutub B. Maka ada dua istilah yang seringkali dipakai pada Rangkaian Listrik, yaitu : 1. Tegangan turun/ voltage drop

Jika dipandang dari potensial lebih tinggi ke potensial lebih rendah dalam hal ini dari terminal A ke terminal B.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 19

Page 26: Dasar Mekatronika

2. Tegangan naik/ voltage rise Jika dipandang dari potensial lebih rendah ke potensial lebih tinggi

dalam hal ini dari terminal B ke terminal A. Pada buku ini istilah yang akan dipakai adalah pengertian pada item nomor 1 yaitu tegangan turun. Maka jika beda potensial antara kedua titik tersebut adalah sebesar 5 Volt, maka VAB = 5 Volt dan VBA = -5 Volt 3.1.4 Energi & Daya

Kerja yang dilakukan oleh gaya sebesar satu Newton sejauh satu meter. Jadi energi adalah sesuatu kerja dimana kita memindahkan sesuatu dengan mengeluarkan gaya sebesar satu Newton dengan jarak tempuh atau sesuatu tersebut berpindah dengan selisih jarak satu meter.

Pada alam akan berlaku hukum Kekekalan Energi dimana energi sebetulnya tidak dapat dihasilkan dan tidak dapat dihilangkan, energi hanya berpindah dari satu bentuk ke bentuk yang lainnya. Contohnya pada pembangkit listrik, energi dari air yang bergerak akan berpindah menjadi energi yang menghasilkan energi listrik, energi listrik akan berpindah menjadi energi cahaya jika anergi listrik tersebut melewati suatu lampu, energi cahaya akan berpinda menjadi energi panas jika bola lampu tersebut pemakaiannya lama, demikian seterusnya. Untuk menyatakan apakah energi dikirim atau diserap tidak hanya polaritas tegangan tetapi arah arus juga berpengaruh. Elemen/komponen listrik digolongkan menjadi :

1) Menyerap energi Jika arus positif meninggalkan terminal positif menuju terminal elemen/komponen, atau arus positif menuju terminal positif elemen/komponen tersebut.

2) Mengirim energi Jika arus positif masuk terminal positif dari terminal elemen/komponen, atau arus positif meninggalkan terminal positif elemen/komponen.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 20

Page 27: Dasar Mekatronika

Energi yang diserap/dikirim pada suatu elemen yang bertegangan v dan muatan yang melewatinya a Δq adalah Δw = vΔq Satuannya : Joule (J)

3.2.Elemen Rangkaian Listrik

Seperti dijelaskan pada bab sebelumnya, bahwa pada Rangkaian Listrik tidak dapat dipisahkan dari penyusunnya sendiri, yaitu berupa elemen atau komponen. Pada bab ini akan dibahas elemen atau komponen listrik aktif dan pasif. 3.2.1 Elemen Aktif

Elemen aktif adalah elemen yang menghasilkan energi, pada mata kuliah Rangkaian Listrik yang akan dibahas pada elemen aktif adalah sumber tegangan dan sumber arus. Pada pembahasan selanjutnya kita akan membicarakan semua yang berkaitan dengan elemen atau komponen ideal. Yang dimaksud dengan kondisi ideal disini adalah bahwa sesuatunya berdasarkan dari sifat karakteristik dari elemen atau komponen tersebut dan tidak terpengaruh oleh lingkungan luar. Jadi untuk elemen listrik seperti sumber tegangan, sumber arus, kompone R, L, dan C pada mata kuliah ini diasumsikan semuanya dalam kondisi ideal.

1. Sumber Tegangan (Voltage Source) Sumber tegangan ideal adalah suatu sumber yang menghasilkan tegangan yang tetap, tidak tergantung pada arus yang mengalir pada sumber tersebut, meskipun tegangan tersebut merupakan fungsi dari t. Sifat lain : Mempunyai nilai resistansi dalam Rd = 0 (sumber tegangan ideal)

• Sumber Tegangan Bebas/ Independent Voltage Source Sumber yang menghasilkan tegangan tetap tetapi mempunyai sifat khusus yaitu harga tegangannya tidak bergantung pada

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 21

Page 28: Dasar Mekatronika

harga tegangan atau arus lainnya, artinya nilai tersebut berasal dari sumbet tegangan dia sendiri.

• Sumber Tegangan Tidak Bebas/ Dependent Voltage Source Mempunyai sifat khusus yaitu harga tegangan bergantung pada harga tegangan atau arus lainnya.

2. Sumber Arus ( current source) Sumber arus ideal adalah sumber yang menghasilkan arus yang tetap, tidak bergantung pada tegangan dari sumber arus tersebut. Sifat lain : Mempunyai nilai resistansi dalam Rd = ∞ (sumber arus ideal) • Sumber Arus Bebas/ Independent Current Source

Mempunyai sifat khusus yaitu harga arus tidak bergantung pada harga tegangan atau arus lainnya.

• Sumber Arus Tidak Bebas/ Dependent Current Source Mempunyai sifat khusus yaitu harga arus bergantung pada harga tegangan atau arus lainnya

3.2.2 Elemen Pasif Resistor (R)

Sering juga disebut dengan tahanan, hambatan, penghantar, atau resistansi dimana resistor mempunyai fungsi sebagai penghambat arus, pembagi arus , dan pembagi tegangan. Nilai resistor tergantung dari hambatan jenis bahan resistor itu sendiri (tergantung dari bahan pembuatnya), panjang dari resistor itu sendiri dan luas penampang dari resistor itu sendiri.

Satuan dari resistor : Ohm ( Ω)

Jika suatu resistor dilewati oleh sebuah arus maka pada kedua ujung dari resistor tersebut akan menimbulkan beda potensial atau tegangan. Hukum yang didapat dari percobaan ini adalah: Hukum Ohm. Mengenai pembahasan dari Hukum Ohm akan dibahas pada bab selanjutnya.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 22

Page 29: Dasar Mekatronika

Kapasitor (C) Sering juga disebut dengan kondensator atau kapasitansi.

Mempunyai fungsi untuk membatasi arus DC yang mengalir pada kapasitor tersebut, dan dapat menyimpan energi dalam bentuk medan listrik. Nilai suatu kapasitor tergantung dari nilai permitivitas bahan pembuat kapasitor, luas penampang dari kapsitor tersebut dan jarak antara dua keping penyusun dari kapasitor tersebut.

Jika sebuah kapasitor dilewati oleh sebuah arus maka pada kedua ujung kapaistor tersebut akan muncul beda potensial atau tegangan, dimana secara matematis dinyatakan :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 23

Page 30: Dasar Mekatronika

kapasitor dalam bentuk medan listrik. Jika kapasitor dipasang tegangan konstan/DC, maka arus sama dengan nol. Sehingga kapasitor bertindak sebagai rangkaian terbuka/ open circuit untuk tegangan DC

Induktor/ Induktansi/ Lilitan/ Kumparan (L)

Seringkali disebut sebagai induktansi, lilitan, kumparan, atau belitan. Pada induktor mempunyai sifat dapat menyimpan energi dalam bentuk medan magnet.

Satuan dari induktor : Henry (H) Arus yang mengalir pada induktor akan menghasilkan fluksi magnetik (φ ) yang membentuk loop yang melingkupi kumparan. Jika ada N lilitan, maka total fluksi adalah :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 24

Page 31: Dasar Mekatronika

3.3. Hukum-hukum rangkaian

Hukum Ohm Jika sebuah penghantar atau resistansi atau hantaran dilewati oleh

sebuah arus maka pada kedua ujung penghantar tersebut akan muncul beda potensial, atau Hukum Ohm menyatakan bahwa tegangan melintasi berbagai jenis bahan pengantar adalah berbanding lurus dengan arus yang mengalir melalui bahan tersebut. Secara matematis :

V = I.R

Hukum Kirchoff I / Kirchoff’s Current Law (KCL) Jumlah arus yang memasuki suatu percabangan atau node atau

simpul samadengan arus yang meninggalkan percabangan atau node atau simpul, dengan kata lain jumlah aljabar semua arus yang memasuki sebuah percabangan atau node atau simpul samadengan nol. Secara matematis :

Σ Arus pada satu titik percabangan = 0 Σ Arus yang masuk percabangan = Σ Arus yang keluar percabangan

Dapat diilustrasikan bahwa arus yang mengalir samadengan aliran

sungai, dimana pada saat menemui percabangan maka aliran sungai tersebut akan terbagi sesuai proporsinya pada percabangan tersebut. Artinya bahwa aliran sungai akan terbagi sesuai dengan jumlah percabangan yang ada, dimana tentunya jumlah debit air yang masuk akan sama dengan jumlah debit air yang keluar dari percabangan tersebut

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 25

Page 32: Dasar Mekatronika

Hukum Kirchoff II / Kirchoff’s Voltage Law (KVL) Jumlah tegangan pada suatu lintasan tertutup samadengan nol,

atau penjumlahan tegangan pada masing-masing komponen penyusunnya yang membentuk satu lintasan tertutup akan bernilai samadengan nol. Secara matematis :

ΣV = 0

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 26

Page 33: Dasar Mekatronika

3.4. Semikonduktor

3.4.1 Prinsip Dasar Semikonduktor merupakan elemen dasar dari komponen elektronika

seperti dioda, transistor dan sebuah IC (integrated circuit). Disebut semi atau setengah konduktor, karena bahan ini memang

bukan konduktor murni. Bahan- bahan logam seperti tembaga, besi, timah disebut sebagai

konduktor yang baik sebab logam memiliki susunan atom yang sedemikian rupa, sehingga elektronnya dapat bergerak bebas.

Sebenarnya atom tembaga dengan lambang kimia Cu memiliki inti 29 ion (+) dikelilingi oleh 29 elektron (-). Sebanyak 28 elektron menempati orbit-orbit bagian dalam membentuk inti yang disebut nucleus.

Dibutuhkan energi yang sangat besar untuk dapat melepaskan ikatan elektron-elektron ini. Satu buah elektron lagi yaitu elektron yang ke-29, berada pada orbit paling luar.

Orbit terluar ini disebut pita valensi dan elektron yang berada pada pita ini dinamakan elektron valensi. Karena hanya ada satu elektron dan jaraknya 'jauh' dari nucleus, ikatannya tidaklah terlalu kuat. Hanya dengan energi yang sedikit saja elektron terluar ini mudah terlepas dari ikatannya.

ikatan atom tembaga

Pada suhu kamar, elektron tersebut dapat bebas bergerak atau berpindah-pindah dari satu nucleus ke nucleus lainnya. Jika diberi tegangan potensial listrik, elektron-elektron tersebut dengan mudah berpindah ke arah potensial yang sama. Phenomena ini yang dinamakan sebagai arus listrik.

Isolator adalah atom yang memiliki elektron valensi sebanyak 8 buah, dan dibutuhkan energi yang besar untuk dapat melepaskan elektron-elektron ini.

Dapat ditebak, semikonduktor adalah unsur yang susunan atomnya memiliki elektron valensi lebih dari 1 dan kurang dari 8. Tentu saja yang paling "semikonduktor" adalah unsur yang atomnya memiliki 4 elektron valensi.

Susunan Atom Semikonduktor Bahan semikonduktor yang banyak dikenal contohnya adalah Silicon

(Si), Germanium (Ge) dan Galium Arsenida (GaAs). Germanium dahulu adalah bahan satu-satunya yang dikenal untuk

membuat komponen semikonduktor. Namun belakangan, silikon menjadi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 27

Page 34: Dasar Mekatronika

popular setelah ditemukan cara mengekstrak bahan ini dari alam. Silikon merupakan bahan terbanyak ke dua yang ada dibumi setelah oksigen (O2).

Pasir, kaca dan batu-batuan lain adalah bahan alam yang banyak mengandung unsur silikon. Dapatkah anda menghitung jumlah pasir dipantai.

Struktur atom kristal silikon, satu inti atom (nucleus) masing-masing memiliki 4 elektron valensi.

Ikatan inti atom yang stabil adalah jika dikelilingi oleh 8 elektron, sehingga 4 buah elektron atom kristal tersebut membentuk ikatan kovalen dengan ion-ion atom tetangganya. Pada suhu yang sangat rendah (0

oK),

struktur atom silikon divisualisasikan seperti pada gambar berikut.

struktur dua dimensi kristal Silikon

Ikatan kovalen menyebabkan elektron tidak dapat berpindah dari satu inti atom ke inti atom yang lain. Pada kondisi demikian, bahan semikonduktor bersifat isolator karena tidak ada elektron yang dapat berpindah untuk menghantarkan listrik.

Pada suhu kamar, ada beberapa ikatan kovalen yang lepas karena energi panas, sehingga memungkinkan elektron terlepas dari ikatannya. Namun hanya beberapa jumlah kecil yang dapat terlepas, sehingga tidak memungkinkan untuk menjadi konduktor yang baik.

Ahli-ahli fisika terutama yang menguasai fisika quantum pada masa itu mencoba memberikan doping pada bahan semikonduktor ini.

Pemberian doping dimaksudkan untuk mendapatkan elektron valensi bebas dalam jumlah lebih banyak dan permanen, yang diharapkan akan dapat mengahantarkan listrik. Kenyataanya demikian, mereka memang iseng sekali dan jenius.

Tipe-N Misalnya pada bahan silikon diberi doping phosphorus atau arsenic

yang pentavalen yaitu bahan kristal dengan inti atom memiliki 5 elektron valensi. Dengan doping, Silikon yang tidak lagi murni ini (impurity semiconductor) akan memiliki kelebihan elektron.

Kelebihan elektron membentuk semikonduktor tipe-n. Semikonduktor tipe-n disebut juga donor yang siap melepaskan elektron.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 28

Page 35: Dasar Mekatronika

doping atom pentavalen

Tipe-P Kalau silikon diberi doping Boron, Gallium atau Indium, maka akan

didapat semikonduktor tipe-p. Untuk mendapatkan silikon tipe-p, bahan dopingnya adalah bahan trivalen yaitu unsur dengan ion yang memiliki 3 elektron pada pita valensi.

Karena ion silikon memiliki 4 elektron, dengan demikian ada ikatan kovalen yang bolong (hole). Hole ini digambarkan sebagai akseptor yang siap menerima elektron. Dengan demikian, kekurangan elektron menyebabkan semikonduktor ini menjadi tipe-p.

doping atom trivalen

Resistansi Semikonduktor tipe-p atau tipe-n jika berdiri sendiri tidak lain adalah

sebuah resistor. Sama seperti resistor karbon, semikonduktor memiliki resistansi. Cara ini dipakai untuk membuat resistor di dalam sebuah komponen semikonduktor. Namun besar resistansi yang bisa didapat kecil karena terbatas pada volume semikonduktor itu sendiri.

Dioda PN Jika dua tipe bahan semikonduktor ini dilekatkan-pakai lem barangkali

ya :), maka akan didapat sambungan P-N (p-n junction) yang dikenal sebagai dioda.Pada pembuatannya memang material tipe P dan tipe N bukan disambung secara harpiah, melainkan dari satu bahan (monolitic) dengan memberi doping (impurity material) yang berbeda.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 29

Page 36: Dasar Mekatronika

sambungan p-n

Jika diberi tegangan maju (forward bias), dimana tegangan sisi P lebih besar dari sisi N, elektron dengan mudah dapat mengalir dari sisi N mengisi kekosongan elektron (hole) di sisi P.

forward bias

Sebaliknya jika diberi tegangan balik (reverse bias), dapat dipahami tidak ada elektron yang dapat mengalir dari sisi N mengisi hole di sisi P, karena tegangan potensial di sisi N lebih tinggi.

Dioda akan hanya dapat mengalirkan arus satu arah saja, sehingga dipakai untuk aplikasi rangkaian penyearah (rectifier). Dioda, Zener, LED, Varactor dan Varistor adalah beberapa komponen semikonduktor sambungan PN yang dibahas pada kolom khusus.

Transistor Bipolar Transistor merupakan dioda dengan dua sambungan (junction).

Sambungan itu membentuk transistor PNP maupun NPN. Ujung-ujung terminalnya berturut-turut disebut emitor, base dan kolektor. Base selalu berada di tengah, di antara emitor dan kolektor.

Transistor ini disebut transistor bipolar, karena struktur dan prinsip kerjanya tergantung dari perpindahan elektron di kutup negatif mengisi kekurangan elektron (hole) di kutup positif. bi = 2 dan polar = kutup. Adalah William Schockley pada tahun 1951 yang pertama kali menemukan transistor bipolar.

Transistor npn dan pnp

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 30

Page 37: Dasar Mekatronika

Akan dijelaskan kemudian, transistor adalah komponen yang bekerja sebagai sakelar (switch on/off) dan juga sebagai penguat (amplifier). Transistor bipolar adalah inovasi yang mengantikan transistor tabung (vacum tube). Selain dimensi transistor bipolar yang relatif lebih kecil, disipasi dayanya juga lebih kecil sehingga dapat bekerja pada suhu yang lebih dingin.

Dalam beberapa aplikasi, transistor tabung masih digunakan terutama pada aplikasi audio, untuk mendapatkan kualitas suara yang baik, namun konsumsi dayanya sangat besar. Sebab untuk dapat melepaskan elektron, teknik yang digunakan adalah pemanasan filamen seperti pada lampu pijar.

Bias DC Transistor bipolar memiliki 2 junction yang dapat disamakan dengan

penggabungan 2 buah dioda. Emiter-Base adalah satu junction dan Base-Kolektor junction lainnya. Seperti pada dioda, arus hanya akan mengalir hanya jika diberi bias positif, yaitu hanya jika tegangan pada material P lebih positif daripada material N (forward bias).

Pada gambar ilustrasi transistor NPN berikut ini, junction base-emiter diberi bias positif sedangkan base-colector mendapat bias negatif (reverse bias).

arus elektron transistor npn

Karena base-emiter mendapat bias positif maka seperti pada dioda, elektron mengalir dari emiter menuju base. Kolektor pada rangkaian ini lebih positif sebab mendapat tegangan positif. Karena kolektor ini lebih positif, aliran elektron bergerak menuju kutup ini. Misalnya tidak ada kolektor, aliran elektron seluruhnya akan menuju base seperti pada dioda. Tetapi karena lebar base yang sangat tipis, hanya sebagian elektron yang dapat bergabung dengan hole yang ada pada base.

Sebagian besar akan menembus lapisan base menuju kolektor. Inilah alasannya mengapa jika dua dioda digabungkan tidak dapat menjadi sebuah transistor, karena persyaratannya adalah lebar base harus sangat tipis sehingga dapat diterjang oleh elektron. Jika misalnya tegangan base-emitor dibalik (reverse bias), maka tidak akan terjadi aliran elektron dari emitor menuju kolektor.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 31

Page 38: Dasar Mekatronika

Jika pelan-pelan 'keran' base diberi bias maju (forward bias), elektron mengalir menuju kolektor dan besarnya sebanding dengan besar arus bias base yang diberikan. Dengan kata lain, arus base mengatur banyaknya elektron yang mengalir dari emiter menuju kolektor. Ini yang dinamakan efek penguatan transistor, karena arus base yang kecil menghasilkan arus emiter-colector yang lebih besar.

Istilah amplifier (penguatan) menjadi salah kaprah, karena dengan penjelasan di atas sebenarnya yang terjadi bukan penguatan, melainkan arus yang lebih kecil mengontrol aliran arus yang lebih besar. Juga dapat dijelaskan bahwa base mengatur membuka dan menutup aliran arus emiter-kolektor (switch on/off).Pada transistor PNP, fenomena yang sama dapat dijelaskan dengan memberikan bias seperti pada gambar berikut. Dalam hal ini yang disebut perpindahan arus adalah arus hole.

arus hole transistor pnp

Untuk memudahkan pembahasan prinsip bias

transistor lebih lanjut, berikut adalah terminologi parameter transistor. Dalam hal ini arah arus adalah dari potensial yang lebih besar ke potensial yang lebih kecil.

arus potensial

IC : arus kolektor IB : arus base IE : arus emitor VC : tegangan kolektor VB : tegangan base VE : tegangan emitor VCC : tegangan pada kolektor VCE : tegangan jepit kolektor-emitor VEE : tegangan pada emitor VBE : tegangan jepit base-emitor ICBO : arus base-kolektor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 32

Page 39: Dasar Mekatronika

VCB : tegangan jepit kolektor-base

Perlu diingat, walaupun tidak perbedaan pada doping bahan pembuat emitor dan kolektor, namun pada prakteknya emitor dan kolektor tidak dapat dibalik.

penampang transistor bipolar Dari satu bahan silikon (monolitic), emitor dibuat terlebih dahulu,

kemudian base dengan doping yang berbeda dan terakhir adalah kolektor. Terkadang dibuat juga efek dioda pada terminal-terminalnya sehingga arus hanya akan terjadi pada arah yang dikehendaki.

3.4.2 DIODA Kita dapat menyelidiki karakteristik statik dioda, dengan cara

memasang dioda seri dengan sebuah catu daya dc dan sebuah resistor.

Kurva karakteristik statik dioda merupakan fungsi dari arus ID, arus yang melalui dioda, terhadap tegangan VD, beda tegang antara titik a dan b (lihat gambar 1 dan gambar 2)

karakteristik statik dioda

Karakteristik statik dioda dapat diperoleh dengan mengukur tegangan dioda (Vab) dan arus yang melalui dioda, yaitu ID. Dapat diubah dengan dua cara, yaitu mengubah VDD.Bila arus dioda ID kita plotkan terhadap tegangan dioda Vab, kita peroleh karakteristik statik dioda. Bila anoda berada pada tegangan lebih tinggi daripada katoda (VD positif) dioda dikatakan mendapat bias forward. Bila VD negatip disebut bias reserve atau bias mundur. Pada gambar 2 VC disebut cut-in-voltage, IS arus saturasi dan VPIV adalah peak-inverse voltage.

Bila harga VDD diubah, maka arus ID dan VD akan berubah pula. Bila kita mempunyai karakteristik statik dioda dan kita tahu harga VDD dan RL,

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 33

Page 40: Dasar Mekatronika

maka harga arus ID dan VD dapat kita tentukan sebagai berikut. Dari gambar 1. VDD = Vab + (I· RL) atau I = -(Vab/RL) + (VDD / RL)

Bila hubungan di atas kita lukiskan pada karakteristik statik dioda kita akan mendapatkan garis lurus dengan kemiringan (1/RL). Garis ini disebut garis beban (load line). Ini ditunjukkan pada gambar 3.

Kita lihat bahwa garis beban memotong sumbu V dioda pada harga

VDD yaitu bila arus I=0, dan memotong sumbu I pada harga (VDD/RL). Titik potong antara karakteristik statik dengan garis beban memberikan harga tegangan dioda VD(q) dan arus dioda ID(q).

Dengan mengubah harga VDD kita akan mendapatkan garis-garis beban sejajar seperti pada gambar 3.

Bila VDD<0 dan |VDD| < VPIV maka arus dioda yang mengalir adalah kecil sekali, yaitu arus saturasi IS. Arus ini mempunyai harga kira-kira 1 µA untuk dioda silikon.

Pengenalan vacuum Tube Pada bagian ini penulis bermaksud mengajak para rekan rekan

tube mania untuk ngobrol mengenai prinsip kerja dari Tabung.

1. Emisi Electron

Membahas mengenai cara kerja tabung tak akan bisa lepas dari Proses Emisi Electron karena sesungguhnya cara kerja tabung yang paling mendasar ialah proses emisi elektron dan pengendaliannya. Emisi elektron ialah proses pelepasan elektron dari permukaan suatu substansi atau material yang disebabkan karena elektron elektron tersebut mendapat energi dari luar.

Dalam realita yang ada proses emisi elektron cenderung terjadi pada logam dibandingkan pada bahan lainnya, hal ini disebabkan karena logam banyak memiliki elektron bebas yang selalu bergerak setiap saat. Banyaknya elektron bebas pada logam disebabkan karena daya tarik ini atom logam terhadap elektron, terutama pada elektron yang terletak pada kulit terluar dari atom logam (elektron valensi) tidak terlalu kuat dibandingkan yang terjadi pada bahan lainnya. Akan tetapi walaupun daya tarik tesebut tidak

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 34

Page 41: Dasar Mekatronika

terlalu kuat, masihlah cukup untuk menahan elektron agar tidak sampai lepas dari atom logam. Agar supaya elektron pada logam bisa melompat keluar melalui permukaan logam, sehingga terjadi proses emisi elektron, maka diperlukanlah sejumlah energi untuk mengatasi daya tarik inti atom terhadap elektron. Besarnya energi yang diperlukan oleh sebuah elektron untuk mengatasi daya tarik inti atom sehingga bisa melompat keluar dari permukaan logam, didefinisikan sebagai Fungsi Kerja (Work Function).Fungsi kerja biasanya dinyatakan dalam satuan eV (electron volt), besarnya fungsi kerja adalah berbeda untuk setiap logam.

Proses penerimaan energi luar oleh elektron agar bisa beremisi dapat terjadi dengan beberapa cara, dan jenis proses penerimaan energi inilah yang membedakan proses emisi elektron yaitu :

1. Emisi Thermionic (Thermionic emission) 2. Emisi medan listrik (Field emission) 3. Emisi Sekunder (Secondary emission) 4. Emisi Fotolistrik (Photovoltaic emission)

2. Emisi Thermionic

Pada emisi jenis ini, energi luar yang masuk ke bahan ialah dalam bentuk energi panas. Oleh elektron energi panas ini diubah menjadi energi kinetik. Semakin besar panas yang diterima oleh bahan maka akan semakin besar pula kenaikan energi kinetik yang terjadi pada elektron, dengan semakin besarnya kenaikan energi kinetik dari elektron maka gerakan elektron menjadi semakin cepat dan semakin tidak menentu. Pada situasi inilah akan terdapat elektron yang pada ahirnya terlepas keluar melalui permukaan bahan.

Pada proses emisi thermionic dan juga pada proses emisi lainnya, bahan yang digunakan sebagai asal ataupun sumber elektron disebut sebagai "emiter" atau lebih sering disebut "katoda" (cathode), sedangkan bahan yang menerima elektron disebut sebagai anoda. Dalam konteks tabung hampa (vacuum tube) anoda lebih sering disebut sebagai "plate". Dalam proses emisi thermionik dikenal dua macam jenis katoda yaitu :

a) Katoda panas langsung (Direct Heated Cathode, disingkat DHC)

b) Katoda panas tak langsung (Indirect Heated Cathode, disingkat IHC)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 35

Page 42: Dasar Mekatronika

Pada Figure 2 dapat dilihat struktur yang disederhanakan dan dari simbol juga katoda pada DHC, katoda ini jenis sebagai selainsumber elektron juga dialiri oleh arus

Struktur yang disederhanakan dan juga simbol dari IHC dapat dilihat pada Figure 3. Katoda jenis ini tidak dialiri langsung oleh arus heater, panas yang dibutuhkan untuk memanasi katoda dihasilkan oleh heater element (elemen pemanas) dan panas ini dialirkan secara konduksi dari heater elemen ke katoda dengan perantaraan insulasi listrik, yaitu bahan yang baik dalam menghantarkan panas tetapi tidak mengalirkan arus listrik. Pada proses emisi thermionik bahan yang akan digunakan sebagai katoda harus memiliki sifat sifat yang memadai untuk berperan dalam proses yaitu :

a. Memiliki fungsi kerja yang rendah, dengan fungsi kerja yang rendah maka energi yang dibutuhkan untuk menarik elektron menjadi lebih kecil sehingga proses emisi lebih mudah terjadi.

b. Memiliki titik lebur (melting point) yang tinggi. Pada proses emisi thermionic katoda harus dipanaskan pada suhu yang cukup tinggi untuk memungkinkan terjadinya lompatan elektron, dan suhu ini bisa mencapaai 1500 derajat celcius.

c. Memiliki ketahanan mekanik (mechanical strenght) yang tinggi Pada saat terjadinya emisi maka terjadi pula lompatan ion positif dari plate menuju ke katoda. Lompatan ion positif tersebut oleh katoda akan dirasakan sebagai benturan, sehingga agar supaya katoda tidak mengalami deformasi maka bahan dari katoda harus memiliki mechanical strenght yang tinggi. Pada aplikasi yang sesungguhnya

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 36

Page 43: Dasar Mekatronika

ada tiga jenis material yang digunakan untuk membuat katoda, yaitu : -Tungsten

Material ini adalah material yang pertama kali digunakan orang untuk membuat katode. Tungsten memiliki dua kelebihan untuk digunakan sebagai katoda yaitu memiliki ketahanan mekanik dan juga titik lebur yang tinggi (sekitar 3400 derajat Celcius), sehingga tungsten banyak digunakan untuk aplikasi khas yaitu tabung X-Ray yang bekerja pada tegangan sekitar 5000V dan temperature tinggi. Akan tetapi untuk aplikasi yang umum terutama untuk aplikasi Tabung Audio dimana tegangan kerja dan temperature tidak terlalu tinggi maka tungsten bukan material yang ideal, hal ini disebabkan karena tungsten memiliki fungsi kerja yang tinggi( 4,52 eV) dan juga temperature kerja optimal yang cukup tinggi (sekitar 2200 derajat celcius)

-Thoriated Tungsten Material ini ialah campuran antara tungsten dan thorium. Thorium

adalah material yang secara individual memiliki fungsi kerja 3,4 eV, campuran antara thorium dan tungsten memiliki fungsi kerja 2,63eV, yaitu suatu nilai fungsi kerja yang lebih rendah dibandingan dengan fungsi kerja tungsten ataupun thorium dalam keadaan tidak dicampur. Selain itu hasil pencampuran kedua logam tersebut memiliki temperature kerja optimal yang lebih rendah daripada tungsten yaitu 1700 derajat celcius hal ini berarti besarnya energi yang dibutuhkan untuk pemanasan pada aplikasi pemakaian logam campuran ini juga lebih rendah.

-Katoda berlapis oksida (Oxide-Coated Cathode) Katoda tipe ini terbuat dari lempengan nickel yang dilapis dengan

barium dan oksida strontium. Sebagai hasil dari pelapisan tersebut maka dihasilkanlah katoda yang memiliki fungsi kerja yang dan temperature kerja optimal rendah yaitu sekitar 750 derajat celsius. Katoda jenis ini umumnya digunakan untuk aplikasi yang menggunakan tegangan tidak lebih dari 1000 V.

3. Emisi Medan Listrik (Field Emission)

Pada emisi jenis ini yang menjadi penyebab lepasnya elektron dari bahan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 37

Page 44: Dasar Mekatronika

ialah adanya gaya tarik medan listrik luar yang diberikan pada bahan. Pada katoda yang digunakan pada proses emisi ini dikenakan medan listrik yang cukup besar sehingga tarikan yang terjadi dari medan listrik pada elektron menyebabkan elektron memiliki energi yang cukup untuk lompat keluar dari permukaan katoda. Emisi medan listrik adalah salah satu emisi utama yang terjadi pada vacuum tube selain emisi thermionic.

4. Emisi Sekunder ( Secondary emission)

Pada emisi sekunder ini energi yang menjadi penyebab lepasnya elektron datang dalam bentuk energi mekanik yaitu energi yang diberikan dalam proses tumbukan antara elektron luar yang datang dengan elektron yang ada pada katoda. Pada proses tumbukan terjadi pemindahan sebagian energi kinetik dari elektron yang datang ke elektron yang ada pada katoda sehingga elektron yang ada pada katoda tersebut terpental keluar dari permukaan katoda. Pada kenyataannya proses emisi sekunder tidak dapat berlangsung sukses dengan sendirinya untuk melepaskan elektron dari permukaan akan tetapi proses emisi ini masih membutuhkan dukungan dari emisi jenis lainnya secara bersamaan yaitu emisi medan listrik. Dukungan proses emisi medan listrik dibutuhkan pada proses emisi sekunder, karena walaupun elektron sudah terpental keluar dari permukaan katoda akan tetapi energi yang dimiliki oleh elektron ini seringkali tidak cukup untuk

menjangkau anoda sehingga dibutuhkanlah dukungan energi dari proses emisi medan listrik.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 38

Page 45: Dasar Mekatronika

5. Emisi Fotolistrik (Photo Electric Emission)

Pada emisi fotolistrik energi diberikan ke elektron pada katoda melalui foton yaitu paket paket energi cahaya, yang oleh elektron kemudian diubah menjadi energi mekanik sehingga elektron tersebut dapat terlepas dari permukaan katoda. Sama seperti proses emisi sekunder emisi fotolistrik juga tidak dapat berjalan dengan sempurna tanpa bantuan proses emisi medan listrik, hal ini disebabkan karena energi yang didapat oleh elektron dari foton belum cukup untuk membuat elektron tersebut mampu menjangkau anoda.

Sampai pada bagian ini kita baru saja meyelesaikan obrolan kita mengenai emisi electron dan sekarang obrolan akan kita lanjutkan ke pembahasan mengenai vacuum tube dan cara kerjanya.

Yang dimaksud dengan vacuum tube ialah peralatan elektronik dimana aliran elektron terjadi pada ruang hampa. Ada beberapa jenis vacuum tube yang umum digunakan yaitu

• - Dioda • - Trioda

• -Tetroda • - Pentoda

3.4.3 PENYEARAH

Penggunaan dioda yang paling umum adalah sebagai penyearah . Penyearah adalah suatu rangkaian yang berfungsi untuk mengubah tegangan bolak-balik menjadi tegangan searah. Penyearah dengan dioda mengikuti sifat dioda yang akan menghantar pada satu arah dengan drop tegangan yang kecil yaitu sebesar 0,7 volt.

Ada dua type rangkaian penyearah dengan menggunakan dioda yaitu penyearah gelombang penuh dan penyearah setengah gelombang yang mana kedua rangkaian tersebut akan diuji pada praktikum

3.4.3.1 Penyearah Setengah Gelombang

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 39

Page 46: Dasar Mekatronika

Penyearah Setengah Gelombang dengan Kapasitor Untuk mendapatkan suatu tegangan DC yang baik dimana bentuk

tegangan hasil penyearahan adalah mendekati garis lurus maka tegangan keluaran dari suatu rangkaian penyearah seperti terlihat pada gambar 1.1 dihubungkan dengan suatu kapasitor secara paralel terhadap beban seperti pada gambar 1.2 dimana arus dari keluaran rangkaian penyearah selain akan melewati beban juga akan mengisi kapasitor sehingga pada saat tegangan hasil penyearahan mengalami penurunan maka kapasitor akan membuang muatannya kebeban dan tegangan beban akan tertahan sebelum mencapai nol. Hal ini dapat dijelaskan pada gambar berikut:

Hasil penyearahan yang tidak ideal akan mengakibatkan adanya ripple seperti terlihat pada gambar diatas dimana tegangan ripple yang dihasilkan dapat ditentukan oleh persamaan berikut :

Ripple (peak to peak) = Idc . (T / C)

Dimana Idc dalam hal ini adalah tegangan keluaran dibagi dengan R beban. T adalah periode tegangan ripple (detik) dan C adalah nilai kapasitor (Farad) yang digunakan.

3.4.3.2 Penyearah Gelombang Penuh

Penyearah Setengah Gelombang dengan Kapasitor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 40

Page 47: Dasar Mekatronika

3.4.4 DIODA ZENER Sebagian dioda semikonduktor bila dihubungkan dengan suatu tegangan balik yang cukup akan melakukan suatu arus balik. Hal ini tidak ditunjukkan sebelumnya karena biasanya akan merusak dioda. Akan tetapi dioda Zener justru adalah suatu dioda yang dirancang untuk bisa melakukan arus balik dengan aman dan dengan drop tegangan hanya beberapa volt saja. Simbol dioda zener adalah seperti pada gambar 2.1 dimana bentuk simbol tersebut menyerupai dioda biasa kecuali garis melintang pada kepala panah yang digunakan untuk menyatakan sudut karakteristik balik. Pada arah maju dioda zener berperilaku seperti dioda biasa.

AK

1. Karakteristik maju dioda Zener

2. Karakteristik balik dioda Zener

3.4.5 Transistor

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, pemotong (switching), stabilisasi tegangan, modulasi sinyal atau fungsi lainnya. Transistor dapat berfungsi semacam kran listrik, dimana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 41

Page 48: Dasar Mekatronika

Pada umumnya, transistor memiliki 3 terminal. Tegangan atau arus yang dipasang di satu terminalnya mengatur arus yang lebih besar yang melalui 2 terminal lainnya. Transistor adalah komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil, dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori, dan komponen-komponen lainnya.

Cara Kerja Semikonduktor Pada dasarnya, transistor dan tabung vakum memiliki fungsi yang

serupa; keduanya mengatur jumlah aliran arus listrik. Untuk mengerti cara kerja semikonduktor, misalkan sebuah gelas

berisi air murni. Jika sepasang konduktor dimasukan kedalamnya, dan diberikan tegangan DC tepat dibawah tegangan elektrolisis (sebelum air berubah menjadi Hidrogen dan Oksigen), tidak akan ada arus mengalir karena air tidak memiliki pembawa muatan (charge carriers). Sehingga, air murni dianggap sebagai isolator. Jika sedikit garam dapur dimasukan ke dalamnya, konduksi arus akan mulai mengalir, karena sejumlah pembawa muatan bebas (mobile carriers, ion) terbentuk. Menaikan konsentrasi garam akan meningkatkan konduksi, namun tidak banyak. Garam dapur sendiri adalah nonkonduktor (isolator), karena pembawa muatanya tidak bebas.

Silikon murni sendiri adalah sebuah isolator, namun jika sedikit pencemar ditambahkan, seperti Arsenik, dengan sebuah proses yang dinamakan doping, dalam jumlah yang cukup kecil sehingga tidak mengacaukan tata letak kristal silikon, Arsenik akan memberikan elektron bebas dan hasilnya memungkinkan terjadinya konduksi arus listrik. Ini karena Arsenik memiliki 5 atom di orbit terluarnya, sedangkan Silikon hanya 4. Konduksi terjadi karena pembawa muatan bebas telah ditambahkan (oleh kelebihan elektron dari Arsenik). Dalam kasus ini, sebuah Silikon tipe-n (n untuk negatif, karena pembawa muatannya adalah elektron yang bermuatan negatif) telah terbentuk.

Selain dari itu, Silikon dapat dicampur dengn Boron untuk membuat semikonduktor tipe-p. Karena Boron hanya memiliki 3 elektron di orbit paling luarnya, pembawa muatan yang baru, dinamakan "lubang" (hole, pembawa muatan positif), akan terbentuk di dalam tata letak kristal silikon.

Dalam tabung hampa, pembawa muatan (elektron) akan dipancarkan oleh emisi thermionic dari sebuah katode yang dipanaskan oleh kawat filamen. Karena itu, tabung hampa tidak bisa membuat pembawa muatan positif (hole).

Dapat disimak bahwa pembawa muatan yang bermuatan sama akan saling tolak menolak, sehingga tanpa adanya gaya yang lain, pembawa-pembawa muatan ini akan terdistribusi secara merata di dalam materi semikonduktor. Namun di dalam sebuah transistor bipolar (atau diode junction) dimana sebuah semikonduktor tipe-p dan sebuah semikonduktor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 42

Page 49: Dasar Mekatronika

tipen dibuat dalam satu keping Silikon, pembawapembawa muatan ini cenderung berpindah ke arah sambungan P-N tersebut (perbatasan antara semikonduktor tipe-p dan tipe-n), karena tertarik oleh muatan yang berlawanan dari seberangnya.

Kenaikan dari jumlah pencemar (doping level) akan meningkatkan konduktivitas dari materi semikonduktor, asalkan tata-letak kristal Silikon tetap dipertahankan. Dalam sebuah transistor bipolar, daerah terminal emiter memiliki jumlah doping yang lebih besar dibandingkan dengan terminal basis. Rasio perbandingan antara doping emiter dan basis adalah satu dari banyak faktor yang menentukan sifat penguatan arus (current gain) dari transistor tersebut.

Jumlah doping yang diperlukan sebuah semikonduktor adalah sangat kecil, dalam ukuran satu berbanding seratus juta, dan ini menjadi kunci dalam keberhasilan semikonduktor. Dalam sebuah metal, populasi pembawa muatan adalah sangat tinggi; satu pembawa muatan untuk setiap atom. Dalam metal, untuk merubah metal menjadi isolator, pembawa muatan harus disapu dengan memasang suatu beda tegangan. Dalam metal, tegangan ini sangat tinggi, jauh lebih tinggi dari yang mampu menghancurkannya. Namun, dalam sebuah semikonduktor hanya ada satu pembawa muatan dalam beberapa juta atom. Jumlah tegangan yang diperlukan untuk menyapu pembawa muatan dalam sejumlah besar semikonduktor dapat dicapai dengan mudah. Dengan kata lain, listrik di dalam metal adalah inkompresible (tidak bisa dimampatkan), seperti fluida. Sedangkan dalam semikonduktor, listrik bersifat seperti gas yang bisa dimampatkan. Semikonduktor dengan doping dapat dirubah menjadi isolator, sedangkan metal tidak.

Gambaran di atas menjelaskan konduksi disebabkan oleh pembawa muatan, yaitu elektron atau lubang, namun dasarnya transistor bipolar adalah aksi kegiatan dari pembawa muatan tersebut untuk menyebrangi daerah depletion zone. Depletion zone ini terbentuk karena transistor tersebut diberikan tegangan bias terbalik, oleh tegangan yang diberikan di antara basis dan emiter. Walau transistor terlihat seperti dibentuk oleh dua diode yang disambungkan, sebuah transistor sendiri tidak bisa dibuat dengan menyambungkan dua diode. Untuk membuat transistor, bagian-bagiannya harus dibuat dari sepotong kristal silikon, dengan sebuah daerah basis yang sangat tipis.

Cara Kerja Transistor Dari banyak tipe-tipe transistor modern, pada awalnya ada dua tipe

dasar transistor, bipolar junction transistor (BJT atau transistor bipolar) dan field-effect transistor (FET), yang masing-masing bekerja secara berbeda.

Transistor bipolar dinamakan demikian karena kanal konduksi utamanya menggunakan dua polaritas pembawa muatan: elektron dan lubang, untuk membawa arus listrik. Dalam BJT, arus listrik utama harus melewati satu daerah/lapisan pembatas dinamakan depletion zone, dan ketebalan lapisan ini dapat diatur dengan kecepatan tinggi dengan tujuan untuk mengatur aliran arus utama tersebut.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 43

Page 50: Dasar Mekatronika

FET (juga dinamakan transistor unipolar) hanya menggunakan satu jenis pembawa muatan (elektron atau hole, tergantung dari tipe FET). Dalam FET, arus listrik utama mengalir dalam satu kanal konduksi sempit dengan depletion zone di kedua sisinya (dibandingkan dengan transistor bipolar dimana daerah Basis memotong arah arus listrik utama). Dan ketebalan dari daerah perbatasan ini dapat dirubah dengan perubahan tegangan yang diberikan, untuk merubah ketebalan kanal konduksi tersebut. Lihat artikel untuk masing-masing tipe untuk penjelasan yang lebih lanjut.

Jenis-Jenis Transistor

Berbagai macam Transistor (Dibandingkan dengan pita ukur centimeter)

Simbol Transistor dari Berbagai Tipe Secara umum, transistor

dapat dibeda-bedakan berdasarkan banyak kategori: • Materi semikonduktor: Germanium, Silikon, Gallium Arsenide • Kemasan fisik: Through Hole Metal, Through Hole Plastic,

Surface Mount, IC, dan lain-lain • Tipe: UJT, BJT, JFET, IGFET (MOSFET), IGBT, HBT, MISFET,

VMOSFET, MESFET, HEMT, dan lain-lain • Polaritas: NPN atau N-channel, PNP atau P-channel

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 44

Page 51: Dasar Mekatronika

• Maximum kapasitas daya: Low Power, Medium Power, High Power

• Maximum frekwensi kerja: Low, Medium, atau High Frequency, RF transistor, Microwave, dan lain-lain

• Aplikasi: Amplifier, Saklar, General Purpose, Audio, Tegangan Tinggi, dan lain-lain

BJT

BJT (Bipolar Junction Transistor) adalah salah satu dari dua jenis transistor. Cara kerja BJT dapat dibayangkan sebagai dua dioda yang terminal positif atau negatifnya berdempet, sehingga ada tiga terminal. Ketiga terminal tersebut adalah emiter (E), kolektor (C), dan basis (B).

Perubahan arus listrik dalam jumlah kecil pada terminal basis dapat menghasilkan perubahan arus listrik dalam jumlah besar pada terminal kolektor. Prinsip inilah yang mendasari penggunaan transistor sebagai penguat elektronik. Rasio antara arus pada koletor dengan arus pada basis biasanya dilambangkan dengan β atau hFE. β biasanya berkisar sekitar 100 untuk transistor-transisor BJT.

FET FET dibagi menjadi dua keluarga: Junction FET (JFET) dan Insulated

Gate FET (IGFET) atau juga dikenal sebagai Metal Oxide Silicon (atau Semiconductor) FET (MOSFET). Berbeda dengan IGFET, terminal gate dalam JFET membentuk sebuah dioda dengan kanal (materi semikonduktor antara Source dan Drain). Secara fungsinya, ini membuat N-channel JFET menjadi sebuah versi solid-state dari tabung vakum, yang juga membentuk sebuah dioda antara antara grid dan katode. Dan juga, keduanya (JFET dan tabung vakum) bekerja di "depletion mode", keduanya memiliki impedansi input tinggi, dan keduanya menghantarkan arus listrik dibawah kontrol tegangan input.

FET lebih jauh lagi dibagi menjadi tipe enhancement mode dan depletion mode. Mode menandakan polaritas dari tegangan gate dibandingkan dengan source saat FET menghantarkan listrik. Jika kita ambil N-channel FET sebagai contoh: dalam depletion mode, gate adalah negatif dibandingkan dengan source, sedangkan dalam enhancement mode, gate adalah positif. Untuk kedua mode, jika tegangan gate dibuat lebih positif, aliran arus di antara source dan drain akan meningkat. Untuk P-channel FET, polaritas-polaritas semua dibalik. Sebagian besar IGFET adalah tipe enhancement mode, dan hampir semua JFET adalah tipe depletion mode. kalau perlu mendesain sinyal level meter, histeresis pengatur suhu, osilator, pembangkit sinyal, penguat audio, penguat mic, filter aktif semisal tapis nada bass, mixer, konverter sinyal, integrator, differensiator, komparator dan sederet aplikasi lainnya, selalu pilihan yang mudah adalah dengan membolak-balik data komponen yang bernama op-amp. Komponen elektronika analog dalam kemasan IC (integrated circuits) ini memang adalah komponen serbaguna dan dipakai pada

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 45

Page 52: Dasar Mekatronika

banyak aplikasi hingga sekarang. Hanya dengan menambah beberapa resitor dan potensiometer, dalam sekejap (atau dua kejap) sebuah pre-amp audio kelas B sudah dapat jadi dirangkai di atas sebuah proto-board. Penguat diferensial

Op-amp dinamakan juga dengan penguat diferensial (differential amplifier). Sesuai dengan istilah ini, op-amp adalah komponen IC yang memiliki 2 input tegangan dan 1 output tegangan, dimana tegangan output-nya adalah proporsional terhadap perbedaan tegangan antara kedua inputnya itu. Penguat diferensial seperti yang ditunjukkan pada gambar-1 merupakan rangkaian dasar dari sebuah opamp.

gambar-1 : penguat diferensial Pada rangkaian yang demikian, persamaan pada titik Vout adalah Vout

= A(v1-v2) dengan A adalah nilai penguatan dari penguat diferensial ini. Titik input v1 dikatakan sebagai input non-iverting, sebab tegangan vout satu phase dengan v1. Sedangkan sebaliknya titik v2 dikatakan input inverting sebab berlawanan phasa dengan tengangan vout.

Diagram Op-amp Op-amp di dalamnya terdiri dari beberapa bagian, yang pertama

adalah penguat diferensial, lalu ada tahap penguatan (gain), selanjutnya ada rangkaian penggeser level (level shifter) dan kemudian penguat akhir yang biasanya dibuat dengan penguat push-pull kelas B. Gambar-2(a) berikut menunjukkan diagram dari op-amp yang terdiri dari beberapa bagian tersebut.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 46

Page 53: Dasar Mekatronika

Simbol op-amp adalah seperti pada gambar-2(b) dengan 2 input, non-

inverting (+) dan input inverting (-). Umumnya op-amp bekerja dengan dual supply (+Vcc dan –Vee) namun banyak juga op-amp dibuat dengan single supply (Vcc – ground). Simbol rangkaian di dalam op-amp pada gambar-2(b) adalah parameter umum dari sebuah op-amp. Rin adalah resitansi input yang nilai idealnya infinit (tak terhingga). Rout adalah resistansi output dan besar resistansi idealnya 0 (nol). Sedangkan AOL adalah nilai penguatan open loop dan nilai idealnya tak terhingga.

Saat ini banyak terdapat tipe-tipe op-amp dengan karakterisktik yang spesifik. Op-amp standard type 741 dalam kemasan IC DIP 8 pin sudah dibuat sejak tahun 1960-an. Untuk tipe yang sama, tiap pabrikan mengeluarkan seri IC dengan insial atau nama yang berbeda. Misalnya dikenal MC1741 dari motorola, LM741 buatan National Semiconductor, SN741 dari Texas Instrument dan lain sebagainya. Tergantung dari teknologi pembuatan dan desain IC-nya, karakteristik satu op-amp dapat berbeda dengan opamp lain. Tabel-1 menunjukkan beberapa parameter op-amp yang penting beserta nilai idealnya dan juga contoh real dari parameter LM714.

tabel-1 : parameter op-amp yang penting

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 47

Page 54: Dasar Mekatronika

Penguatan Open-loop Op-amp idealnya memiliki penguatan open-loop (AOL) yang tak

terhingga. Namun pada prakteknya opamp semisal LM741 memiliki penguatan yang terhingga kira-kira 100.000 kali. Sebenarnya dengan penguatan yang sebesar ini, sistem penguatan opamp menjadi tidak stabil. Input diferensial yang amat kecil saja sudah dapat membuat outputnya menjadi saturasi.

Unity-gain frequency

Op-amp ideal mestinya bisa bekerja pada frekuensi berapa saja mulai dari sinyal dc sampai frekuensi giga Herzt. Parameter unity-gain frequency menjadi penting jika op-amp digunakan untuk aplikasi dengan frekuensi tertentu. Parameter AOL biasanya adalah penguatan op-amp pada sinyal DC. Response penguatan op-amp menurun seiring dengan menaiknya frekuenci sinyal input. Op-amp LM741 misalnya memiliki unity-gain frequency sebesar 1 MHz. Ini berarti penguatan op-amp akan menjadi 1 kali pada frekuensi 1 MHz. Jika perlu merancang aplikasi pada frekeunsi tinggi, maka pilihlah op-amp yang memiliki unity-gain frequency lebih tinggi.

Slew rate Di dalam op-amp kadang ditambahkan beberapa kapasitor untuk

kompensasi dan mereduksi noise. Namun kapasitor ini menimbulkan kerugian yang menyebabkan response op-amp terhadap sinyal input menjadi lambat. Op-amp ideal memiliki parameter slew-rate yang tak terhingga. Sehingga jika input berupa sinyal kotak, maka outputnya juga kotak. Tetapi karena ketidak idealan op-amp, maka sinyal output dapat berbentuk ekponensial. Sebagai contoh praktis, op-amp LM741 memiliki slew-rate sebesar 0.5V/us. Ini berarti perubahan output op-amp LM741 tidak bisa lebih cepat dari 0.5 volt dalam waktu 1 us.

Parameter CMRR Ada satu parameter yang dinamakan CMRR (Commom Mode

Rejection Ratio). Parameter ini cukup penting untuk menunjukkan kinerja op-amp tersebut. Op-amp dasarnya adalah penguat diferensial dan mestinya tegangan input yang dikuatkan hanyalah selisih tegangan antara input v1 (non-inverting) dengan input v2 (inverting). Karena ketidak-idealan op-amp, maka tegangan persamaan dari kedua input ini ikut juga dikuatkan. Parameter CMRR diartikan sebagai kemampuan op-amp untuk menekan penguatan tegangan ini (common mode) sekecilkecilnya. CMRR didefenisikan dengan rumus CMRR = ADM/ACM yang dinyatakan dengan satuan dB. Contohnya op-amp dengan CMRR = 90 dB, ini artinya penguatan ADM (differential mode) adalah kira-kira 30.000 kali dibandingkan penguatan ACM (commom mode). Kalau CMRR-nya 30 dB, maka artinya perbandingannya kira-kira hanya 30 kali.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 48

Page 55: Dasar Mekatronika

Kalau diaplikasikan secara real, misalkan tegangan input v 1 = 5.05 volt dan tegangan v2 = 5 volt, maka dalam hal ini tegangan diferensialnya (differential mode) = 0.05 volt dan tegangan persamaan-nya (common mode) adalah 5 volt. Pembaca dapat mengerti dengan CMRR yang makin besar maka op-amp diharapkan akan dapat menekan penguatan sinyal yang tidak diinginkan (common mode) sekecil-kecilnya. Jika kedua pin input dihubung singkat dan diberi tegangan, maka output op-amp mestinya nol. Dengan kata lain, op-amp dengan CMRR yang semakin besar akan semakin baik.

LM714 termasuk jenis op-amp yang sering digunakan dan banyak dijumpai dipasaran. Contoh lain misalnya TL072 dan keluarganya sering digunakan untuk penguat audio. Tipe lain seperti LM139/239/339 adalah opamp yang sering dipakai sebagai komparator. Di pasaran ada banyak tipe op-amp. Cara yang paling baik pada saat mendesain aplikasi dengan op-amp adalah dengan melihat dulu karakteristik opamp tersebut. Saat ini banyak op-amp yang dilengkapi dengan kemampuan seperti current sensing, current limmiter, rangkaian kompensasi temperatur dan lainnya. Ada juga op-amp untuk aplikasi khusus seperti aplikasi frekuesi tinggi, open colector output, high power output dan lain sebagainya. Data karakteristik op-amp yang lengkap, ya ada di datasheet.

Analisa Rangkaian Op-Amp Popular

Operational Amplifier atau di singkat op-amp merupakan salah satu komponen analog yang popular digunakan dalam berbagai aplikasi rangkaian elektronika. Aplikasi op-amp popular yang paling sering dibuat antara lain adalah rangkaian inverter, non-inverter, integrator dan differensiator. Pada pokok bahasan kali ini akan dipaparkan beberapa aplikasi opamp yang paling dasar, dimana rangkaian feedback (umpan balik) negatif memegang peranan penting. Secara umum, umpanbalik positif akan menghasilkan osilasi sedangkan umpanbalik negatif menghasilkan penguatan yang dapat terukur.

Op-amp ideal

Op-amp pada dasarnya adalah sebuah differential amplifier (penguat diferensial) yang memiliki dua masukan. Input (masukan) op-amp seperti yang telah dimaklumi ada yang dinamakan input inverting dan non-inverting. Op-amp ideal memiliki open loop gain (penguatan loop terbuka) yang tak terhingga besarnya. Seperti misalnya op-amp LM741 yang sering digunakan oleh banyak praktisi elektronika, memiliki karakteristik tipikal open loop gain sebesar 10

4 ~ 10

5. Penguatan yang sebesar ini membuat

opamp menjadi tidak stabil, dan penguatannya menjadi tidak terukur (infinite). Disinilah peran rangkaian negative feedback (umpanbalik negatif) diperlukan, sehingga op-amp dapat dirangkai menjadi aplikasi dengan nilai penguatan yang terukur (finite). Impedasi input op-amp ideal mestinya adalah tak terhingga, sehingga mestinya arus input pada tiap

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 49

Page 56: Dasar Mekatronika

masukannya adalah 0. Sebagai perbandingan praktis, op-amp LM741 memiliki impedansi input Zin = 10

6 Ohm. Nilai impedansi ini masih relatif

sangat besar sehingga arus input op-amp LM741 mestinya sangat kecil. Ada dua aturan penting dalam melakukan analisa rangkaian op-amp

berdasarkan karakteristik op-amp ideal. Aturan ini dalam beberapa literatur dinamakan golden rule, yaitu :

Aturan 1 : Perbedaan tegangan antara input v+ dan v-adalah nol (v+ - v-= 0 atau v+ = v-) Aturan 2 : Arus pada

input Op-amp adalah nol (i+ = i- = 0)

Inilah dua aturan penting op-amp ideal yang digunakan untuk menganalisa rangkaian op-amp. Inverting amplifier

Rangkaian dasar penguat inverting adalah seperti yang ditunjukkan pada gambar 1, dimana sinyal masukannya dibuat melalui input inverting. Seperti tersirat pada namanya, pembaca tentu sudah menduga bahwa fase keluaran dari penguat inverting ini akan selalu berbalikan dengan inputnya. Pada rangkaian ini, umpanbalik negatif di bangun melalui resistor R2.

gambar 1 : penguat inverter

Input non-inverting pada rangkaian ini dihubungkan ke ground, atau v+ = 0. Dengan mengingat dan menimbang aturan 1 (lihat aturan 1), maka akan dipenuhi v-= v+ = 0. Karena nilainya = 0 namun tidak terhubung langsung ke ground, input opamp v- pada rangkaian ini dinamakan virtual ground.

Dengan fakta ini, dapat dihitung tegangan jepit pada R1 adalah vin – v- = vin dan tegangan jepit pada reistor R2 adalah vout – v-= vout. Kemudian dengan menggunakan aturan 2, di ketahui bahwa : iin + iout = i- = 0, karena menurut aturan 2, arus masukan op-amp adalah 0. iin + iout = vin/R1 + vout/R2 = 0

Selanjutnya vout/R2 = - vin/R1 .... atau vout/vin = - R2/R1

Jika penguatan G didefenisikan sebagai perbandingan tegangan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 50

Page 57: Dasar Mekatronika

keluaran terhadap tegangan masukan maka dapat ditulis

Impedansi rangkaian inverting didefenisikan sebagai impedansi input dari sinyal masukan terhadap ground. Karena input inverting (-) pada rangkaian ini diketahui adalah 0 (virtual ground) maka impendasi rangkaian ini tentu saja adalah Zin = R1.

Non-Inverting amplifier

Prinsip utama rangkaian penguat non-inverting adalah seperti yang diperlihatkan pada gambar 2 berikut ini. Seperti namanya, penguat ini memiliki masukan yang dibuat melalui input non-inverting. Dengan demikian tegangan keluaran rangkaian ini akan satu fasa dengan tegangan inputnya. Untuk menganalisa rangkaian penguat op-amp non inverting, caranya sama seperti menganalisa rangkaian inverting.

gambar 2 : penguat non-inverter

Dengan menggunakan aturan 1 dan aturan 2, kita uraikan dulu beberapa fakta yang ada, antara lain :

vin = v+ v+ = v-= vin ..... lihat aturan 1. Dari sini ketahui tegangan jepit pada R2 adalah vout

– v-= vout – vin, atau iout = (vout-vin)/R2. Lalu tegangan jepit pada R1 adalah v-= vin, yang berarti arus iR1 = vin/R1.

Hukum kirchkof pada titik input inverting merupakan fakta yang mengatakan bahwa : iout + i(-) = iR1 Aturan 2 mengatakan bahwa i(-) = 0 dan jika disubsitusi ke rumus yang

sebelumnya, maka diperoleh iout = iR1 dan Jika ditulis dengan tegangan jepit masing-masing maka

diperoleh (vout – vin)/R2 = vin/R1 yang kemudian dapat disederhanakan

menjadi : vout = vin (1 + R2/R1)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 51

Page 58: Dasar Mekatronika

Jika penguatan G adalah perbandingan tegangan keluaran terhadap tegangan masukan, maka didapat penguatan op-amp non-inverting :

Impendasi untuk rangkaian Op-amp non inverting adalah impedansi dari input non-inverting op-amp tersebut. Dari datasheet, LM741 diketahui memiliki impedansi input Zin = 10

8 to 10

12 Ohm.

Integrator

Opamp bisa juga digunakan untuk membuat rangkaian-rangkaian dengan respons frekuensi, misalnya rangkaian penapis (filter). Salah satu contohnya adalah rangkaian integrator seperti yang ditunjukkan pada gambar 3. Rangkaian dasar sebuah integrator adalah rangkaian op-amp inverting, hanya saja rangkaian umpanbaliknya (feedback) bukan resistor melainkan menggunakan capasitor C.

gambar 3 : integrator

Mari kita coba menganalisa rangkaian ini. Prinsipnya sama dengan menganalisa rangkaian opamp inverting. Dengan menggunakan 2 aturan opamp (golden rule) maka pada titik inverting akan didapat hubungan matematis :

iin = (vin – v-)/R = vin/R , dimana v- = 0 (aturan1) iout = -C d(vout – v-)/dt = -C dvout/dt; v- = 0 iin = iout ; (aturan 2)

Maka jika disubtisusi, akan diperoleh persamaan :

iin = iout = vin/R = -C dvout/dt, atau dengan kata lain

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 52

Page 59: Dasar Mekatronika

Dari sinilah nama rangkaian ini diambil, karena secara matematis tegangan keluaran rangkaian ini merupakan fungsi integral dari tegangan input. Sesuai dengan nama penemunya, rangkaian yang demikian dinamakan juga rangkaian Miller Integral. Aplikasi yang paling populer menggunakan rangkaian integrator adalah rangkaian pembangkit sinyal segitiga dari inputnya yang berupa sinyal kotak.

Dengan analisa rangkaian integral serta notasi Fourier, dimana

f = 1/t dan

penguatan integrator tersebut dapat disederhanakan dengan rumus

Sebenarnya rumus ini dapat diperoleh dengan cara lain, yaitu dengan mengingat rumus dasar penguatan opamp inverting G = - R2/R1. Pada rangkaian integrator (gambar 3) tersebut diketahui

Dengan demikian dapat diperoleh penguatan integrator tersebut seperti persamaan (5) atau agar terlihat respons frekuensinya dapat juga ditulis dengan

Karena respons frekuensinya yang demikian, rangkain integrator ini merupakan dasar dari low pass filter. Terlihat dari rumus tersebut secara matematis, penguatan akan semakin kecil (meredam) jika frekuensi sinyal input semakin besar.

Pada prakteknya, rangkaian feedback integrator mesti diparalel dengan sebuah resistor dengan nilai misalnya 10 kali nilai R atau satu

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 53

Page 60: Dasar Mekatronika

besaran tertentu yang diinginkan. Ketika inputnya berupa sinyal dc (frekuensi = 0), kapasitor akan berupa saklar terbuka. Jika tanpa resistor feedback seketika itu juga outputnya akan saturasi sebab rangkaian umpanbalik op-amp menjadi open loop (penguatan open loop opamp ideal tidak berhingga atau sangat besar). Nilai resistor feedback sebesar 10R akan selalu menjamin output offset voltage (offset tegangan keluaran) sebesar 10x sampai pada suatu frekuensi cutoff tertentu.

Differensiator

Kalau komponen C pada rangkaian penguat inverting di tempatkan di depan, maka akan diperoleh rangkaian differensiator seperti pada gambar 4. Dengan analisa yang sama seperti rangkaian integrator, akan diperoleh persamaan penguatannya :

Rumus ini secara matematis menunjukan bahwa tegangan keluaran Vout pada rangkaian ini adalah differensiasi dari tegangan input vin. Contoh praktis dari hubungan matematis ini adalah jika tegangan input berupa sinyal segitiga, maka outputnya akan mengahasilkan sinyal kotak.

gambar 4 : differensiator

Bentuk rangkain differensiator adalah mirip dengan rangkaian inverting. Sehingga jika berangkat dari rumus penguat inverting

G = -R2/R1 dan pada rangkaian differensiator diketahui :

maka jika besaran ini disubtitusikan akan didapat rumus penguat differensiator

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 54

Page 61: Dasar Mekatronika

Dari hubungan ini terlihat sistem akan meloloskan frekuensi tinggi (high pass filter), dimana besar penguatan berbanding lurus dengan frekuensi. Namun demikian, sistem seperti ini akan menguatkan noise yang umumnya berfrekuensi tinggi. Untuk praktisnya, rangkain ini dibuat dengan penguatan dc sebesar 1 (unity gain). Biasanya kapasitor diseri dengan sebuah resistor yang nilainya sama dengan R. Dengan cara ini akan diperoleh penguatan 1 (unity gain) pada nilai frekuensi cutoff tertentu. Uraian diatas adalah rumusan untuk penguatan opamp ideal. Pada prakteknya ada beberapa hal yang mesti diperhatikan dan ditambahkan pada rangkaian opamp. Antara lain, Tegangan Ofset (Offset voltage), Arus Bias (Bias Current), Arus offset (offset current) dan lain sebagainya. Umumnya ketidak ideal-an opamp dan bagaimana cara mengatasinya diterangkan pada datasheet opamp dan hal ini spesifik untuk masing-masing pabrikan.

Dari Mikro ke Nano

Orde mikro (m) dalam satuan menunjukkan nilai sepersejuta (10-6

). Satu mikrometer (1mm) misalnya, nilainya sama dengan sepersejuta meter (10

-6 m). Sedang nano (n) menunjukkan nilai seper satu milyar (10

-

9). Satu nano gram (1 ng) nilainya sama dengan seper satu milyar gram

(10-9

g). Orde mikro adalah 1000 kali lebih besar dibandingkan orde nano, atau sebaliknya orde nano adalah seperseribu dari orde mikro.

Kalau dalam dunia elektronika kita mengenal komponen yang disebut mikrochip, berarti di dalam chip elektronik itu terdapat ribuan bahkan jutaan komponen renik berorde mikro. Jika teknologi elektronika kini mulai bergeser dari mikroelektronika ke nanoelektronika, hal ini berarti bahwa komponenkomponen elektronik yang digunakan berode nano atau setingkat molekuler, bagian terkecil dari suatu materi. Berarti pula seribu kali lebih kecil dibandingkan ukuran komponen yang ada dalam mikrochip saat ini.

Sekitar tahun 1920-an, lahir konsep baru di beberapa pusat penelitian fisika di Heidelberg, Gottingen, dan Kopenhagen. Konsep baru tersebut adalah kuantum mekanika atau kuantum fisika yang semula dipelopori oleh Max Planck dan Albert Einstein, kemudian dilanjutkan oleh ilmuwan seperti Niels Bohr, Schrodinger, Max Born, Samuel A. Goudsmith, Heisenberg dan lain-lain. Konsep ini secara fundamental mengubah prinsip kontinuitas energi menjadi konsep diskrit yang benar-benar mengubah fikiran yang sudah berjalan lebih dari satu abad. Sisi lain yang tak kalah mengejutkan sebagai akibat lahirnya konsep kuantum in adalah lahirnya fisika zat padat oleh F. Seitz dan fisika semikonduktor oleh J. Bardeen di Amerika Serikat, W.B. Sockley di Inggris dan Love di Rusia pada tahun 1940.

Kemajuan riset dalam bidang fisika telah mengantarkan para fisikawan dapat meneliti dan mempelajari berbagai sifat kelistrikan zat padat. Dari

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 55

Page 62: Dasar Mekatronika

penelitian ini telah ditemukan bahan semikonduktor yang mempunyai sifat listrik antara konduktor dan isolator. Penemuan bahan semikonduktor kemudian disusul dengan penemuan komponen elektronik yang disebut transistor. Dalam perjalanan berikutnya, transistor tidak hanya mengubah secara mencolok berbagai aspek kehidupan moderen, tetapi transistor tergolong salah satu dari beberapa penemuan moderen yang memajukan teknologi dengan biaya rendah.

Transistor dapat dihubungkan pada rangkaian elektronik sebagai komponen terpisah atau dalam bentuk terpadu pada suatu chip. Pada tahun 1958, insinyur di dua perusahaan elektronik, Kilby (Texas Instrument) dan Robert Noyce (Fairchild) telah memperkenalkan ide rangkaian terpadu monolitik yang dikenal dengan nama IC (integrated circuit). Kemajuan dalam bidang mikroelektronika ini tidak terlepas dari penemuan bahan semikonduktor maupun transistor. Komputer digital berkecepatan tinggi bisa terwujud berkat penggunaan transistor dalam IC yang merupakan kumpulan jutaan transistor renik yang menempati ruangan sangat kecik, yang semula hanya bisa ditempati oleh sebuah transistor saja.

Serba Kecil Berbagai produk monumental dari perkembangan teknologi elektronika

hadir di sekeliling kita. Namun teknologi mikroelektronika bukan sekedar menghadirkan produk, tetapi juga menampilkan produk itu dalam bentuk dan ukuran yang makin lama makin kecil dengan kemampuan kerja yang lebih tinggi. Dapat kita sebut disini sebagai contoh adalah munculnya komputer dan telepon seluler (ponsel). Bentuk dini komputer moderen telah menggunakan elektronika pada rangkaian-rangkaian logika, memori dan sistim angka biner. Komputer yang dibuat oleh J. Presper Eckert dan John W. Mauchly itu diberi nama ABC (Atonosoff-Berry Computer) yang diperkenalkan pada tahun 1942. Komputer ini berukuran sangat besar, sebesar salah satu kamar di rumah kita, karena di dalamnya menggunakan 18 ribu tabung hampa.

Komputer elektronik generasi pertama yang diberi nama ENIAC (Electronic Numerical Integrator And Computer) dikembangkan pada zaman Perang Dunia Kedua dan dipakai untuk menghitung tabel lintasan peluru dalam kegiatan militer. Pergeseran penting dalam elektronika telah terjadi pada akhir tahun 1940an. Fungsi tabung-tabung elektronik saat itu mulai digantikan oleh transistor yang dibuat dari bahan semikonduktor. Penggunaan transistor yang mulai mencuat ke permukaan pada tahun '70-an ternyata memiliki beberapa kelebihan dibandingkan tabung hampa elektronik, antara lain :

• Transistor lebih sederhana sehingga dapat diproduksi dengan biaya lebih rendah.

• Transistor mengkonsumsi daya yang lebih rendah dibandingkan tabung hampa.

• Transistor dapat dioperasikan dalam keadaan dingin sehingga tidak perlu waktu untuk pemanasan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 56

Page 63: Dasar Mekatronika

• Ukuran transistor jauh lebih kecil dibandingkan tabung hampa. • Daya tahan transistor lebih lama dan dapat mencapai beberapa

dasawarsa. • Transistor mempunyai daya tahan yang tinggi tehadap goncangan

dan getaran.

Komputer generasi kedua yang telah menggunakan transistor adalah IBM 1401 yang diluncurkan oleh IBM pada tahun 1959. Sebelumnya juga telah diluncurkan IBM 701 pada tahun 1953 dan IBM 650 pada tahun 1954. Munculnya rangkaian terpadu atau integrated circuit (IC) ternyata telah menggusur dan mengakhiri riwayat keberadaan transistor. Komputer generasi ketiga adalah sistim 360 yang juga diluncurkan oleh IBM. Dalam komputer ini telah menggunakan IC, yang kemudian disusul dengan penggunaan large scale integration (LSI), dan selanjutnya very large scale integration (VLSI). Pada tahun 1971, MITS Inc. meluncurkan ALTAIR, komputer mikro pertama yang menggunakan mikroprosesor Intel 8080. Komputer elektronik generasi berikutnya dikembangkan dengan menggunakan mikroprosesor yang makin renik sehingga secara fisik tampil dengan ukuran yang lebih kecil, namun dengan kecepatan kerja yang jauh lebih tinggi. Pengaruh kemajuan dalam teknologi elektronika ini demikian pesatnya mengubah wajah teknologi dalam bidang telekomunikasi dan automatisasi. Kemajuan dalam kedua bidang tersebut menyebabkan kontribusi sain ke dalam teknologi yang sangat besar, hampir mencapai 50 % dalam proses, sehingga teknologi semacam ini disebut High-Technology.

Selain pada komputer, kita juga bisa menyaksikan produk elektronik berupa ponsel yang proses miniaturisasinya seakan tak pernah berhenti, baik dalam aspek disain produknya maupun dalam aspek teknologi mikroelektronikanya. Sebagai anak kandung jagad mikroelektronika, kehadiran ponsel selalu mengikuti perkembangan teknologi mikroelektronika sehingga dapat tampil semakin mungil dan lebih multi fungsi dibandingkan generasi sebelumnya. Mengecilnya ponsel juga didukung oleh kemampuan para ahli dalam mengintegrasikan berbagai komponen baru yang ukurannya lebih kecil seperti mikrochip, yang kemampuannya selalu meningkat seiring dengan perjalanan waktu, dan semakin banyak fungsi yang dapat dijalankannya. Kini ponsel dengan berbagai fasilitas di dalamnya bisa masuk ke dalam genggaman tangan.

Beralih ke Nanoteknologi Perkembangan teknologi telah mengantarkan elektronika beralih dari

orde mikro ke nano, yang berarti komponen elektronika kelak dapat dibuat dalam ukuran seribu kali lebih kecil dibandingkan generasi mikroelektronika sebelumnya. Pada awal tahun '90-an, Dr. Rohrer, penemu tunneling electron microscope dan pemenang hadiah Nobel bidang fisika tahun 1986, meramalkan bahwa mikroelektronika akan segera digantikan oleh nanoelektronika atau quantum dot. Sedang prof. Petel (president UCLA) meramalkan bahwa teknologi photonik akan menggantikan mikroelektronika di awal abad 21 ini. Feyman pada akhir

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 57

Page 64: Dasar Mekatronika

tahun 1959 juga telah meramalkan akan hadirnya teknologi ini pada abad 21.

Para perintis nanoteknologi, suatu bidang baru teknologi miniatur, telah melihat kemungkinan penggunaan materi seukuran molekul untuk membuat komponen elektronika di masa depan. Dalam teknologi ini, ukuran sirkuit-sirkuit elektronika bisa jadi akan lebih kecil dibandingkan garis tengah potongan rambut atau bahkan seukuran dengan diameter sel darah manusia. Ukuran transistor di masa mendatang akan menjadi sangat kecil berskala atom yang disebut quantum dot.

Suatu ketika di bulam Mei 1988, dalam acara konferensi pengembangan antariksa di Pittsburg, K. Eric Drexler, pakar komputer dari Universitas Stanford, Amerika Serikat, mengemukakan tentang peluang pengembangan nanoteknologi di masa mendatang. Teknologi ini didasarkan pada kemampuan membuat perangkat elektronika dengan ketelitian setingkat ukuran atom. Drexler melihat bahwa makhluk hidup merupakan bukti adanya nanoteknologi. Dexler menguraikan kemungkinan pembuatan alat seukuran molekul yang proses kerjanya menyerupai molekul dari protein yang menjalankan fungsinya di dalam tubuh manusia. Drexler juga meramalkan bahwa zaman nanoteknologi akan dimulai memasuki awal milenium tiga ini.

Dengan beralih ke nanoteknologi ini, tentu saja bidang yang paling banyak dipengaruhi adalah dalam disain komputer. Molekul-molekul akan dihimpun sehingga membentuk komponen elektronika yang mampu menjalankan tugas tertentu. Suatu terobosan besar akan terjadi bila para pakar dapat mewujudkan hal tersebut untuk membuat nanokomputer. Dengan komponen seukuran molekul, nanokomputer dapat masuk ke dalam kotak seukuran satu mikrometer. Komputer ini mampu bekerja ratusan ribu kali lebih cepat dibandingkan mikrokomputer elektronik yang ada saat ini.

Penelitian yang kini sedang dilakukan oleh para pakar adalah mengembangkan metode penggantian dengan materi protein terhadap molekul, alat memori dan struktur lain yang kini ada di dalam komputer. Jacob Hanker, profesor rekayasa biomedik dari Universitas North Caroline, AS, telah berhasil melakukan percobaan membuat komponen semikonduktor dengan bahan-bahan biologis. Mesin-mesin elektronik yang dinamai juga kuantum elektronik akan memiliki kemampuan mengolah pulsa yang jauh lebih besar. Kuantum teknologi ini akan mampu menerobos keterbatasan dan kejenuhan mikroelektronika yang ada saat ini. Perusahaan komputer IBM saat ini sedang merancang komputer dengan teknologi kuantum yang disebut kuantum komputer. Jika komputer tersebut telah memasuki pasar, maka komputer generasi pendahulu yang masih menggunakan teknologi mikroelektronika bakal tersingkir. Teknologi baru ini bakal segera mengubah sistim jaringan telekomunikasi di awal milenium tiga ini. Teknologi ini juga akan membawa dunia kepada ciri-ciri baru dalam perangkat teknologinya, yaitu : berukuran sangat kecil, berkerapatan tinggi, kecepatan kerjanya tinggi, bermulti fungsi, memiliki kontrol yang serba automatik, hemat dalam konsumsi energi dan ramah lingkungan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 58

Page 65: Dasar Mekatronika

3.4.6 Kapasitor

Prinsip dasar dan spesifikasi elektriknya Kapasitor adalah komponen elektronika yang dapat menyimpan

muatan listrik. Struktur sebuah kapasitor terbuat dari 2 buah plat metal yang dipisahkan oleh suatu bahan dielektrik. Bahan-bahan dielektrik yang umum dikenal misalnya udara vakum, keramik, gelas dan lain-lain. Jika kedua ujung plat metal diberi tegangan listrik, maka muatan-muatan positif akan mengumpul pada salah satu kaki (elektroda) metalnya dan pada saat yang sama muatan-muatan negatif terkumpul pada ujung metal yang satu lagi. Muatan positif tidak dapat mengalir menuju ujung kutup negatif dan sebaliknya muatan negatif tidak bisa menuju ke ujung kutup positif, karena terpisah oleh bahan dielektrik yang non-konduktif. Muatan elektrik ini "tersimpan" selama tidak ada konduksi pada ujungujung kakinya. Di alam bebas, phenomena kapasitor ini terjadi pada saat terkumpulnya muatan-muatan positif dan negatif di awan.

prinsip dasar kapasitor

Kapasitansi Kapasitansi didefenisikan sebagai kemampuan dari suatu kapasitor

untuk dapat menampung muatan elektron. Coulombs pada abad 18 menghitung bahwa 1 coulomb = 6.25 x 10

18 elektron. Kemudian Michael

Faraday membuat postulat bahwa sebuah kapasitor akan memiliki kapasitansi sebesar 1 farad jika dengan tegangan 1 volt dapat memuat muatan elektron sebanyak 1 coulombs. Dengan rumus dapat ditulis :

Q = CV …………….(1)

Q = muatan elektron dalam C (coulombs)C = nilai kapasitansi dalam F (farads)V = besar tegangan dalam V (volt)

Dalam praktek pembuatan kapasitor, kapasitansi dihitung dengan mengetahui luas area plat metal (A), jarak (t) antara kedua plat metal (tebal dielektrik) dan konstanta (k) bahan dielektrik. Dengan rumusan dapat ditulis sebagai berikut :

C = (8.85 x 10-12

) (k A/t) ...(2)

Berikut adalah tabel contoh konstanta (k) dari beberapa bahan dielektrik yang disederhanakan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 59

Page 66: Dasar Mekatronika

Udara vakum Aluminium oksida Keramik Gelas Polyethylene

k = 1 k = 8 k = 100 - 1000 k = 8 k = 3

Untuk rangkain elektronik praktis, satuan farads adalah sangat besar

sekali. Umumnya kapasitor yang ada di pasar memiliki satuan uF (10-6

F), nF (10

-9 F) dan pF (10

-12 F). Konversi satuan penting diketahui untuk

memudahkan membaca besaran sebuah kapasitor. Misalnya 0.047uF dapat juga dibaca sebagai 47nF, atau contoh lain 0.1nF sama dengan 100pF. Tipe Kapasitor

Kapasitor terdiri dari beberapa tipe, tergantung dari bahan dielektriknya. Untuk lebih sederhana dapat dibagi menjadi 3 bagian, yaitu kapasitor electrostatic, electrolytic dan electrochemical.

Kapasitor Electrostatic Kapasitor electrostatic adalah kelompok kapasitor yang dibuat dengan

bahan dielektrik dari keramik, film dan mika. Keramik dan mika adalah bahan yang popular serta murah untuk membuat kapasitor yang kapasitansinya kecil. Tersedia dari besaran pF sampai beberapa uF, yang biasanya untuk aplikasi rangkaian yang berkenaan dengan frekuensi tinggi. Termasuk kelompok bahan dielektrik film adalah bahan-bahan material seperti polyester (polyethylene terephthalate atau dikenal dengan sebutan mylar), polystyrene, polyprophylene, polycarbonate, metalized paper dan lainnya.

Mylar, MKM, MKT adalah beberapa contoh sebutan merek dagang untuk kapasitor dengan bahan-bahan dielektrik film. Umumnya kapasitor kelompok ini adalah non-polar.

Kapasitor Electrolytic Kelompok kapasitor electrolytic terdiri dari kapasitor-kapasitor yang

bahan dielektriknya adalah lapisan metal-oksida. Umumnya kapasitor yang termasuk kelompok ini adalah kapasitor polar dengan tanda + dan - di badannya. Mengapa kapasitor ini dapat memiliki polaritas, adalah karena proses pembuatannya menggunakan elektrolisa sehingga terbentuk kutup positif anoda dan kutup negatif katoda.

Telah lama diketahui beberapa metal seperti tantalum, aluminium, magnesium, titanium, niobium, zirconium dan seng (zinc) permukaannya dapat dioksidasi sehingga membentuk lapisan metal-oksida (oxide film). Lapisan oksidasi ini terbentuk melalui proses elektrolisa, seperti pada proses penyepuhan emas. Elektroda metal yang dicelup kedalam larutan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 60

Page 67: Dasar Mekatronika

electrolit (sodium borate) lalu diberi tegangan positif (anoda) dan larutan electrolit diberi tegangan negatif (katoda). Oksigen pada larutan electrolyte terlepas dan mengoksidai permukaan plat metal. Contohnya, jika digunakan Aluminium, maka akan terbentuk lapisan Aluminium-oksida (Al2O3) pada permukaannya.

Kapasitor Elco

Dengan demikian berturut-turut plat metal (anoda), lapisan-metal-oksida dan electrolyte(katoda) membentuk kapasitor. Dalam hal ini lapisan-metaloksida sebagai dielektrik. Dari rumus (2) diketahui besar kapasitansi berbanding terbalik dengan tebal dielektrik. Lapisan metal-oksida ini sangat tipis, sehingga dengan demikian dapat dibuat kapasitor yang kapasitansinya cukup besar.

Karena alasan ekonomis dan praktis, umumnya bahan metal yang banyak digunakan adalah aluminium dan tantalum. Bahan yang paling banyak dan murah adalah Aluminium. Untuk mendapatkan permukaan yang luas, bahan plat Aluminium ini biasanya digulung radial. Sehingga dengan cara itu dapat diperoleh kapasitor yang kapasitansinya besar. Sebagai contoh 100uF, 470uF, 4700uF dan lain-lain, yang sering juga disebut kapasitor elco.

Bahan electrolyte pada kapasitor Tantalum ada yang cair tetapi ada juga yang padat. Disebut electrolyte padat, tetapi sebenarnya bukan larutan electrolit yang menjadi elektroda negatif-nya, melainkan bahan lain yaitu manganese-dioksida. Dengan demikian kapasitor jenis ini bisa memiliki kapasitansi yang besar namun menjadi lebih ramping dan mungil. Selain itu karena seluruhnya padat, maka waktu kerjanya (lifetime) menjadi lebih tahan lama. Kapasitor tipe ini juga memiliki arus bocor yang sangat kecil Jadi dapat dipahami mengapa kapasitor Tantalum menjadi relatif mahal.

Kapasitor Electrochemical Satu jenis kapasitor lain adalah kapasitor electrochemical. Termasuk

kapasitor jenis ini adalah batere dan accu. Pada kenyataanya batere dan accu adalah kapasitor yang sangat baik, karena memiliki kapasitansi yang besar dan arus bocor (leakage current) yang sangat kecil. Tipe kapasitor jenis ini juga masih dalam pengembangan untuk mendapatkan kapasitansi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 61

Page 68: Dasar Mekatronika

yang besar namun kecil dan ringan, misalnya untuk applikasi mobil elektrik dan telepon selular.

Membaca Kapasitansi Pada kapasitor yang berukuran besar, nilai kapasitansi umumnya

ditulis dengan angka yang jelas. Lengkap dengan nilai tegangan maksimum dan polaritasnya. Misalnya pada kapasitor elco dengan jelas tertulis kapasitansinya sebesar 22uF/25v.

Kapasitor yang ukuran fisiknya mungil dan kecil biasanya hanya bertuliskan 2 (dua) atau 3 (tiga) angka saja. Jika hanya ada dua angka satuannya adalah pF (pico farads). Sebagai contoh, kapasitor yang bertuliskan dua angka 47, maka kapasitansi kapasitor tersebut adalah 47 pF.

Jika ada 3 digit, angka pertama dan kedua menunjukkan nilai nominal, sedangkan angka ke-3 adalah faktor pengali. Faktor pengali sesuai dengan angka nominalnya, berturut-turut 1 = 10, 2 = 100, 3 = 1.000, 4 = 10.000 dan seterusnya. Misalnya pada kapasitor keramik tertulis 104, maka kapasitansinya adalah 10 x 10.000 = 100.000pF atau = 100nF. Contoh lain misalnya tertulis 222, artinya kapasitansi kapasitor tersebut adalah 22 x 100 = 2200 pF = 2.2 nF.

Selain dari kapasitansi ada beberapa karakteristik penting lainnya yang perlu diperhatikan. Biasanya spesifikasi karakteristik ini disajikan oleh pabrik pembuat didalam datasheet. Berikut ini adalah beberapa spesifikasi penting tersebut.

Tegangan Kerja (working voltage) Tegangan kerja adalah tegangan maksimum yang diijinkan sehingga

kapasitor masih dapat bekerja dengan baik. Para elektro- mania barangkali pernah mengalami kapasitor yang meledak karena kelebihan tegangan. Misalnya kapasitor 10uF 25V, maka tegangan yang bisa diberikan tidak boleh melebihi 25 volt dc. Umumnya kapasitor-kapasitor polar bekerja pada tegangan DC dan kapasitor non-polar bekerja pada tegangan AC.

Temperatur Kerja Kapasitor masih memenuhi spesifikasinya jika bekerja pada suhu

yang sesuai. Pabrikan pembuat kapasitor umumnya membuat kapasitor yang mengacu pada standar popular. Ada 4 standar popular yang biasanya tertera di badan kapasitor seperti C0G (ultra stable), X7R (stable) serta Z5U dan Y5V (general purpose). Secara lengkap kode-kode tersebut disajikan pada table berikut.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 62

Page 69: Dasar Mekatronika

Toleransi

Seperti komponen lainnya, besar kapasitansi nominal ada toleransinya. Tabel diatas menyajikan nilai toleransi dengan kode-kode angka atau huruf tertentu. Dengan table di atas pemakai dapat dengan mudah mengetahui toleransi kapasitor yang biasanya tertera menyertai nilai nominal kapasitor. Misalnya jika tertulis 104 X7R, maka kapasitasinya adalah 100nF dengan toleransi +/-15%. Sekaligus dikethaui juga bahwa suhu kerja yang direkomendasikan adalah antara -55C

o sampai +125C

o

(lihat tabel kode karakteristik)

Insulation Resistance (IR) Walaupun bahan dielektrik merupakan bahan yang non-konduktor,

namun tetap saja ada arus yang dapat melewatinya. Artinya, bahan dielektrik juga memiliki resistansi. walaupun nilainya sangat besar sekali.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 63

Page 70: Dasar Mekatronika

Phenomena ini dinamakan arus bocor DCL (DC Leakage Current) dan resistansi dielektrik ini dinamakan Insulation Resistance (IR). Untuk menjelaskan ini, berikut adalah model rangkaian kapasitor.

model kapasitor

C = Capacitance ESR = Equivalent Series Resistance L = Inductance IR = Insulation Resistance

Jika tidak diberi beban, semestinya kapasitor dapat menyimpan muatan selama-lamanya. Namun dari model di atas, diketahui ada resitansi dielektrik IR(Insulation Resistance) yang paralel terhadap kapasitor. Insulation resistance (IR) ini sangat besar (MOhm). Konsekuensinya tentu saja arus bocor (DCL) sangat kecil (uA). Untuk mendapatkan kapasitansi yang besar diperlukan permukaan elektroda yang luas, tetapi ini akan menyebabkan resistansi dielektrik makin kecil. Karena besar IR selalu berbanding terbalik dengan kapasitansi (C), karakteristik resistansi dielektrik ini biasa juga disajikan dengan besaran RC (IR x C) yang satuannya ohm-farads atau megaohm-micro farads.

Dissipation Factor (DF) dan Impedansi (Z) Dissipation Factor adalah besar persentasi rugirugi (losses)

kapasitansi jika kapasitor bekerja pada aplikasi frekuensi. Besaran ini menjadi faktor yang diperhitungkan misalnya pada aplikasi motor phasa, rangkaian ballast, tuner dan lain-lain. Dari model rangkaian kapasitor digambarkan adanya resistansi seri (ESR) dan induktansi (L). Pabrik pembuat biasanya meyertakan data DF dalam persen. Rugi-rugi (losses) itu didefenisikan sebagai ESR yang besarnya adalah persentasi dari impedansi kapasitor Xc. Secara matematis di tulis sebagai berikut :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 64

Page 71: Dasar Mekatronika

Dari penjelasan di atas dapat dihitung besar total impedansi (Z total) kapasitor adalah :

Karakteristik respons frekuensi sangat perlu diperhitungkan terutama jika kapasitor bekerja pada frekuensi tinggi. Untuk perhitungan- perhitungan respons frekuensi dikenal juga satuan faktor qualitas Q (quality factor) yang tak lain sama dengan 1/DF. 3.4.7 Resistor

Pada dasarnya semua bahan memiliki sifat resistif namun beberapa bahan seperti tembaga, perak, emas dan bahan metal umumnya memiliki resistansi yang sangat kecil.

Bahan-bahan tersebut menghantar arus listrik dengan baik, sehingga dinamakan konduktor. Kebalikan dari bahan yang konduktif, bahan material seperti karet, gelas, karbon memiliki resistansi yang lebih besar menahan aliran elektron dan disebut sebagai insulator.

Bagaimana prinsip konduksi, dijelaskan pada artikel tentang semikonduktor.

Resistor adalah komponen dasar elektronika yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian. Sesuai dengan namanya resistor bersifat resistif dan umumnya terbuat dari bahan karbon .

Dari hukum Ohms diketahui, resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Satuan resistansi dari suatu resistor disebut Ohm atau dilambangkan dengan simbol (Omega).

Tipe resistor yang umum adalah berbentuk tabung dengan dua kaki tembaga di kiri dan kanan. Pada badannya terdapat lingkaran membentuk gelang kode warna untuk memudahkan pemakai mengenali besar resistansi tanpa mengukur besarnya dengan Ohmmeter.

Kode warna tersebut adalah standar manufaktur yang dikeluarkan oleh EIA (Electronic Industries Association) seperti yang ditunjukkan pada tabel berikut. Waktu penulis masuk pendaftaran kuliah elektro, ada satu test yang harus dipenuhi yaitu diharuskan tidak buta warna. Belakangan baru diketahui bahwa mahasiswa elektro wajib untuk bisa membaca warna gelang resistor (barangkali).

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 65

Page 72: Dasar Mekatronika

Tabel - 1 : nilai warna gelang

Resistansi dibaca dari warna gelang yang paling depan ke arah gelang toleransi berwarna coklat, merah, emas atau perak. Biasanya warna gelang toleransi ini berada pada badan resistor yang paling pojok atau juga dengan lebar yang lebih menonjol, sedangkan warna gelang yang pertama agak sedikit ke dalam.

Dengan demikian pemakai sudah langsung mengetahui berapa toleransi dari resistor tersebut. Kalau anda telah bisa menentukan mana gelang yang pertama selanjutnya adalah membaca nilai resistansinya.

Jumlah gelang yang melingkar pada resistor umumnya sesuai dengan besar toleransinya. Biasanya resistor dengan toleransi 5%, 10% atau 20% memiliki 3 gelang (tidak termasuk gelang toleransi). Tetapi resistor dengan toleransi 1% atau 2% (toleransi kecil) memiliki 4 gelang (tidak termasuk gelang toleransi). Gelang pertama dan seterusnya berturut-turut menunjukkan besar nilai satuan, dan gelang terakhir adalah faktor pengalinya.

Misalnya resistor dengan gelang kuning, violet, merah dan emas. Gelang berwarna emas adalah gelang toleransi. Dengan demikian urutan warna gelang resitor ini adalah, gelang pertama berwarna kuning, gelang kedua berwana violet dan gelang ke tiga berwarna merah.

Gelang ke empat tentu saja yang berwarna emas dan ini adalah gelang toleransi. Dari tabel-1 diketahui jika gelang toleransi berwarna emas, berarti resitor ini memiliki toleransi 5%. Nilai resistansisnya dihitung sesuai dengan urutan warnanya.

Pertama yang dilakukan adalah menentukan nilai satuan dari resistor ini. Karena resitor ini resistor 5% (yang biasanya memiliki tiga gelang selain gelang toleransi), maka nilai satuannya ditentukan oleh gelang

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 66

Page 73: Dasar Mekatronika

pertama dan gelang kedua. Masih dari tabel-1 diketahui gelang kuning nilainya = 4 dan gelang violet nilainya = 7. Jadi gelang pertama dan kedua atau kuning dan violet berurutan, nilai satuannya adalah 47. Gelang ketiga adalah faktor pengali, dan jika warna gelangnya merah berarti faktor pengalinya adalah 100. Sehingga dengan ini diketahui nilai resistansi resistor tersebut adalah nilai satuan x faktor pengali atau 47 x 100 = 4.7K Ohm dan toleransinya adalah 5%.

Spesifikasi lain yang perlu diperhatikan dalam memilih resitor pada suatu rancangan selain besar resistansi adalah besar watt-nya. Karena resistor bekerja dengan dialiri arus listrik, maka akan terjadi disipasi daya berupa panas sebesar W=I

2R watt.

Semakin besar ukuran fisik suatu resistor bisa menunjukkan semakin besar kemampuan disipasi daya resistor tersebut.

Umumnya di pasar tersedia ukuran 1/8, 1/4, 1, 2, 5, 10 dan 20 watt. Resistor yang memiliki disipasi daya 5, 10 dan 20 watt umumnya berbentuk kubik memanjang persegi empat berwarna putih, namun ada juga yang berbentuk silinder. Tetapi biasanya untuk resistor ukuran jumbo ini nilai resistansi dicetak langsung dibadannya, misalnya 1005W.

3.4.8 Induktor Masih ingat aturan tangan kanan pada pelajaran fisika ? Ini cara yang

efektif untuk mengetahui arah medan listrik terhadap arus listrik. Jika seutas kawat tembaga diberi aliran listrik, maka di sekeliling kawat tembaga akan terbentuk medan listrik. Dengan aturan tangan kanan dapat diketahui arah medan listrik terhadap arah arus listrik. Caranya sederhana yaitu dengan mengacungkan jari jempol tangan kanan sedangkan keempat jari lain menggenggam. Arah jempol adalah arah arus dan arah ke empat jari lain adalah arah medan listrik yang mengitarinya.

Tentu masih ingat juga percobaan dua utas kawat tembaga paralel yang keduanya diberi arus listrik. Jika arah arusnya berlawanan, kedua kawat tembaga tersebut saling menjauh. Tetapi jika arah arusnya sama ternyata keduanya berdekatan saling tarikmenarik. Hal ini terjadi karena adanya induksi medan listrik. Dikenal medan listrik dengan simbol B dan satuannya Tesla (T). Besar akumulasi medan listrik B pada suatu luas area A tertentu difenisikan sebagai besar magnetic flux. Simbol yang biasa digunakan untuk menunjukkan besar magnetic flux ini adalah φdan satuannya Weber (Wb = T.m

2). Secara matematis besarnya adalah :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 67

Page 74: Dasar Mekatronika

medan flux...(1)

Lalu bagaimana jika kawat tembaga itu dililitkan membentuk koil atau kumparan. Jika kumparan tersebut dialiri listrik maka tiap lilitan akan saling menginduksi satu dengan yang lainnya. Medan listrik yang terbentuk akan segaris dan saling menguatkan. Komponen yang seperti inilah yang dikenal dengan induktor selenoid.

Dari buku fisika dan teori medan yang menjelimet, dibuktikan bahwa induktor adalah komponen yang dapat menyimpan energi magnetik. Energi ini direpresentasikan dengan adanya tegangan emf (electromotive force) jika induktor dialiri listrik. Secara matematis tegangan emf ditulis :

tegangan emf .... (2)

Jika dibandingkan dengan rumus hukum Ohm V=RI, maka kelihatan ada kesamaan rumus. Jika R disebut resistansi dari resistor dan V adalah besar tegangan jepit jika resistor dialiri listrik sebesar I. Maka L adalah induktansi dari induktor dan E adalah tegangan yang timbul jika induktor dilairi listrik. Tegangan emf di sini adalah respon terhadap perubahan arus fungsi dari waktu terlihat dari rumus di/dt. Sedangkan bilangan negatif sesuai dengan hukum Lenz yang mengatakan efek induksi cenderung melawan perubahan yang menyebabkannya.

Hubungan antara emf dan arus inilah yang disebut dengan induktansi, dan satuan yang digunakan adalah (H) Henry.

Induktor disebut self-induced Arus listrik yang melewati kabel, jalur-jalur pcb dalam suatu rangkain

berpotensi untuk menghasilkan medan induksi. Ini yang sering menjadi pertimbangan dalam mendesain pcb supaya bebas dari efek induktansi terutama jika multilayer. Tegangan emf akan menjadi penting saat perubahan arusnya fluktuatif. Efek emf menjadi signifikan pada sebuah induktor, karena perubahan arus yang melewati tiap lilitan akan saling menginduksi. Ini yang dimaksud dengan self-induced. Secara matematis induktansi pada suatu induktor dengan jumlah lilitan sebanyak N adalah akumulasi flux magnet untuk tiap arus yang melewatinya :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 68

Page 75: Dasar Mekatronika

induktansi ...... (3)

Induktor selenoida Fungsi utama dari induktor di dalam suatu rangkaian adalah untuk

melawan fluktuasi arus yang melewatinya. Aplikasinya pada rangkaian dc salah satunya adalah untuk menghasilkan tegangan dc yang konstan terhadap fluktuasi beban arus. Pada aplikasi rangkaian ac, salah satu gunanya adalah bisa untuk meredam perubahan fluktuasi arus yang tidak dinginkan. Akan lebih banyak lagi fungsi dari induktor yang bisa diaplikasikan pada rangkaian filter, tuner dan sebagainya.

Dari pemahaman fisika, elektron yang bergerak akan menimbulkan medan elektrik di sekitarnya. Berbagai bentuk kumparan, persegi empat, setegah lingkaran ataupun lingkaran penuh, jika dialiri listrik akan menghasilkan medan listrik yang berbeda. Penampang induktor biasanya berbentuk lingkaran, sehingga diketahui besar medan listrik di titik tengah lingkaran adalah :

Medan listrik ........ (4)

Jika dikembangkan, n adalah jumlah lilitan N relatif terhadap panjang induktor l. Secara matematis ditulis :

Lilitan per-meter……….(5)

Lalu i adalah besar arus melewati induktor tersebut. Ada simbol µ yang dinamakan permeability dan µ0 yang disebut permeability udara vakum. Besar permeability µ tergantung dari bahan inti (core) dari induktor. Untuk induktor tanpa inti (air winding) µ = 1.

Jika rumus-rumus di atas di subsitusikan maka rumus induktansi (rumus 3) dapat ditulis menjadi :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 69

Page 76: Dasar Mekatronika

Induktansi Induktor ..... (6)

Induktor selenoida dengan inti (core)

L : induktansi dalam H (Henry) µ : permeability inti (core) µo : permeability udara vakum µo = 4π x 10-7

N : jumlah lilitan induktor A : luas penampang induktor (m2) l : panjang induktor (m)

Inilah rumus untuk menghitung nilai induktansi dari sebuah induktor. Tentu saja rumus ini bisa dibolak-balik untuk menghitung jumlah lilitan induktor jika nilai induktansinya sudah ditentukan. Toroid

Ada satu jenis induktor yang kenal dengan nama toroid. Jika biasanya induktor berbentuk silinder memanjang, maka toroid berbentuk lingkaran. Biasanya selalu menggunakan inti besi (core) yang juga berbentuk lingkaran seperti kue donat.

Toroida

Jika jari-jari toroid adalah r, yaitu jari-jari lingkar luar dikurang jari-jari lingkar dalam. Maka panjang induktor efektif adalah kira-kira :

Keliling lingkaran toroida …... (7)

Dengan demikian untuk toroida besar induktansi L adalah :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 70

Page 77: Dasar Mekatronika

Induktansi Toroida ………(8) Salah satu keuntungan induktor berbentuk toroid, dapat induktor

dengan induktansi yang lebih besar dan dimensi yang relatif lebih kecil dibandingkan dengan induktor berbentuk silinder. Juga karena toroid umumnya menggunakan inti (core) yang melingkar, maka medan induksinya tertutup dan relatif tidak menginduksi komponen lain yang berdekatan di dalam satu pcb.

Ferit dan Permeability Besi lunak banyak digunakan sebagai inti (core) dari induktor yang

disebut ferit. Ada bermacammacam bahan ferit yang disebut ferromagnetik. Bahan dasarnya adalah bubuk besi oksida yang disebut juga iron powder. Ada juga ferit yang dicampur dengan bahan bubuk lain seperti nickle, manganase, zinc (seng) dan magnesium. Melalui proses yang dinamakan kalsinasi yaitu dengan pemanasan tinggi dan tekanan tinggi, bubuk campuran tersebut dibuat menjadi komposisi yang padat. Proses pembuatannya sama seperti membuat keramik. Oleh sebab itu ferit ini sebenarnya adalah keramik.

Ferit yang sering dijumpai ada yang memiliki µ = 1 sampai µ = 15.000. Dapat dipahami penggunaan ferit dimaksudkan untuk mendapatkan nilai induktansi yang lebih besar relatif terhadap jumlah lilitan yang lebih sedikit serta dimensi induktor yang lebih kecil.

Penggunaan ferit juga disesuaikan dengan frekeunsi kerjanya. Karena beberapa ferit akan optimum jika bekerja pada selang frekuensi tertentu. Berikut ini adalah beberapa contoh bahan ferit yang dipasar dikenal dengan kode nomer materialnya. Pabrik pembuat biasanya dapat memberikan data kode material, dimensi dan permeability yang lebih detail.

data material ferit

Sampai di sini kita sudah dapat menghitung nilai induktansi suatu induktor.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 71

Page 78: Dasar Mekatronika

Misalnya induktor dengan jumlah lilitan 20, berdiameter 1 cm dengan panjang 2 cm serta mengunakan inti ferit dengan µ = 3000. Dapat diketahui nilai induktansinya adalah :

L ≈ 5.9 mH

Selain ferit yang berbentuk silinder ada juga ferit yang berbentuk toroida. Umumnya dipasar tersedia berbagai macam jenis dan ukuran toroida. Jika datanya lengkap, maka kita dapat menghitung nilai induktansi dengan menggunakan rumus-rumus yang ada. Karena perlu diketahui nilai permeability bahan ferit, diameter lingkar luar, diameter lingkar dalam serta luas penampang toroida. Tetapi biasanya pabrikan hanya membuat daftar indeks induktansi (inductance index) AL. Indeks ini dihitung berdasarkan dimensi dan permeability ferit. Dengan data ini dapat dihitung jumlah lilitan yang diperlukan untuk mendapatkan nilai induktansi tertentu. Seperti contoh

tabel AL berikut ini yang satuannya µH/100 lilitan.

Tabel AL

Rumus untuk menghitung jumlah lilitan yang diperlukan untuk mendapatkan nilai induktansi yang diinginkan adalah :

Indeks AL ………. (9)

Misalnya digunakan ferit toroida T50-1, maka dari table diketahui nilai AL = 100. Maka untuk mendapatkan induktor sebesar 4µH diperlukan lilitan sebanyak :

N ≈ 20 lilitan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 72

Page 79: Dasar Mekatronika

Rumus ini sebenarnya diperoleh dari rumus dasar perhitungan induktansi dimana induktansi berbanding lurus dengan kuadrat jumlah lilitan N

2. Indeks AL umumnya sudah baku dibuat oleh pabrikan sesuai

dengan dimensi dan permeability bahan feritnya. Permeability bahan bisa juga diketahui dengan kode warna tertentu.

Misalnya abu-abu, hitam, merah, biru atau kuning. Sebenarnya lapisan ini bukan hanya sekedar warna yang membedakan permeability, tetapi berfungsi juga sebagai pelapis atau isolator. Biasanya pabrikan menjelaskan berapa nilai tegangan kerja untuk toroida tersebut.

Contoh bahan ferit toroida di atas umumnya memiliki premeability yang kecil. Karena bahan ferit yang demikian terbuat hanya dari bubuk besi (iron power). Banyak juga ferit toroid dibuat dengan nilai permeability µ yang besar. Bahan ferit tipe ini terbuat dari campuran bubuk besi dengan bubuk logam lain. Misalnya ferit toroida FT50-77 memiliki indeks AL = 1100.

Kawat tembaga Untuk membuat induktor biasanya tidak diperlukan kawat tembaga

yang sangat panjang. Paling yang diperlukan hanya puluhan sentimeter saja, sehingga efek resistansi bahan kawat tembaga dapat diabaikan. Ada banyak kawat tembaga yang bisa digunakan. Untuk pemakaian yang profesional di pasar dapat dijumpai kawat tembaga dengan standar AWG (American Wire Gauge). Standar ini tergantung dari diameter kawat, resistansi dan sebagainya. Misalnya kawat tembaga AWG32 berdiameter kira-kira 0.3mm, AWG22 berdiameter 0.7mm ataupun AWG20 yang berdiameter kira-kira 0.8mm. Biasanya yang digunakan adalah kawat tembaga tunggal dan memiliki isolasi.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 73

Page 80: Dasar Mekatronika

BAB IV

SENSOR ,TRANDUSER DAN AKTUATOR 4.1 Pendahuluan

Kemajuan ilmu pengetahuan dan teknologi dari masa ke masa

berkembang cepat terutama dibidang otomasi industri. Perkembangan ini

tampak jelas di industri pemabrikan, dimana sebelumnya banyak

pekerjaan menggunakan tangan manusia, kemudian beralih

menggunakan mesin, berikutnya dengan electro-mechanic (semi

otomatis) dan sekarang sudah menggunakan robotic (full automatic)

seperti penggunaan Flexible Manufacturing Systems (FMS) dan

Computerized Integrated Manufacture (CIM) dan sebagainya.

Model apapun yang digunakan dalam sistem otomasi pemabrikan

sangat tergantung kepada keandalan sistem kendali yang dipakai. Hasil

penelitian menunjukan secanggih apapun sistem kendali yang dipakai

akan sangat tergantung kepada sensor maupun transduser yang

digunakan..

Sensor dan transduser merupakan peralatan atau komponen yang

mempunyai peranan penting dalam sebuah sistem pengaturan otomatis.

Ketepatan dan kesesuaian dalam memilih sebuah sensor akan sangat

menentukan kinerja dari sistem pengaturan secara otomatis.

Besaran masukan pada kebanyakan sistem kendali adalah bukan

besaran listrik, seperti besaran fisika, kimia, mekanis dan sebagainya.

Untuk memakaikan besaran listrik pada sistem pengukuran, atau sistem

manipulasi atau sistem pengontrolan, maka biasanya besaran yang bukan

listrik diubah terlebih dahulu menjadi suatu sinyal listrik melalui sebuah

alat yang disebut transducer

Sebelum lebih jauh kita mempelajari sensor dan transduser ada

sebuah alat lagi yang selalu melengkapi dan mengiringi keberadaan

sensor dan transduser dalam sebuah sistem pengukuran, atau sistem

manipulasi, maupun sistem pengontrolan yaitu yang disebut alat ukur.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 74

Page 81: Dasar Mekatronika

4.1.1 Definisi-definisi D Sharon, dkk (1982), mengatakan sensor adalah suatu peralatan

yang berfungsi untuk mendeteksi gejala-gejala atau sinyal-sinyal yang

berasal dari perubahan suatu energi seperti energi listrik, energi fisika,

energi kimia, energi biologi, energi mekanik dan sebagainya..

Contoh; Camera sebagai sensor penglihatan, telinga sebagai sensor

pendengaran, kulit sebagai sensor peraba, LDR (light dependent

resistance) sebagai sensor cahaya, dan lainnya.

William D.C, (1993), mengatakan transduser adalah sebuah alat

yang bila digerakan oleh suatu energi di dalam sebuah sistem transmisi,

akan menyalurkan energi tersebut dalam bentuk yang sama atau dalam

bentuk yang berlainan ke sistem transmisi berikutnya”. Transmisi energi ini

bisa berupa listrik, mekanik, kimia, optic (radiasi) atau thermal (panas).

Contoh; generator adalah transduser yang merubah energi mekanik

menjadi energi listrik, motor adalah transduser yang merubah energi listrik

menjadi energi mekanik, dan sebagainya.

William D.C, (1993), mengatakan alat ukur adalah sesuatu alat

yang berfungsi memberikan batasan nilai atau harga tertentu dari gejala-

gejala atau sinyal yang berasal dari perubahan suatu energi.

Contoh: voltmeter, ampermeter untuk sinyal listrik; tachometer,

speedometer untuk kecepatan gerak mekanik, lux-meter untuk intensitas

cahaya, dan sebagainya.

4.1.2 Peryaratan Umum Sensor dan Transduser Dalam memilih peralatan sensor dan transduser yang tepat dan

sesuai dengan sistem yang akan disensor maka perlu diperhatikan

persyaratan umum sensor berikut ini : (D Sharon, dkk, 1982)

a. Linearitas

Ada banyak sensor yang menghasilkan sinyal keluaran yang

berubah secara kontinyu sebagai tanggapan terhadap masukan

yang berubah secara kontinyu. Sebagai contoh, sebuah sensor

panas dapat menghasilkan tegangan sesuai dengan panas yang

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 75

Page 82: Dasar Mekatronika

dirasakannya. Dalam kasus seperti ini, biasanya dapat diketahui

secara tepat bagaimana perubahan keluaran dibandingkan

dengan masukannya berupa sebuah grafik. Gambar 1.1

memperlihatkan hubungan dari dua buah sensor panas yang

berbeda. Garis lurus pada gambar 1.1(a). memperlihatkan

tanggapan linier, sedangkan pada gambar 1.1(b). adalah

tanggapan non-linier.

100 Te

mpe

ratu

r (m

asuk

an) 1

100

Tem

pera

tur (

mas

ukan

) 1

0 0 Tegangan (keluaran)

(a) Tangapan linier (b) Tangapan non linier

Gambar 1.1. Keluaran dari transduser panas (D Sharon dkk, 1982),

Tegangan (keluaran)

b. Sensitivitas

Sensitivitas akan menunjukan seberapa jauh kepekaan

sensor terhadap kuantitas yang diukur. Sensitivitas sering juga

dinyatakan dengan bilangan yang menunjukan “perubahan

keluaran dibandingkan unit perubahan masukan”. Beberepa

sensor panas dapat memiliki kepekaan yang dinyatakan dengan

“satu volt per derajat”, yang berarti perubahan satu derajat pada

masukan akan menghasilkan perubahan satu volt pada

keluarannya. Sensor panas lainnya dapat saja memiliki kepekaan

“dua volt per derajat”, yang berarti memiliki kepakaan dua kali dari

sensor yang pertama. Linieritas sensor juga mempengaruhi

sensitivitas dari sensor. Apabila tanggapannya linier, maka

sensitivitasnya juga akan sama untuk jangkauan pengukuran

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 76

Page 83: Dasar Mekatronika

keseluruhan. Sensor dengan tanggapan paga gambar 1.1(b) akan

lebih peka pada temperatur yang tinggi dari pada temperatur yang

rendah.

c. Tanggapan Waktu

Tanggapan waktu pada sensor menunjukan seberapa cepat

tanggapannya terhadap perubahan masukan. Sebagai contoh,

instrumen dengan tanggapan frekuensi yang jelek adalah sebuah

termometer merkuri. Masukannya adalah temperatur dan

keluarannya adalah posisi merkuri. Misalkan perubahan

temperatur terjadi sedikit demi sedikit dan kontinyu terhadap

waktu, seperti tampak pada gambar 1.2(a).

Frekuensi adalah jumlah siklus dalam satu detik dan diberikan

dalam satuan hertz (Hz). 1 hertz berarti 1 siklus per detik, 1

kilohertz berarti 1000 siklus per detik]. Pada frekuensi rendah,

yaitu pada saat temperatur berubah secara lambat, termometer

akan mengikuti perubahan tersebut dengan “setia”. Tetapi apabila

perubahan temperatur sangat cepat lihat gambar 1.2(b) maka

tidak diharapkan akan melihat perubahan besar pada termometer

merkuri, karena ia bersifat lamban dan hanya akan menunjukan

temperatur rata-rata.

Rat

a-ra

ta

Waktu

Tem

pera

tur

1 siklus

50

40

30

50

40

30

(a) Perubahan lambat (b) Perubahan cepat

Gambar 1.2 Temperatur berubah secara kontinyu (D. Sharon, dkk, 1982)

Ada bermacam cara untuk menyatakan tanggapan frekuensi

sebuah sensor. Misalnya “satu milivolt pada 500 hertz”.

Tanggapan frekuensi dapat pula dinyatakan dengan “decibel

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 77

Page 84: Dasar Mekatronika

(db)”, yaitu untuk membandingkan daya keluaran pada frekuensi

tertentu dengan daya keluaran pada frekuensi referensi.

Yayan I.B, (1998), mengatakan ketentuan lain yang perlu

dip

i untuk dipasang pada

b.

ngkauan yang sesuai?

ang diukur?.

n

e. Apakah ia tidak mudah rusak dalam pemakaiannya?.

ya?

4.1.3 Jenis Sensor dan Transduser transduser sangat cepat sesuai

yang

di dalam bodi robot.

,

b.

erhatikan dalam memilih sensor yang tepat adalah dengan

mengajukan beberapa pertanyaan berikut ini:

a. Apakah ukuran fisik sensor cukup memenuh

tempat yang diperlukan?

Apakah ia cukup akurat?

c. Apakah ia bekerja pada ja

d. Apakah ia akan mempengaruhi kuantitas yang sed

Sebagai contoh, bila sebuah sensor panas yang besar dicelupka

kedalam jumlah air air yang kecil, malah menimbulkan efek

memanaskan air tersebut, bukan menyensornya.

f. Apakah ia dapat menyesuaikan diri dengan lingkungann

g. Apakah biayanya terlalu mahal?

Perkembangan sensor dan

kemajuan teknologi otomasi, semakin komplek suatu sistem otomasi

dibangun maka semakin banyak jenis sensor yang digunakan.

Robotik adalah sebagai contoh penerapan sistem otomasi

kompleks, disini sensor yang digunakan dapat dikatagorikan menjadi

dua jenis sensor yaitu: (D Sharon, dkk, 1982)

a. Internal sensor, yaitu sensor yang dipasang

Sensor internal diperlukan untuk mengamati posisi, kecepatan

dan akselerasi berbagai sambungan mekanik pada robot, dan

merupakan bagian dari mekanisme servo.

External sensor, yaitu sensor yang dipasang diluar bodi robot.

Sensor eksternal diperlukan karena dua macam alasan yaitu:

1) Untuk keamanan dan

2) Untuk penuntun.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 78

Page 85: Dasar Mekatronika

Yang dimaksud untuk keamanan” adalah termasuk keamanan

ebuah robot bergerak keposisinya

an dengan

gan sensor untuk penuntun atau

en yang terletak diatas ban berjalan

sensor untuk penuntun diharapkan cukup

robot, yaitu perlindungan terhadap robot dari kerusakan yang

ditimbulkannya sendiri, serta keamanan untuk peralatan,

komponen, dan orang-orang dilingkungan dimana robot tersebut

digunakan. Berikut ini adalah dua contoh sederhana untuk

mengilustrasikan kasus diatas.

Contoh pertama: andaikan s

yang baru dan ia menemui suatu halangan, yang dapat berupa

mesin lain misalnya. Apabila robot tidak memiliki sensor yang

mampu mendeteksi halangan tersebut, baik sebelum atau setelah

terjadi kontak, maka akibatnya akan terjadi kerusakan.

Contoh kedua: sensor untuk keamanan diilustrasik

problem robot dalam mengambil sebuah telur. Apabila pada robot

dipasang pencengkram mekanik (gripper), maka sensor harus

dapat mengukur seberapa besar tenaga yang tepat untuk

mengambil telor tersebut. Tenaga yang terlalu besar akan

menyebabkan pecahnya telur, sedangkan apabila terlalu kecil

telur akan jatuh terlepas.

Kini bagaimana den

pemandu?. Katogori ini sangatlah luas, tetapi contoh berikut akan

memberikan pertimbangan.

Contoh pertama: kompon

tiba di depan robot yang diprogram untuk menyemprotnya. Apa

yang akan terjadi bila sebuah komponen hilang atau dalam posisi

yang salah?. Robot tentunya harus memiliki sensor yang dapat

mendeteksi ada tidaknya komponen, karena bila tidak ia akan

menyemprot tempat yang kosong. Meskipun tidak terjadi

kerusakan, tetapi hal ini bukanlah sesuatu yang diharapkan terjadi

pada suatu pabrik.

Contoh kedua:

canggih dalam pengelasan. Untuk melakukan operasi dengan

baik, robot haruslah menggerakkan tangkai las sepanjang garis

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 79

Page 86: Dasar Mekatronika

las yang telah ditentukan, dan juga bergerak dengan kecepatan

yang tetap serta mempertahankan suatu jarak tertentu dengan

permukaannya.

Sesuai dengan fungsi sensor sebagai pendeteksi sinyal dan

me

4.1.4 Klasifikasi Sensor

dasarkan fungsi dan penggunaannya sensor

aya)

Sensor thermal adalah sensor yang digunakan untuk mendeteksi

r, termokopel, RTD, photo transistor, photo

eferential transformer (LVDT),

deteksi perubahan

istor, photo diode, photo voltaic, photo

ng-informasikan sinyal tersebut ke sistem berikutnya, maka

peranan dan fungsi sensor akan dilanjutkan oleh transduser. Karena

keterkaitan antara sensor dan transduser begitu erat maka pemilihan

transduser yang tepat dan sesuai juga perlu diperhatikan.

Secara umum ber

dapat dikelompokan menjadi 3 bagian yaitu:

a. sensor thermal (panas)

b. sensor mekanis

c. sensor optik (cah

gejala perubahan panas/temperature/suhu pada suatu dimensi benda

atau dimensi ruang tertentu.

Contohnya; bimetal, termisto

dioda, photo multiplier, photovoltaik, infrared pyrometer, hygrometer, dsb.

Sensor mekanis adalah sensor yang mendeteksi perubahan gerak

mekanis, seperti perpindahan atau pergeseran atau posisi, gerak lurus

dan melingkar, tekanan, aliran, level dsb.

Contoh; strain gage, linear variable d

proximity, potensiometer, load cell, bourdon tube, dsb.

Sensor optic atau cahaya adalah sensor yang men

cahaya dari sumber cahaya, pantulan cahaya ataupun bias cahaya yang

mengernai benda atau ruangan.

Contoh; photo cell, photo trans

multiplier, pyrometer optic, dsb.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 80

Page 87: Dasar Mekatronika

4.1.5. Klasifikasi Transduser (William D.C, 1993) ngkit sendiri)

hanya

e, photovoltatic, termistor, dsb.

i

b. transduser daya dari luar)

memerlukan

DT

abel berikut menyajikan prinsip kerja serta pemakaian transduser

ber

Tabel 1. Kelompok Transduser

a. Self generating transduser (transduser pemba

Self generating transduser adalah transduser yang

memerlukan satu sumber energi.

Contoh: piezo electric, termocoupl

Ciri transduser ini adalah dihasilkannya suatu energi listrik dar

transduser secara langsung. Dalam hal ini transduser berperan

sebagai sumber tegangan.

External power transduser (

External power transduser adalah transduser yang

sejumlah energi dari luar untuk menghasilkan suatu keluaran.

Contoh: RTD (resistance thermal detector), Starin gauge, LV

(linier variable differential transformer), Potensiometer, NTC, dsb.

T

dasarkan sifat kelistrikannya.

Parameter listrik dan kelas transduser

Prinsip kerja dan sifat alat Pemakaian alat

Transduser Pasif Potensiometer Perubahan nilai tahanan Tekanan,

/posisi karena posisi kontak bergeser

pergeseran

Strain gage nilai tahanan Gaya, torsi, posisi Perubahanakibat perubahan panjang kawat oleh tekanan dari luar

Transformator Tekanan, gaya, selisih (LVDT)

Tegangan selisih duakumparan primer akibat pergeseran inti trafo

pergeseran

Gage arus pusar duktansi Pergeseran, Perubahan inkumparan akibat perubahan jarak plat

ketebalan

Transduser Aktif Sel fotoemisif Emisi elektron akibat radiasi Cahaya dan radiasi

yang masuk pada permukaan fotemisif

Photomultiplier Emisi sekunder Cahaya, radiasi dan elektron

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 81

Page 88: Dasar Mekatronika

akibat radiasi yang masuk ke katoda sensitif cahaya

relay sensitif cahaya

Termokopel a titik Temperatur, aliran Pembangkitan ggl padsambung dua logam yang berbeda akibat dipanasi

panas, radiasi

Generator putar

uah Kecepatan, getaran kumparan (tachogenerator)

Perputaran sebkumparan di dalam medan magnit yang membangkitkan tegangan

Piezoelektrik itan ggl bahan Suara, getaran, Pembangkkristal piezo akibat gaya dari luar

percepatan, tekanan

Sel foto tegangan ngkitnya tegangan atahari Terbapada sel foto akibat rangsangan energi dari luar

Cahaya m

Termometer )

Temperatur, panas tahanan (RTD

Perubahan nilai tahanankawat akibat perubahan temperatur

Hygrometer sebuah strip Kelembaban relatif tahanan

Tahanan konduktif berubah terhadap kandungan uap air

Termistor (NTC) tahanan Temperatur Penurunan nilai logam akibat kenaikan temperatur

Mikropon uara mengubah Suara, musik,derau kapasitor

Tekanan snilai kapasitansi dua buah plat

Pengukuran ktansi rangkaian Tekanan, ,

si reluktansi

Relumagnetik diubah dengan mengubah posisi inti besi sebuah kumparan

pergeserangetaran, posi

Sumber: William D.C

.2. Sensor Thermal

AC. Srivastava, (1987), mengatakan temperatur merupakan salah

, (1993)

4

satu dari empat besaran dasar yang diakui oleh Sistem Pengukuran

Internasional (The International Measuring System). Lord Kelvin pada

tahun 1848 mengusulkan skala temperature termodinamika pada suatu

titik tetap triple point, dimana fase padat, cair dan uap berada bersama

dalam equilibrium, angka ini adalah 273,16 oK ( derajat Kelvin) yang juga

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 82

Page 89: Dasar Mekatronika

merupakan titik es. Skala lain adalah Celcius, Fahrenheit dan Rankine

dengan hubungan sebagai berikut:

oF = 9/5 oC + 32 atau oC = 5/9 (oF-32) atau oR = oF + 459,69

Yayan I.B, (1998), mengatakan temperatur adalah kondisi penting

dari suatu substrat. Sedangkan “panas adalah salah satu bentuk energi

yang diasosiasikan dengan aktifitas molekul-molekul dari suatu substrat”.

Partikel dari suatu substrat diasumsikan selalu bergerak. Pergerakan

partikel inilah yang kemudian dirasakan sebagai panas. Sedangkan

temperatur adalah ukuran perbandingan dari panas tersebut.

Pergerakan partikel substrat dapat terjadi pada tiga dimensi benda

yaitu:

1. Benda padat,

2. Benda cair dan

3. Benda gas (udara)

Aliran kalor substrat pada dimensi padat, cair dan gas dapat terjadi

secara :

1. Konduksi, yaitu pengaliran panas melalui benda padat

(penghantar) secara kontak langsung

2. Konveksi, yaitu pengaliran panas melalui media cair secara kontak

langsung

3. Radiasi, yaitu pengaliran panas melalui media udara/gas secara

kontak tidak langsung

Pada aplikasi pendeteksian atau pengukuran tertentu, dapat dipilih

salah satu tipe sensor dengan pertimbangan :

1. Penampilan (Performance)

2. Kehandalan (Reliable) dan

3. Faktor ekonomis ( Economic)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 83

Page 90: Dasar Mekatronika

Pemilihan Jenis Sensor Suhu Hal-hal yang perlu diperhatikan sehubungan dengan pemilihan

jenis sensor suhu adalah: (Yayan I.B, 1998)

1. Level suhu maksimum dan minimum dari suatu substrat yang diukur.

2. Jangkauan (range) maksimum pengukuran

3. Konduktivitas kalor dari substrat

4. Respon waktu perubahan suhu dari substrat

5. Linieritas sensor

6. Jangkauan temperatur kerja

Selain dari ketentuan diatas, perlu juga diperhatikan aspek phisik

dan kimia dari sensor seperti ketahanan terhadap korosi (karat),

ketahanan terhadap guncangan, pengkabelan (instalasi), keamanan dan

lain-lain.

Temperatur Kerja Sensor Setiap sensor suhu memiliki temperatur kerja yang berbeda, untuk

pengukuran suhu disekitar kamar yaitu antara -35oC sampai 150oC, dapat

dipilih sensor NTC, PTC, transistor, dioda dan IC hibrid. Untuk suhu

menengah yaitu antara 150oC sampai 700oC, dapat dipilih thermocouple

dan RTD. Untuk suhu yang lebih tinggi sampai 1500oC, tidak

memungkinkan lagi dipergunakan sensor-sensor kontak langsung, maka

teknis pengukurannya dilakukan menggunakan cara radiasi. Untuk

pengukuran suhu pada daerah sangat dingin dibawah 65oK = -208oC (

0oC = 273,16oK ) dapat digunakan resistor karbon biasa karena pada suhu

ini karbon berlaku seperti semikonduktor. Untuk suhu antara 65oK sampai

-35oC dapat digunakan kristal silikon dengan kemurnian tinggi sebagai

sensor.

Gambar 2.1. berikut memperlihatkan karakteristik dari beberapa

jenis sensor suhu yang ada.

Thermocouple RTD Thermistor IC Sensor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 84

Page 91: Dasar Mekatronika

V

T

R T

R T

V, I T

Adv

anta

ges

- self powered - simple - rugged - inexpensive - wide variety - wide

temperature range

- most stable - most

accurate - more linear

than termocouple

- high output - fast - two-wire

ohms measurement

- most linear - highest

output - inexpensive

Dis

adva

ntag

es

- non linear - low voltage - reference

required - least stable - least sensitive

- expensive - power supply

required - small ΔR - low absolute

resistance - self heating

- non linear - limited

temperature range

- fragile - power supply

required - self heating

- T < 200oC - power supply

required - slow - self heating - limited

configuration

Gambar 2.1. Karakteristik sensor temperature (Schuller,

Mc.Name, 1986)

4.2.1. Bimetal Bimetal adalah sensor temperatur yang sangat populer digunakan

karena kesederhanaan yang dimilikinya. Bimetal biasa dijumpai pada alat

strika listrik dan lampu kelap-kelip (dimmer). Bimetal adalah sensor suhu

yang terbuat dari dua buah lempengan logam yang berbeda koefisien

muainya (α) yang direkatkan menjadi satu.

Bila suatu logam dipanaskan maka akan terjadi pemuaian,

besarnya pemuaian tergantung dari jenis logam dan tingginya temperatur

kerja logam tersebut. Bila dua lempeng logam saling direkatkan dan

dipanaskan, maka logam yang memiliki koefisien muai lebih tinggi akan

memuai lebih panjang sedangkan yang memiliki koefisien muai lebih

rendah memuai lebih pendek. Oleh karena perbedaan reaksi muai

tersebut maka bimetal akan melengkung kearah logam yang muainya

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 85

Page 92: Dasar Mekatronika

lebih rendah. Dalam aplikasinya bimetal dapat dibentuk menjadi saklar

Normally Closed (NC) atau Normally Open (NO).

Gambar 2.2. Kontruksi Bimetal ( Yayan I.B, 1998)

Disini berlaku rumus pengukuran temperature dwi-logam yaitu :

dan dalam praktek tB/tA = 1 dan (n+1).n =2, sehingga;

di mana ρ = radius kelengkungan

t = tebal jalur total

n = perbandingan modulus elastis, EB/EA

m = perbandingan tebal, tB/tAT2-T1 = kenaikan temperature

αA, αB = koefisien muai panas logamA dan logam B

4.2.2. Termistor Termistor atau tahanan thermal adalah alat semikonduktor yang

berkelakuan sebagai tahanan dengan koefisien tahanan temperatur yang

tinggi, yang biasanya negatif. Umumnya tahanan termistor pada

temperatur ruang dapat berkurang 6% untuk setiap kenaikan temperatur

sebesar 1oC. Kepekaan yang tinggi terhadap perubahan temperatur ini

membuat termistor sangat sesuai untuk pengukuran, pengontrolan dan

kompensasi temperatur secara presisi.

Bimetal sesudah dipanaskan

Bimetal sebelum dipanaskan

Logam A Logam B

212

22

)1)()((6)]/1)(1()1(3[

mTTmnmmmmt

BA +−+++++

=αα

ρ (2.1)

))((32

12 TTt

BA −−=

ααρ (2.2)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 86

Page 93: Dasar Mekatronika

Termistor terbuat dari campuran oksida-oksida logam yang

diendapkan seperti: mangan (Mn), nikel (Ni), cobalt (Co), tembaga (Cu),

besi (Fe) dan uranium (U). Rangkuman tahanannya adalah dari 0,5 Ω

sampai 75 Ω dan tersedia dalam berbagai bentuk dan ukuran. Ukuran

paling kecil berbentuk mani-manik (beads) dengan diameter 0,15 mm

sampai 1,25 mm, bentuk piringan (disk) atau cincin (washer) dengan

ukuran 2,5 mm sampai 25 mm. Cincin-cincin dapat ditumpukan dan di

tempatkan secara seri atau paralel guna memperbesar disipasi daya.

Dalam operasinya termistor memanfaatkan perubahan resistivitas

terhadap temperatur, dan umumnya nilai tahanannya turun terhadap

Coeffisien)

temperatur secara eksponensial untuk jenis NTC ( Negative Thermal

oefisien temperatur α didefinisikan pada temperature tertentu, misalnya K

25oC sbb.:

TAT eRR β= (2.3)

(2.4)

Gambar 2.3 . Konfigurasi Thermistor: (a) coated-bead

erikut memperlihatkan hubungan antara

tempe

(b) disk (c) dioda case dan (d) thin-film

Teknik Kompensasi Termistor:

Karkateristik termistor b

ratur dan resistansi seperti tampak pada gambar 2.4

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 87

Page 94: Dasar Mekatronika

Gambar 2.4. Grafik Termistor resistansi vs temperatuer:

(a) logaritmik (b) skala linier

Untuk pengontrolan perlu mengubah tahanan menjadi tegangan,

berikut rangkaian dasar untuk mengubah resistansi menjadi tegangan.

Gambar 2.5. Rangkaian uji termistor sebagai pembagi

tegangan

Thermistor dengan koefisien positif (PTC, tidak baku)

Gambar 2.6. Termistor jenis PTC: (a) linier (b) switching

Cara lain untuk mengubah resistansi menjadi tegangan adalah

dengan teknik linearisasi.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 88

Page 95: Dasar Mekatronika

Daerah resistansi mendekati linier

Untuk teknik kompensasi temperatur menggunakan rangkaian penguat

jembatan lebih baik digunakan untuk jenis sensor resistansi karena

rangkaian jembatan dapat diatur titik kesetimbangannya.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 89

Page 96: Dasar Mekatronika

Gambar 2.7. Dua buah Termistor Linier:

(a) Rangkaian sebenarnya (b) Rangkaian Ekivalen

Gambar 2.8. Rangkaian penguat jembatan untuk resistansi sensor

Nilai tegangan outputnya adalah:

atau rumus lain untuk tegangan output

4.2.3. Resistance Thermal Detector (RTD) RTD adalah salah satu dari beberapa jenis sensor suhu yang

sering digunakan. RTD dibuat dari bahan kawat tahan korosi, kawat

tersebut dililitkan pada bahan keramik isolator. Bahan tersebut antara

lain; platina, emas, perak, nikel dan tembaga, dan yang terbaik adalah

bahan platina karena dapat digunakan menyensor suhu sampai 1500o

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 90

Page 97: Dasar Mekatronika

C. Tembaga dapat digunakan untuk sensor suhu yang lebih rendah

dan lebih murah, tetapi tembaga mudah terserang korosi.

RTD memiliki keunggulan dibanding termokopel yaitu:

1. Tidak diperlukan suhu referensi

2. Sensitivitasnya cukup tinggi, yaitu dapat dilakukan dengan cara

mem-perpanjang kawat yang digunakan dan memperbesar

tegangan eksitasi.

3. Tegangan output yang dihasilkan 500 kali lebih besar dari

termokopel

4. Dapat digunakan kawat penghantar yang lebih panjang karena

noise tidak jadi masalah

5. Tegangan keluaran yang tinggi, maka bagian elektronik pengolah

sinyal menjadi sederhana dan murah.

Resistance Thermal Detector (RTD) perubahan tahanannya lebih

linear terhadap temperatur uji tetapi koefisien lebih rendah dari

thermistor dan model matematis linier adalah:

)1(0 tRRT Δ+= α dimana : Ro = tahanan konduktor pada temperature awal (

biasanya 0oC)

RT = tahanan konduktor pada temperatur toC

α = koefisien temperatur tahanan

Kabel keluaran

Kumparan kawat platina

Inti dari Quartz

Terminal sambungan

Gambar 2.9. Konstruksi RTD

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 91

Page 98: Dasar Mekatronika

Δt = selisih antara temperatur kerja dengan temperatur

awal

Sedangkan model matematis nonliner kuadratik adalah:

Gambar 2.10. Resistansi versus Temperatur untuk variasi RTD

metal

Bentuk lain dari Konstruksi RTD

Gambar 2.11. Jenis RTD: (a) Wire (b) Ceramic Tube (c)

Thin Film

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 92

Page 99: Dasar Mekatronika

Rangkaian Penguat untuk three-wire RTD

Gambar 2.12. (a) Three Wire RTD (b) Rangkaian Penguat

Ekspansi Daerah Linier

Ekspansi daerah linear dapat dilakukan dengan dua cara yaitu:

1. Menggunakan tegangan referensi untuk kompensasi nonlinieritas

2. Melakukan kompensasi dengan umpan balik positif

Gambar 2.13. Kompensasi non linier (a) Respon RTD

non linier; (b) Blok diagram rangkaian

koreksi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 93

Page 100: Dasar Mekatronika

4.2.4. Termokopel Pembuatan termokopel didasarkan atas sifat thermal bahan

logam. Jika sebuah batang logam dipanaskan pada salah satu

ujungnya maka pada ujung tersebut elektron-elektron dalam logam

akan bergerak semakin aktif dan akan menempati ruang yang

semakin luas, elektron-elektron saling desak dan bergerak ke arah

ujung batang yang tidak dipanaskan. Dengan demikian pada ujung

batang yang dipanaskan akan terjadi muatan positif.

Kerapatan electron untuk setiap bahan logam berbeda

tergantung dari jenis logam. Jika dua batang logam disatukan salah

satu ujungnya, dan kemudian dipanaskan, maka elektron dari batang

logam yang memiliki kepadatan tinggi akan bergerak ke batang yang

kepadatan elektronnya rendah, dengan demikian terjadilah perbedaan

tegangan diantara ujung kedua batang logam yang tidak disatukan

atau dipanaskan. Besarnya termolistrik atau gem ( gaya

electromagnet ) yang dihasilkan menurut T.J Seeback (1821) yang

menemukan hubungan perbedaan panas (T1 dan T2) dengan gaya

gerak listrik yang dihasilkan E, Peltir (1834), menemukan gejala

panas yang mengalir dan panas yang diserap pada titik hot-juction

dan cold-junction, dan Sir William Thomson, menemukan arah arus

mengalir dari titik panas ke titik dingin dan sebaliknya, sehingga

ketiganya menghasilkan rumus sbb:

+

-

Ujung dingin

Arus elektron akan mengalir dari ujung panas ke ujung dingin

Gambar 2.14. Arah gerak electron jika logam dipanaskan

Ujung panas e

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 94

Page 101: Dasar Mekatronika

E = C1(T1-T2) + C2(T12 – T2

2) (…)

Efek Peltier Efek Thomson

atau E = 37,5(T1_T2) – 0,045(T12-T2

2) ( ...)

di mana 37,5 dan 0,045 merupakan dua konstanta C1 dan C2 untuk

mocouple sebagai sensor temperatur memanfaatkan

be b

termokopel tembaga/konstanta.

Bila ujung logam yang tidak dipanaskan dihubung singkat,

perambatan panas dari ujung panas ke ujung dingin akan semakin

cepat. Sebaliknya bila suatu termokopel diberi tegangan listrik DC,

maka diujung sambungan terjadi panas atau menjadi dingin

tergantung polaritas bahan (deret Volta) dan polaritas tegangan

sumber. Dari prinsip ini memungkinkan membuat termokopel menjadi

pendingin.

Ther

da workfunction dua ahan metal

Gambar 2.16. Hubungan Termokopel (a) titik beda potensial

(b) daerah pengukuran dan titik referensi

Vs

+ Beda potensial yang terjadi pada kedua ujung logam yang berbeda panas jenisnya

Ujung panas

-

Ujung dingin

Gambar 2.15. Beda potensial pada Termokopel

VR Vout V RS V−=

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 95

Page 102: Dasar Mekatronika

Pengaruh sifat thermocouple pada wiring

ambar 2.17. Tegangan referensi pada titik sambungan: bungan

Sehingga diperoleh rumus perbedaan tegangan :

G (a) Jumlah tegangan tiga buah metal (b) Blok titik sam

Rangkaian kompensasi untuk Thermocouple diperlihat oleh gambar 2.18

Gambar 2.18. Rangkaian penguat tegangan junction termokopel

.19 Perilaku beberapa jenis thermocouple diperlihatkan oleh gambar 2

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 96

Page 103: Dasar Mekatronika

Gambar 2.19. Karateristik beberapa tipe termokopel

4. 2.5. Dioda sebagai Sensor Temperatur

Dioda dapat pula digunakan sebagai sensor temperatur yaitu

dengan memanfaatkan sifat tegangan junction

Dimanfaatkan juga pada sensor temperatur rangkaian terintegrasi

(memiliki rangkaian penguat dan kompensasi dalam chip yang

sama).

Contoh rangkaian dengan dioda sebagai sensor temperature

Contoh rangkaian dengan IC sensor

- tipe E (chromel-konstanta) - tipe J (besi-konstanta) - tipe T (tembaga-Konstanta) - tipe K (chromel-alumel) - tipe R atau S (platina-pt/rodium)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 97

Page 104: Dasar Mekatronika

Rangkaian alternatif untuk mengubah arus menjadi tegangan pada IC

sensor temperature

Gambar 2.20. Rangkaian peubah arus ke tegangan untuk IC termo

sensor

4.2.6. Infrared Pyrometer

Sensor inframerah dapat pula digunakan untuk sensor temperatur

Gambar 2.21. Infrared Pyrometer sebagai sensor temperatur

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 98

Page 105: Dasar Mekatronika

Memfaatkan perubahan panas antara cahaya yang dipancarkan dengan

diterima yang diterima pyrometer terhadap objek yang di deteksi.

4.3.Sensor Mekanik

Pergerakkan mekanis adalah tindakan yang paling banyak dijumpai dalam

kehidupan sehari-hari, seperti perpindahan suatu benda dari suatu posisi ke posisi

lain, kecepatan mobil di jalan raya, dongrak mobil yang dapat mengangkat mobil

seberat 10 ton, debit air didalam pipa pesat, tinggi permukaan air dalam tanki.

Semua gerak mekanis tersebut pada intinya hanya terdiri dari tiga macam,

yaitu gerak lurus, gerak melingkar dan gerak memuntir. Gerak mekanis

disebabkan oleh adanya gaya aksi yang dapat menimbulkan gaya reaksi. Banyak

cara dilakukan untuk mengetahui atau mengukur gerak mekanis misalnya

mengukur jarak atau posisi dengan meter, mengukur kecepatan dengan

tachometer, mengukur debit air dengan rotameter dsb. Tetapi jika ditemui gerakan

mekanis yang berada dalam suatu sistem yang kompleks maka diperlukan sebuah

sensor untuk mendeteksi atau mengimformasikan nilai yang akan diukur. Berikut

akan dijabarkan beberapa jenis sensor mekanis yang sering dijumpai di dalam

kehidupan sehari-hari.

4.3.1. Sensor Posisi

Pengukuran posisi dapat dilakukan dengan cara analog dan digital. Untuk

pergeseran yang tidak terlalu jauh pengukuran dapat dilakukan menggunakan

cara-cara analog, sedangkan untuk jarak pergeseran yang lebih panjang lebih baik

digunakan cara digital.

Hasil sensor posisi atau perpindahan dapat digunakan untuk mengukur

perpindahan linier atau angular. Teknis perlakuan sensor dapat dilakukan dengan

cara terhubung langsung ( kontak ) dan tidak terhubung langsung ( tanpa kontak ).

4.3.1.1. Strain gauge (SG)

Strain gauge dapat dijadikan sebagai sensor posisi. SG dalam operasinya

memanfaatkan perubahan resistansi sehingganya dapat digunakan untuk

mengukur perpindahan yang sangat kecil akibat pembengkokan (tensile stress)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 99

Page 106: Dasar Mekatronika

atau peregangan (tensile strain). Definisi elastisitas (ε) strain gauge adalah

perbandingan perubahan panjang (ΔL) terhadap panjang semula (L) yaitu:

atau perbandingan perubahan resistansi (ΔR) terhadap resistansi semula (R) sama

dengan faktor gage (Gf) dikali elastisitas starin gage (ε) :

Secara konstruksi SG terbuat dari bahan metal tipis (foil) yang diletakkan diatas

kertas. Untuk proses pendeteksian SG ditempelkan dengan benda uji dengan dua

cara yaitu:

1. Arah perapatan/peregangan dibuat sepanjang mungkin (axial)

2. Arah tegak lurus perapatan/peregangan dibuat sependek mungkin (lateral)

Gambar 3.1. Bentuk phisik strain gauge

Faktor gauge (Gf) merupakan tingkat elastisitas bahan metal dari SG.

• metal incompressible Gf = 2

• piezoresistif Gf =30

• piezoresistif sensor digunakan pada IC sensor tekanan

Untuk melakukan sensor pada benda uji maka rangkaian dan penempatan SG

adalah

• disusun dalam rangkaian jembatan

• dua strain gauge digunakan berdekatan, satu untuk peregangan/perapatan , satu

untuk kompensasi temperatur pada posisi yang tidak terpengaruh peregangan/

perapatan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 100

Page 107: Dasar Mekatronika

• respons frekuensi ditentukan masa tempat strain gauge ditempatkan

Gambar 3.2. Pemasangan strain gauge: (a) rangkaian jembatan

(b) gage1 dan gage 2 posisi 90 (c) gage 1 dan gage 2 posisi sejajar

4.3.1.2. Sensor Induktif dan Elektromagnet

Sensor induktif memanfaatkan perubahan induktansi

• sebagai akibat pergerakan inti feromagnetik dalam koil

• akibat bahan feromagnetik yang mendekat

Gambar 3.3. Sensor posisi: (a) Inti bergeser datar (b) Inti I bergser berputar,

(c) Rangkaian variable induktansi

Rangkaian pembaca perubahan induktansi

• dua induktor disusun dalam rangkaian jembatan, satu sebagai dummy

• tegangan bias jembatan berupa sinyal ac

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 101

Page 108: Dasar Mekatronika

• perubahan induktasi dikonversikan secara linier menjadi perubahan tegangan

KL = sensistivitas induktansi terhadap posisi

• output tegangan ac diubah menjadi dc atau dibaca menggunakan detektor

fasa

Gambar 3.4. Rangkaian uji sensor posisi induktif

Sensor elektromagnetik memanfatkan terbangkitkannya gaya emf oleh pada

koil yang mengalami perubahan medan magnit

• output tegangan sebanding dengan kecepatan perubahan posisi koil terhadap

sumber magnit

• perubahan medan magnit diperoleh dengan pergerakan sumber medan magnit

atau pergerakan koilnya (seperti pada mikrofon dan loudspeaker)

Gambar 3.5. Pemakaian sensor posisi: (a) pada microphone, (b) pada

loudspeaker

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 102

Page 109: Dasar Mekatronika

4.3.1.3. Linier Variable Differential Transformer (LVDT)

- memanfaatkan perubahan induksi magnit dari kumparan primer ke dua

kumparan sekunder dalam keadaan setimbang, inti magnet terletak ditengah

dan kedua kumparan sekunder menerima fluks yang sama dalam keadaan tidak

setimbang, fluks pada satu kumparan naik dan yang lainnya turun

– tegangan yang dihasilkan pada sekunder sebading dengan perubahan posisi

inti magnetic

– hubungan linier bila inti masih disekitar posisi kesetimbangan

Gambar 3.6. LVDT sebagai sensor posisi: (a) konstruksi LVDT, (b) Rangakaian

listrik, (c) rangkaia uji LVDT, (d) Karakteristik LVDT

– rangkaian detektor sensitif fasa pembaca perpindahan dengan LVDT

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 103

Page 110: Dasar Mekatronika

Gambar 3.7. Rangkain uji elektronik LVDT

4.3.1.4. Transduser Kapasitif

– memanfaatkan perubahan kapasitansi

• akibat perubahan posisi bahan dielektrik diantara

kedua keping

• akibat pergeseran posisi salah satu keping dan luas

keping yang berhadapan langsung

• akibat penambahan jarak antara kedua keeping

Gambar 3.8. Sensor posisi kapasitif: (a) pergeseran media mendatar, (b)

pergeseran berputar, (c) pergeseran jarak plat

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 104

Page 111: Dasar Mekatronika

– nilai kapasitansi berbanding lurus dengan area dan berbanding terbaik dengan

jarak

kdAC 0885,0=

– cukup sensitif tetapi linieritas buruk

– rangkaian jembatan seperti pada sensor induktif dapat digunakan dengan

kapasitor dihubungkan paralel dengan resistansi (tinggi) untuk memberi jalur

DC untuk input

opamp

– alternatif kedua mengubah perubahan kapasitansi menjadi perubahan

frekuensi osilator

• frekuensi tengah 1 - 10 MHz

• perubahan frekuensi untuk perubahan kapasitansi cukup kecil

dibandingkan kapasitansi Co

Gambar 3.9. Pemakaian sensor posisi pada rangkaian elektronik: (a) kapasitansi menjadi frekuensi, (b) kapasitansi menjadi pulsa

– Solusi rangkaian murah dengan osilator relaksasi dual inverter CMOS

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 105

Page 112: Dasar Mekatronika

4.3.1.5. Transduser perpindahan digital optis

– mendeteksi posisi melalui kode oleh pemantul atau pelalu transmisi cahaya ke

detektor foto

– perpindahan (relatif) diukur berupa pulse train dengan frekuensi yang

sebanding kecepatan pergerakan

Gambar 3.10. Sensor posisi digital optis: (a) dan (b) pergeseran berputar, TX-RX sejajar, (c) dan (d) pergeseran mendatar, TX-RX membentuk sudut.

– deteksi arah gerakan memanfaatkan dua sinyal dengan saat pulsa naik

berbeda

Gambar 3.11. Rangakain uji untuk menentukan arah gerakan/posisi

– posisi mutlak dideteksi menggunakan kode bilangan digital

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 106

Page 113: Dasar Mekatronika

• untuk deteksi perubahan yang ekstrim satu kode digunakan sebagai sinyal

clock

• alternatif lain memanfaatkan kode yang hanya mengijinkan satu perubahan

seperti pada kode Gray

• kode angular lebih baik dari pada kode linier akibat arah ekpansi thermal

pada pelat kode

Gambar 3.12. Pulsa clock yang dihasilkan berdasarkan bilangan biner

– pengukuran perpindahan posisi yang kecil dapat dilakukan dengan pola Moire

• pola garis tegak dan miring memperkuat (ukuran) pergeseran arah x ke pola

garis pada arah y

• perubahan dibaca dengan cara optis

Gambar 3.13. Perubahan posisi kecil menggunakan cara Moire

4.3.1.6. Transduser Piezoelectric

Transduser Piezoelectric berkeja memanfaatkan tegangan yang terbentuk saat

kristal mengalami pemampatan

• ion positif dan negatif terpisah akibat struktur kristal asimetris

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 107

Page 114: Dasar Mekatronika

• bahan kristal: kuarsa dan barium titanat, elektret polivilidin florida

• bentuk respons

Gambar 3.14. Transduser Piezoelektrik: (a) konstruksi PE,

(b) rangkaian ekivalen PE

Gambar 3.15. Respons Tegangan PE

Rangkaian pembaca tegangan pada piezoelektrik sensor

• kristal bukan konduktor (tidak mengukur DC, rangkaian ekivalen) gunakan

rangkaian Op-Amp dengan impedansi input tinggi (FET, untuk frekuensi

rendah)

• bila respons yang diukur dekat dengan frekuensi resonansi kristal, ukur

muatan sebagai ganti tegangan

di mana Qx = muatan listrik kristal (coulomb)

Kqe = konstanta kristal (coul/cm)

ε = gaya tekan ( Newton)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 108

Page 115: Dasar Mekatronika

• Gambar (a) R tinggi untuk alur DC, (b) saklar untuk mengukur tegangan

strain saat ON dan OFF dan (c) mengukur muatan, tegangan (Vo)yang

dihasilkan adalah :

Gambar 3.16. Rangkaian pembacaan tegangan kristal

4.3.1.7. Transduser Resolver dan Inductosyn

– berupa pasangan motor-generator: resolver dan transmiter digunakan untuk

mengukur sudut pada sebuah gerakan rotasi

– kumparan stator sebagai penerima ditempatkan pada sudut yang berbeda

• 3 stator: syncho

• 2 stator: resolver

– versi linier (inductosyn) perbedaan sudut 90 derajat diperoleh dengan

perbedaan 1/4 gulungan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 109

Page 116: Dasar Mekatronika

Gambar 3.17. Konstruksi Resolver - Inductosyn dan sinyal yang dihasilkan

4.3.1.8. Detektor Proximity

– (a) saklar reed yang memanfatkan saklar yang terhubung atau terlepas

berdasarkan medan magnet

– (b) RF-lost akibat adanya bahan metal yang menyerap medan magnet

(frekuensi 40-200 kHz) yang mengakibatkan detector RF turun akibat

pembebanan rangkaian resonansi LC pada osilator

– (c) Detector kapasitansi mengamati perubahan kapasitansi oleh bahan

nonkonduktor

– (d) pancaran cahaya terfokus

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 110

Page 117: Dasar Mekatronika

Gambar 3.18. Beberapa sensor proximity

4.3.1.9. Potensiometer

Potensiometer yang tersedia di pasaran terdiri dari beberapa jenis, yaitu:

potensiometer karbon, potensiometer wire wound dan potensiometer metal film.

1. Potensiometer karbon adalah potensiometer yang terbuat dari bahan karbon

harganya cukup murah akan tetapi kepressian potensiometer ini sangat rendah

biasanya harga resistansi akan sangat mudah berubah akibat pergeseran kontak.

2. Potensiometer gulungan kawat (wire wound) adalah potensiometer yang

menggunakan gulungan kawat nikelin yang sangat kecil ukuran

penampangnya. Ketelitian dari potensiometer jenis ini tergantung dari ukuran

kawat yang digunakan serta kerapihan penggulungannya.

3. Metal film adalah potensiometer yang menggunakan bahan metal yang

dilapiskan ke bahan isolator

Potensiometer karbon dan metal film jarang digunakan untuk kontrol

industri karena cepat aus. Potensiometer wire wound adalah potensiometer yang

a. Wire Wound b. Tahanan Geser c. Karbon

Gambar 3.19. Macam Potensiometer

menggunakan kawat halus yang dililit pada batang metal. Ketelitian

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 111

Page 118: Dasar Mekatronika

potensiometer tergantung dari ukuran kawat. Kawat yang digunakan biasanya

adalah kawat nikelin.

Penggunaan potensiometer untuk pengontrolan posisi cukup praktis karena

aus akibat gesekan

tama saat pergantian posisi dan saaat terjadi lepas

h terserang korosi

meter linier adalah potensiometer yang perubahan tahanannya

sangat

hanya membutuhkan satu tegangan eksitasi dan biasanya tidak membutuhkan

pengolah sinyal yang rumit. Kelemahan penggunaan potensiometer terutama

adalah:

1. Cepat

2. Sering timbul noise teru

kontak

3. Muda

4. Peka terhadap pengotor

Potensio

halus dengan jumlah putaran sampai sepuluh kali putaran (multi turn).

Untuk keperluan sensor posisi potensiometer linier memanfaatkan perubahan

resistansi, diperlukan proteksi apabila jangkauan ukurnya melebihi rating,

linearitas yang tinggi hasilnya mudah dibaca tetapi hati-hati dengan friksi dan

backlash yang ditimbulkan, resolusinya terbatas yaitu 0,2 – 0,5%

Gambar 3.20. Rangkaian uji Potensiometer

4.3.1.10. Optical lever displacement detektor

ri sumber ke detektor • memanfaatkan pematulan berkas cahaya da

• linieritas hanya baik untuk perpindahan yang kecil

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 112

Page 119: Dasar Mekatronika

Gambar 3.21. Optical Lever Displacement Detector

4.3.2. Sensor Kecepatan ( Motion Sensor )

Pengukuran kecepatan dapat dilakukan dengan cara analog dan cara

digital. Secara umum pengukuran kecepatan terbagi dua cara yaitu: cara angular

dan cara translasi. Untuk mengukur kecepatan translasi dapat diturunkan dari cara

pengukuran angular. Yang dimaksud dengan pengukuran angular adalah

pengukuran kecepatan rotasi (berputar), sedangkan pengukuran kecepatan

translasi adalah kecepatan gerak lurus beraturan dan kecepatan gerak lurus tidak

beraturan.

4.3.2.1. Tacho Generator

Sensor yang sering digunakan untuk sensor kecepatan angular adalah

tacho generator. Tacho generator adalah sebuah generator kecil yang

membangkitkan tegangan DC ataupun tegangan AC. Dari segi eksitasi tacho

generator dapat dibangkitkan dengan eksitasi dari luar atau imbas elektromagnit

dari magnit permanent.

Tacho generator DC dapat membangkitkan tegangan DC yang langsung

dapat menghasilkan informasi kecepatan, sensitivitas tacho generator DC cukup

baik terutama pada daerah kecepatan tinggi. Tacho generator DC yang bermutu

tinggi memiliki kutub-kutub magnit yang banyak sehingga dapat menghasilkan

tegangan DC dengan riak gelombang yang berfrekuensi tinggi sehingga mudah

diratakan. Keuntungan utama dari tacho generator ini adalah diperolehnya

informasi dari arah putaran. Sedangakan kelemahannya adalah :

1. Sikat komutator mudah habis

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 113

Page 120: Dasar Mekatronika

2. Jika digunakan pada daerah bertemperatur tinggi, maka magnet permanent akan

mengalami kelelahan, untuk kasus ini, tacho generator sering dikalibrasi.

3. Peka terhadap debu dan korosi

Tacho generator AC berupa generator singkron, magnet permanent

diletakkan dibagian tengah yang berfungsi sebagai rotor. Sedangkan statornya

berbentuk kumparan besi lunak. Ketika rotor berputar dihasilkan tegangan induksi

di bagian statornya. Tipe lain dari tacho generator AC adalah tipe induksi, rotor

dibuat bergerigi, stator berupa gulungan kawat berinti besi. Medan magnet

permanent dipasang bersamaan di stator. Ketika rotor berputar, terjadi perubahan

medan magnet pada gigi yang kemudian mengimbas ke gulungan stator.

Kelebihan utama dari tacho generator AC adalah relatif tahan terhadap

korosi dan debu, sedangkan kelemahannya adalah tidak memberikan informasi

arah gerak.

Gambar 3.22. Kontruksi Tacho Generator DC

Gambar 3.23. Kontruksi Tacho Generator AC

Stator magnet pemanen

Kumparan, ujung-ujung kawatnya dihubungkan ke komutator

Terminal keluaran

Rotor inti besi berputar bersama kumparan dan komutatorKomutator

berputar bersama rotor

Rotor magnet permanent diiputar

Tegangan keluaran AC

U S

Kumparan stator

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 114

Page 121: Dasar Mekatronika

Gambar 3.24. Kontruksi Tacho Generator AC dengan rotor bergerigi

4.3.2.2. Pengukuran Kecepatan Cara Digital.

Pengukuran kecepatan cara digital dapat dilakukan dengan cara induktif,

kapasitif dan optik. Pengukuran dengan cara induksi dilakukan menggunakan

rotor bergerigi, stator dibuat dari kumparan yang dililitkan pada magnet

permanen. Keluaran dari sensor ini berupa pulsa-pulsa tegangan. Penggunaan cara

ini cukup sederhana, sangat praktis tanpa memerlukan kopling mekanik yang

rumit, serta memiliki kehandalan yang tinggi, tetapi kelemahannya tidak dapat

digunakan untuk mengukur kecepatan rendah dan tidak dapat menampilkan arah

putaran.

Gambar 3.25. Sensor Kecepatan Digital Tipe Induktor

Tipe lain sensor kecepatan adalah cara Optik. Rotor dibuat dari bahan

metal atau plastik gelap, rotor dibuat berlubang untuk memberi tanda kepada

Rotor bergerigi

Tegangan keluaran AC

Kumparan stator magnit permanen

U

S

U S

Rotor bergigi Kumparan Induktor

Magnit Permanen

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 115

Page 122: Dasar Mekatronika

sensor cahaya. Bila diinginkan informasi arah kecepatan, digunakan dua buah

sensor yang dipasang berdekatan. Informasi arah gerah dapat diperoleh dengan

cara mendeteksi sensor mana yang lebioh dahulu mendapat sinar (aktif). Sensor

cahaya sangat peka terhadap pengotor debu, olej karena itu keselurujan bagian

sensor (stator dan rotor) harus diletakkan pada kemasan tertutup. Kelebihan

sensor ini memiliki linearitas yang sangat tinggi untuk daerah jangkauan yang

sangat luas. Kelemahannya adalah masih diperlukan adanya kopling mekanik

dengan sistem yang di sensor.

Gambar 3.26. Sensor Kecepatan Cara Optik

Sensor kecepatan digital lain adalah menggunakan kapsitf, yaitu rotor

dibuat dari bahan metal, bentuknya bulat. Rotor berputar dengan poros tidak

sepusat atau bergeser kepinggir sedikit. Stator dibuat dari bahan metal dipasang

dengan melengkung untuk memperbesar sensitivitas dari sensor. Ketika rotor

diputar maka akan terjadi perubahan kapasitansi diantara rotor dan stator karena

putaran rotor tidak simetris. Penerapan dari sensor ini teruatama jika diperlukan

pemasangan sensor kecepatan yang berada dilingkungan fluida.

Gambar 3.27. Sensor Kecepatan Cara Kapasitansi.

Elemen sensor cahaya

Isolator

Sumbu rotor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 116

Page 123: Dasar Mekatronika

4.3.3. Sensor Tekanan ( Presure Sensor )

• Transduser tekanan dan gaya (load cell)

– terdiri dari bahan elastis dan sensor perpindahan (displacement)

– besaran ukur (i) strain atau (ii) displacement

– pengelompokan: tipe absolute gauge dan diferensial

Gambar 3.28. Sensor tekanan diafragma: diafragma tipe datar, (b) diafragma bergelombang, (c) media kapasistansi

• sensor tekanan dengan diafragma reliable, sukar dibuat, reproducible

– besaran ukur strain dengan strain gauge atau displacement dengan

kapasitansi

– pengukuran dengan kapasitansi dalam rangkaian jembatan sangat sensitif

dan mahal

– Penempatan dan rangkaian sensor

• rangkaian jembatan untuk kompensasi temperatur

• resistor sensitif temperatur baik dalam jembatan maupun pada regulator

tegangan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 117

Page 124: Dasar Mekatronika

Gambar 3.29. Rangkaian uji sensor tekanan strain gauge: (a) rangakaian

jembatan tanpa kompensator, (b) rangakaian jembatan dengan kompensator

4.3.3.1. Transduser Tekanan silikon

– memanfaatkan silikon sebagai bahan strain ukur dan diafragmanya, rangkaian

bisa terintegrasi

– lebih sensistif dari metal karena strain (displacement) dan sifat piezoresistif

muncul bersamaan

– selalu menggunakan 4 gauge dalam jembatan, masalah yang dihadapi

• gauge tidak identik

• sangat sensitif terhadap temperatur

– alternatif solusi:

• eksitasi arus

• kompensasi tegangan jembatan

• kompensasi penguatan amplifier

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 118

Page 125: Dasar Mekatronika

Gambar 3.30. Straingage piezoresistif: (a) phisik peizoresistif straingage, (b) karakteristik peizoresistif sg, (c) respon temperatur pada

konfigurasi jembatan

– konstruksi sensor tekanan silikon

• diafragma dengan proses etsa

• strain gauge dengan difusi dopan

Gambar 3.31. Sensor tekanan jenis diafragma silicon: (a) diafragma datar, (b)

diafragma melingkar lebih sensitif

(c)

– konstruksi paket sensor tekanan silikon dengan rangkaian kompensasi dan

penguat

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 119

Page 126: Dasar Mekatronika

Gambar 3.32. Sensor tekanan semikonduktor: (a) konstruksi sensor, (b)blok

diagram rangkaian sensor

4.3.3.2. Sensor Tekanan Tipe Bourdon dan Bellow

– besaran ukur perpindahan (displacement) memanfaatkan LVDT, sensor

reluktansi-variabel, potensiometer

– konversi tekanan ke perpindahan menggunakan tabung Bourdon atau Bellows

Gambar 3.33. Sensor tekanan tipe lain: (a) dan (b) tipe Bourdon,

(c) dan (d) tipe bellow

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 120

Page 127: Dasar Mekatronika

4.3.3.3. Load cell

– cara kerja mirip dengan sensor tekanan yaitu mengubah gaya menjadi

perpindahan

– menggunakan rangkaian jembatan untuk pembacaan, kalibrasi dan

kompensasi temperatur

– alternatif lain menggunakan kristal piezoelektrik untuk mengukur perubahan

gaya

– konfigurasi load cell

Gambar 3.34. Beberapa Contoh Konfigurasi Load Cell

• Spesifikasi Error dan Nonlinearitas pada Sensor

Gambar 3.35. Respon sensor secara umum

(a) Simpangan dari garis linear (b) Bentuk sinyal terdefinisi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 121

Page 128: Dasar Mekatronika

4.3.4. Sensor Aliran Fluida ( Flow Sensor )

Pengukuran aliran mulai dikenal sejak tahun 1732 ketika Henry Pitot

mengatur jumlah fluida yang mengalir. Dalam pengukuran fluida perlu ditentukan

besaran dan vektor kecepatan aliran pada suatu titik dalam fluida dan bagaimana

fluida tersebut berubah dari titik ke titik.

Pengukuran atau penyensoran aliran fluida dapat digolongkan sebagai berikut:

1. Pengukuran kuantitas

Pengukuran ini memberikan petunjuk yang sebanding dengan kuantitas

total yang telah mengalir dalam waktu tertentu. Fluida mengalir melewati

elemen primer secara berturutan dalam kuantitas yang kurang lebih terisolasi

dengan secara bergantian mengisi dan mengosongkan bejana pengukur yang

diketahui kapasitasnya.

Pengukuran kuantitas diklasifikasikan menurut :

a. Pengukur gravimetri atau pengukuran berat

b. Pengukur volumetri untuk cairan

c. Pengukur volumetri untuk gas

2. Pengukuran laju aliran

Laju aliran Q merupakan fungsi luas pipa A dan kecepatan V dari cairan

yang mengalir lewat pipa, yakni:

Q = A.V

tetapi dalam praktek, kecepatan tidak merata, lebih besar di pusat. Jadi

kecepatan terukur rata-rata dari cairan atau gas dapat berbeda dari kecepatan

rata-rata sebenarnya. Gejala ini dapat dikoreksi sebagai berikut:

Q = K.A.V

di mana K adalah konstanta untuk pipa tertentu dan menggambarkan

hubungan antara kecepatan rata-rata sebenarnya dan kecepatan terukur. Nilai

konstantaini bisa didapatkan melalui eksperimen.

Pengukuran laju aliran digunakan untuk mengukur kecepatan cairan atau

gas yang mengalir melalui pipa. Pengukuran ini dikelompokkan lagi menurut

jemis bahan yang diukur, cairan atau gas, dan menurut sifat-sifat elemen

primer sebagai berikut:

a. Pengukuran laju aliran untuk cairan:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 122

Page 129: Dasar Mekatronika

1) jenis baling-baling defleksi

2) jenis baling-baling rotasi

3) jenis baling-baling heliks

4) jenis turbin

5) pengukur kombinasi

6) pengukur aliran magnetis

7) pengukur aliran ultrasonic

8) pengukur aliran kisaran (vorteks)

9) pengukur pusaran (swirl)

b. Pengukuran laju aliran gas

1) jenis baling-baling defleksi

2) jenis baling-baling rotasi

3) jenis termal

3. Pengukuran metoda diferensial tekanan

Jenis pengukur aliran yang paling luas digunakan adalah pengukuran

tekanan diferensial. Pada prinsipnya beda luas penampang melintang dari

aliran dikurangi dengan yang mengakibatkan naiknya kecepatan, sehingga

menaikan pula energi gerakan atau energi kinetis. Karena energi tidak bisa

diciptakan atau dihilangkan ( Hukum perpindahan energi ), maka kenaikan

energi kinetis ini diperoleh dari energi tekanan yang berubah..

Lebih jelasnya, apabila fluida bergerak melewati penghantar (pipa)

yang seragam dengan kecepatan rendah, maka gerakan partikel masing-masing

umumnya sejajar disepanjang garis dinding pipa. Kalau laju aliran meningkat,

titik puncak dicapai apabila gerakan partikel menjadi lebih acak dan kompleks.

Kecepatan kira-kira di mana perubahan ini terjadi dinamakan kecepatan kritis

dan aliran pada tingkat kelajuan yang lebih tinggi dinamakan turbulen dan

pada tingkat kelajuan lebih rendah dinamakan laminer.

Kecepatan kritis dinamakan juga angka Reynold, dituliskan tanpa

dimensi: μρVDRD =

di mana : D = dimensi penampang arus fluida, biasanya diameter

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 123

Page 130: Dasar Mekatronika

ρ = kerapatan fluida

V = kecepatan fluida

μ = kecepatan absolut fluida

Batas kecepatan kritisuntuk pipa biasanya berada diantara 2000 dan 2300.

misalnya: menggunakan pipa venturi, pipa pitot, orifice plat (lubang sempit),

ekanan

Metoda ini berdasarkan Hukum Bernoulli yang menyatakan hubungan :

Pengukuran aliran metoda ini dapat dilakukan dengan banyak cara

turbine flow meter, rotameter, cara thermal, menggunakan bahan radio aktif,

elektromagnetik, ultar sonic dan flowmeter gyro. Cara lain dapat dikembangkan

sendiri sesuai dengan kebutuhan proses. Yang dibahas dalam buku ini adalah

sensor laju aliran berdasarkan perbedaan tekanan.

4.3.4.1. Sensor Aliran Berdasarkan Perbedaan T

22221121 .... hgPhgP 2121 ρρνρρν ++=++

dimana: P = tekanan fluida

ρ = masa jenis fluida

a

asi)

Gambar 3.36. Hukum Kontiunitas

Jika h1 dan h2 di

v = kecepatan fulid

g = gravitasi bumi

h = tinggi fluida (elev

buat sama tingginya maka

v2

P1 P2

v1

h2

h1

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 124

Page 131: Dasar Mekatronika

222

12

21 2

11 ρν+P ρν+= P atau 12

22

212

1 ).( PP +=−ννρ

Perhatian : Rumus diatas hanya berlaku untuk aliran Laminer, yaitu aliran yang

emenuhi prinsip kontinuitas.

, pipa venturi dan flow Nozzle menggunakan

hukum Bernoulli diatas. Prinsip dasarnya adalah membentuk sedikit perubahan

kecepa

m

Pipa pitot, orifice plate

tan dari aliran fluida sehingga diperoleh perubahan tekanan yang dapat

diamati. Pengubahan kecepatan aliran fluida dapat dilakukan dengan mengubah

diameter pipa, hubungan ini diperoleh dari Hukum kontiunitas aliran fluida.

Perhatikan rumus berikut: 2211 .. DADA = , di mana : A = luas penampang pipa,

B = debit fluida

rhubungan la

uida dapat diubah dengan cara mengubah diameter pipa.

Alat ukur terdiri dari pipa dimana dibagian dalamnya diberi pelat

ri ukuran diameter pipa. Sensor tekanan diletakan disisi

onstruksi sederhana

n pipa sambungan.

ukup murah

:

padat dari aliran fluida, maka padat bagian tersebut

i inlet.

Karena debit fluida be ngsung dengan kecepatan fluida, maka

jelas kecepatan fl

4.3.4.1.1. Orifice Plate

berlubang lebih kecil da

pelat bagian inlet (P1) dan satu lagi dibagian sisi pelat bagian outlet (P2). Jika

terjadi aliran dari inlet ke outlet, maka tekanan P1 akan lebih besar dari tekanan

outlet P2.

Keuntungan utama dari Orfice plate ini adalah dari :

1. K

2. Ukuran pipa dapat dibuat persis sama dengan ukura

3. Harga pembuatan alat c

4. Output cukup besar

Kerugian menggunakan cara ini adalah

1. Jika terdapat bagian

akan terkumpul pada bagian pelat disis

2. Jangkauan pengukuran sangat rendah

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 125

Page 132: Dasar Mekatronika

3. Dimungkinkan terjadinya aliran Turbulen sehingga menyebabkan

4. ungkinkan bila digunakan untuk mengukur aliran fluida yang

Jumlah fluida yang mengalir per satuan waktu ( m3/dt) adalah :

Q = jumlah fluida yang mengalir ( m3/dt)

pipa sempit

n 2

umus ini juga berlaku untuk pipa venturi

4.3.4.1.2. Pipa Venturi

pengukuran aliran dengan beda tekanan adalah pipa

a venture, pemercepat aliran fluida dilakukan dengan cara membentuk

kesalahan pengukuran jadi besar karena tidak mengikuti prinsip aliran

Laminer.

Tidak mem

bertekanan rendah.

P2 P1

Aliran fluida

Gambar 3.37. Orifice Plate

P1 > P2

2122g PPKAQ −=ρ

di mana :

K = konstanta pipa

A2 = luas penampang

P = tekanan fluida pada pipa 1 da

ρ = masa jenis fluida

g = gravitasi bumi

R

Bentuk lain dari

venture.

Pada pip

corong sehingga aliran masih dapat dijaga agar tetap laminar. Sensor tekana

pertama (P1) diletakkan pada sudut tekanan pertama dan sensor tekanan kedua

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 126

Page 133: Dasar Mekatronika

diletakkan pada bagian yang plaing menjorok ke tengah. Pipa venturi biasa

dipergunakan untuk mengukur aliran cairan.

Keuntungan dari pipa venturi adalah:

1.Partikel padatan masih melewati alat ukur

dibandingkan orifice plate.

ar

menjadi lebih kecil dari orifice plate.

4.3.4.1.3. Flow Nozzle

le menggunakan sebuah corong yang diletakkan diantara

ambun

an padatan

da

2. Kapasitas aliran cukup besar

3. Pengukuran tekana lebih baik

4. Tahan terhadapa gesakan fluida.

Kerugiannya adalah:

1. Ukuiran menjadi lebih bes

2. Lebih mahal dari orifice plate

3. Beda tekanan yang ditimbulkan

1 P2 P

Gambar 3.38. Pipa Venturi

Tipe Flow Nozz

s gan pipa sensor tekanan P1 dibagian inlet dan P2 dibagian outlet. Tekanan

P2 lebih kecil dibandingkan P1. Sensor jenis ini memiliki keunggulan diabnding

venture dan orifice plate yaitu:

1. Masih dapat melewatk

2. Kapasitas aliran cukup besar

3. Mudah dalam pemasangan

4. Tahan terhadap gesekan flui

5. Beda tekanan yang diperoleh lebih besar daripada pipa venturi

6. Hasil beda tekanan cukup baik karena aliran masih laminer

Aliran Fluida

P1 > P2

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 127

Page 134: Dasar Mekatronika

Gambar 3.39. Flow Nozzle

4.3.4.1.4. Pipa Pitot

Konstruksi pipa ini ang di bagian tengah pipa

yang dibengkokkan ke arah inlet. Jenis pipa ini jarang

4.3.4.1.5. Rotameter

Rotameter terdiridari tabung vertikal dengan lubang gerak di mana

dianggap vertical sesuai dengan laju aliran melalui tabung

amb

adalah berupa pipa biasa sed

diselipkan pipa kecil

dipergunakan di industri karena dengan adanya pipa kecil di bagian tengah akan

menyebabkan benturan yang sangat kuat terhadap aliran fluida. Alat ini hanya

dipergunakan untuk mengukur aliran fluida yang sangat lambat.

Gambar 3.40. Pipa Pitot

kedudukan pelampung

(G ar 3.41). Untuk laju aliran yang diketahui, pelampung tetap stasioner

karena gaya vertical dari tekanan diferensial, gravitasi, kekentalan, dan gaya-

apung akan berimbang. Jadi kemampuan menyeimbangkan diri dari pelampung

yang digantung dengan kawat dan tergantung pada luas dapat ditentukan. Gaya

kebawah (gravitasi dikurangi gaya apung) adalah konstan dan demikian pula

gaya keatas (penurunan tekanan dikalikan luas pelampung) juga harus konstan.

Dengan mengasumsikan aliran non kompresif, hasilnya adalah sebagai berikut:

P2P1

P1 > P2

Aliran fluida

P1 P2

P1 > P2

Aliran fluida

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 128

Page 135: Dasar Mekatronika

engalir

Gambar 3.41. Rotameter

Pelampung dapat dibuat dari berbagai bahan untuk mendapatkan beda

kerapatan yang diperlukan r cairan atau gas tertentu.

Tabung sering dibuat dari gelas berkekuatan tinggi sehingga dapat dilakukan

k mengukur aliran udara.

Pengukuran dengan menggunakan carathermal dapat dilakukan dengan cara-cara :

nas

Di mana, Q = laju aliran volume C = koefisien pengosongan At = luas tabung Af = luas pelampung Vf = volume pelampung Wf = berat jenis pelampung

uida yang m Wff = berat jenis fl

(Wf-Wff) untuk menguku

pengamatan langsung terhadap kedudukan pelampung.

4.3.4.2. Cara-cara Thermal

Cara-cara thermal biasanya dipergunakan untu

Anemometer kawat pa

Teknik perambatan panas

Teknik penggetaran

Inlet

Outlet

x

Tabung gelas

Pelampung

⎟⎟⎠

⎞⎜⎜⎝

−−

−=

fff

ffft

tft

ft

WAWW

gVAAA

AACQ 2

]/)[1

)(2

kecillebihjauhAAAdanCAAKQatau tftft2)])[();( −−=

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 129

Page 136: Dasar Mekatronika

4.3.4.2.1. Anemometer Kawat Panas

Metoda ini cukup sederhana yaitu dengan menggunakan kawat yang

ipanaskan oleh aliran listrik, arus yang mengalir pada kawat dibuat tetap konstan

ika ada aliran udara, maka kawat akan

endin

wat

faktor konversi, panas ke daya listrik

awat

yang mengalir

an panas

anas

d

menggunakan sumber arus konstan. J

m gin (seperti kita meniup lilin) dengan mendinginnya kawat, maka

resistansi kawat menurun. Karena dipergunakan sumber arus konstan, maka kita

dapat menyensor tegangan pada ujung-ujung kawat. Sensor jenis ini memiliki

sensitivitas sangat baik untuk menyensor aliran gas yang lambat. Namun

sayangnya penginstalasian keseluruhan sensor tergolong sulit.

Disini berlaku rumus :

( )twccw TTAhKRI −=2

di mana : I = arus ka

Rw = resistansi kawat

Kc =

Tw = temperatur k

Tt = temperatur fluida

Hc = koefisien film (pelapis) dari perpindah

A = luas perpindahan p

(a) tertutup (b) terbuka

Gambar 3.42. Kontruksi Anemometer Kawat Panas

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 130

Page 137: Dasar Mekatronika

4.3.4.2.2. Pera

Pada teknik perambatan panas, pemanas dipasang pada bagian luar pipa,

ipa tersebut terbuat dari bahan logam. Di kiri dan kanan pemanas, dipasang

ahan isolator panas, dan pada isolator ini dipasang sensor suhu. Bila

an, maka suhu disebelah kiri akan terasa lebih

terpasang adalah thermokopel karena m miliki respon suhu yang cepat. Sensor

aliran perambatan gian dari saluran

udara, sehingga dibutuhkan pemanas sam ai puluhan kilowatt, untuk mengurangi

buah pemancar radio aktif. Pada jarak tertentu kea rah

utlet, dipasang detector. Bila terjadi aliran, maka akan terdeteksi adanya partikel

terdeteksi pada selang tertentu akan sebanding

bagian tertentu dipasang detector. Teknik ini dilakukan bila terjadi kesulitan

mbatan Panas

p

b

udaramengalir dari kiri ke kan

dingin dibanding suhu sebelah kanan.

Gambar 3.43. Flowmeter Rambatan Panas

Sensor suhu yang digunakan dapat berupa sensor resistif tetapi yang biasa

e

panas tipe lama, memanaskan seluruh ba

p

daya panas tersebut digunakan tipe baru dengan membelokkan sebagian kecil

udara kedalam sensor.

4.3.4.3. Flowmeter Radio Aktif

Teknik pengukuran aliran dengan radio aktif adalah dengan menembakkan

partikel netron dari se

o

radio aktif, jumlah partikel yang

dengan kecepatan aliran fluida.

Teknik lain yang masih menggunakan teknik radio aktif adalah dengan

cara mencampurkan bahan radio aktif kedalam fluida kemudian pada bagian-

Aliran fluida

T1

Sensor suhu Sensor suhu Elemen pemanas

T2 T1 < T2

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 131

Page 138: Dasar Mekatronika

mengukur misalnya karena bahan aliran terdiri dari zat yang berada pada

berbagai fase.

Teknik radio aktif ini juga biaa dipergunakan pada pengobatan yaitu mencari

posisi pembuluh darah yang macet bagi penderita kelumpuhan.

eter Elektromagnetis

Flowmete r aliran cairan

lektrolit. Flowmeter ini menggunakan prinsip Efek Hall, dua buah gulungan

awat tembaga dengan inti besi dipasang pada pipa agar membangkitkan medan

agnetik. Dua buah elektroda dipasang pada bagian dalam pipa dengan posisi

ak lurus terhadap aliran fluida.

Gambar 3.44. Flowmeter Cara Radiasi Nuklir

4.3.4.4. Flowm

r jenis ini biasa digunakan untuk menguku

e

k

m

tegak lurus arus medan magnet dan teg

Bila terjadi aliran fluida, maka ion-ion posistif dan ion-ino negatif

membelok ke arah elektroda. Dengan demikian terjadi beda tegangan pada

elektroda-elektrodanya. Untuk menghindari adanya elektrolisa terhadap larutan,

dapat digunakan arus AC sebagai pembangkit medan magnet.

Aliran

Sumber radiasi netron

Detektor mendeteksi muatan ion akibat radiasi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 132

Page 139: Dasar Mekatronika

Lintasan ion positif +

Gambar 3.45. Prinsip Pengukuran Aliran menggunakan Efek Hall

3.4.5. Flowmeter Ultrasonic

nakan Azas Doppler.Dua pasang ultrasonic

.3.5. Sensor Level

evel dapat dilakukan dengan bermacam cara antara lain

g atau displacer, gelombang udara, resistansi, kapasitif, ultra sonic,

4.

Flowmeter ini menggu

transduser dipasang pada posisi diagonal dari pipa, keduanya dipasang dibagian

tepi dari pipa, untuk menghindari kerusakan sensor dantyransmitter, permukaan

sensor dihalangi oleh membran. Perbedaan lintasan terjadi karena adanya aliran

fluida yang menyebabkan pwerubahan phase pada sinyal yang diterima sensor

ultrasonic

Gambar 3.46. Sensor Aliran Fluida Menggunakan Ultrasonic

4

Pengukuran l

dengan:

pelampun

optic, thermal, tekanan, sensor permukaan dan radiasi. Pemilihan sensor yang

tepat tergantung pada situasi dan kondisi sistem yang akan di sensor.

Aliran fluida

Lintasan ion negatif

Medan magnet arah meninggalkan kita

Elektroda logam

_

Ultra sonic Tx - Rx

Ultra sonic Tx - Rx

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 133

Page 140: Dasar Mekatronika

4.3.5.1. Menggunakan Pelampung

alam penyensor level cairan adalah dengan

engg

.3.5.2. Menggunakan Tekanan

ran dapat pula dilakukan menggunakan sensor

dengan cara mencelupkan pipa

Cara yang paling sederhana d

m unakan pelampung yang diberi gagang. Pembacaan dapat dilakukan dengan

memasang sensor posisi misalnya potensiometer pada bagian engsel gagang

pelampung. Cara ini cukup baik diterapkan untuk tanki-tanki air yang tidak terlalu

tinggi.

Gambar 3.47. Sensor Level Menggunakan Pelampung

4

Untuk mengukur level cai

tekanan yang dipasang di bagian dasar dari tabung. Cara ini cukup praktis, akan

tetapi ketelitiannya sangat tergantung dari berat jenis dan suhu cairan sehingga

kemungkinan kesalahan pembacaan cukup besar.

Sedikit modifikasi dari cara diatas adalah

berisi udara kedalam cairan. Tekanan udara didalam tabung diukur menggunakan

sensor tekanan, cara ini memanfaatkan hukum Pascal. Kesalahan akibat

perubahan berat jenis cairan dan suhu tetap tidak dapat diatasi.

Gagang Potensiometer

Pelampung

Cairan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 134

Page 141: Dasar Mekatronika

Sensor Tekanan

Cairan dengan berat jenis diketahui dan tetap

Gambar 3.48. Sensor Level Menggunakan Sensor Tekanan

4.3.5.3. Menggunakan Cara Thermal

Teknik ini didasarkan pada fakta penyerapan kalor oleh cairan lebih tinggi

dibandingkan penyerapan kalor oleh uapnya, sehingga bagian yang tercelup akan

lebih dingin dibandingkan bagian yang tidak tercelup. Kontruksi dasar sensor

adalah terdidiri dari sebuah elemen pemanas dibentuk berliku-liku dan sebuah

pemanas lain dibentuk tetap lurus. Dua buah sensor diletakkan berhadapan dengan

bagian tegakdari pemanas, sebuah sensor tambahan harus diletakkan selalu berada

dalam cairan yang berfungsi untuk pembanding. Kedua sensor yang berhadapan

dengan pemanas digerakkan oleh sebuah aktuator secara perlahan-lahan dengan

perintah naik atau turun secara bertahap. Mula-mula sensor diletakkan pada

bagian paling atas, selanjutnya sensor suhu digerakkan ke bawah perlahan-lahan,

setiap terdeteksi adanya perubahan suhu pada sensor yang berhadapan pada

pemanas berliku, maka dilakukan penambahan pencacahan terhadap pencacah

elektronik. Pada saat sensor yang berhadapan dengan pemanas lurus mendeteksi

adanya perubahan dari panas ke dingin, maka hasil pencacahan ditampilkan pada

peraga.

Sensor level cairan dengan cara thermal ini biasanya digunakan pada

tanki-tanki boiler, karena selain sebagai sensor level cairan, juga dapat

dipergunakan untuk mendeteksi gradien perubahan suhu dalam cairan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 135

Page 142: Dasar Mekatronika

Sensor suhu pendeteksi permukaan

Kawat pemanas pendeteksi permukaan

Sensor suhu untuk pembanding

Switch pendeteksi batas atas

Sensor suhu pendeteksi posisi

Sensor suhu digerakan turun naik

Kawat pemanas pendeteksi posisi

Level air yang disensor

Gambar 3.49. Teknik Penyensoran Level Cairan Cara Thermal

Sensor permukaan

Arah motor

Sensor

Batas atas

+1-1

Reset

Pencaca

Ambil data dari pencacah

Peraga / Display

Gambar 3.50. Blok Diagram Pengolahan dan Pendisplayan Sensor Level

Menggunakan Cara Thermal

4.3.5.4. Menggunakan Cara Optik

Pengukuran level menggunakan optic didasarkan atas sifat

pantulanpermukaan atau pembiasan sinar dari cairan yang disensor. Ada beberapa

carayang dapat digunakan untuk penyensoran menggunakan optic yaitu:

1. Menggunakan sinar laser

2. Menggunakan prisma

3. Menggunakan fiber optik

4.3.5.4.1. Menggunakan Sinar Laser

Sinar laser dari sebuah sumber sinar diarahkan ke permukaan cairan,

kemudian pantulannya dideteksi menggunakan detector sinar laser. Posisi

pemancar dan detector sinar laser harus berada pada bidang yang sama. Detektor

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 136

Page 143: Dasar Mekatronika

dan umber sinar laser diputar. Detektor diarahkan agar selalu berada pada posisi

menerima sinar. Jika sinar yang datang diterima oleh detektor, maka level

permukaan cairan dapat diketahui dngan menghitung posisi-posisi sudut dari

sudut detektor dan sudut pemancar.

Sinar

PenerimPemanc

Gambar 3.51. Sensor Level menggunakan Sinar Laser

4.3.5.4.2. Menggunakan Prisma

Teknik ini memanfaatkan harga yang berdekatan antara index bias air

dengan index bias gelas. Sifat pantulan dari permukaan prisma akan menurun bila

prisma dicelupkan kedalam air. Prisma yang digunakan adalah prisma bersudut 45

dan 90 derajat. Sinar diarahkan ke prisma, bila prisma ditempatkan di udara, sinar

akan dipantulkan kembali setelah melewati permukaan bawah prisma. Jika prisma

ditempatkan di air, maka sinar yang dikirim tidak dipantulkan akan tetapi

dibiaskan oleh air, Dengan demikian prisma ini dapat digunakan sebagai

pengganti pelampung. Keuntungan yang diperoleh ialah dapat mereduksi ukuran

sensor.

Reciever Transmitter

Prisma di udara

air

Reciever Transmitter

Prisma di air

Gambar 3.52. Sensor Level menggunakan Prisma

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 137

Page 144: Dasar Mekatronika

4.3.5.4.3. Menggunakan Fiber Optik

Teknik ini tidak jauh berbeda dengan teknik penyensoran permukaan air

menggunakan prisma, yaitu menggunakan prinsip pemantulan dan pembiasan

sinar. Jika fiber optic diletakan di udara, sinar yang dimasukan ke fiber optic

dipantulkan oleh dinding fiber optic, sedangkan bila fiber optic telanjang

dimasukan ke air, maka dinding fiber optic tidak lagi memantulkan sinar

Jalan sinar dalam serat optic Sinar dipantulkan oleh dinding serat optik

Transmitter Receiver Transmitter Receiver

air

Fiber optic telanjang

Gambar 3.53. Sensor Level menggunakan Serat Optik

4.4.Sensor Cahaya

Elemen-elemen sensitive cahaya merupakan alat terandalkan untuk

mendeteksi energi cahaya. Alat ini melebihi sensitivitas mata manusia terhadap

semua spectrum warna dan juga bekerja dalam daerah-daerah ultraviolet dan infra

merah.

Energi cahaya bila diolah dengan cara yang tepat akan dapat dimanfaatkan

secara maksimal untuk teknik pengukuran, teknik pengontrolan dan teknik

kompensasi.

Penggunaan praktis alat sensitif cahaya ditemukan dalam berbagai

pemakaian teknik seperti halnya :

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 138

Page 145: Dasar Mekatronika

Tabung cahaya atau fototabung vakum (vaccum type phototubes), paling

menguntungkan digunakan dalam pemakaian yang memerlukan pengamatan

pulsa cahaya yang waktunya singkat, atau cahaya yang dimodulasi pada

frekuensi yang relative tinggi.

Tabung cahaya gas (gas type phototubes), digunakan dalam industri gambar

hidup sebagai pengindra suara pada film.

Tabung cahaya pengali atau pemfotodarap (multiplier phottubes), dengan

kemampuan penguatan yang sangat tinggi, sangat banyak digunakan pada

pengukuran fotoelektrik dan alat-alat kontrol dan juga sebagai alat cacah

kelipan (scientillation counter).

Sel-sel fotokonduktif (photoconductive cell), juga disebut tahanan cahaya

(photo resistor) atau tahanan yang bergantung cahaya (LDR-light dependent

resistor), dipakai luas dalam industri dan penerapan pengontrloan di

laboratorium.

Sel-sel foto tegangan (photovoltatic cells), adalah alat semikonduktor untuk

mengubah energi radiasi daya listrik. Contoh yang sangat baik adalah sel

matahari (solar cell) yang digunakan dalam teknik ruang angkasa.

4.4.1. Divais Elektrooptis

Cahaya merupakan gelombang elektromagnetis (EM) yang memiliki

spectrum warna yang berbeda satu sama lain. Setiap warna dalam spectrum

mempunyai energi, frekuensi dan panjang gelombang yang berbeda. Hubungan

spektrum optis dan energi dapat dilihat pada formula dan gambar berikut.

Energi photon (Ep) setiap warna dalam spektrum cahaya nilainya adalah:

λhchfWp ==

Dimana :

Wp = energi photon (eV)

h = konstanta Planck’s (6,63 x 10-34 J-s)

c = kecepatan cahaya, Electro Magnetic (2,998 x 108 m/s)

λ = panjang gelombang (m)

f = frekuensi (Hz)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 139

Page 146: Dasar Mekatronika

Frekuensi foton bergantung pada energi yang dilepas atau diterima saat

elektron berpindah tingkat energinya. Spektrum gelombang optis diperlihatkan

pada gambar berikut, spektrum warna cahaya terdiri dari ultra violet dengan

panjang gelombang 200 sampai 400 nanometer (nm), visible adalah spektrum

warna cahaya yang dapat dilihat oleh mata dengan panjang gelombang 400

sampai 800 nm yaitu warna violet, hijau dan merah, sedangkan spektrum warna

infrared mulai dari 800 sampai 1600 nm adalah warna cahaya dengan frekuensi

terpendek.

Ultraviolet Visible Infrared

Photon energy, eV

200 400 800 1600

4 2 1

Wavelength, nm

Vio

let

Gre

en

Red

Gambar 4.1. Spektrum Gelombang EM

Densitas daya spektral cahaya adalah:

Gambar 4.2. Kurva Output Sinyal Optis

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 140

Page 147: Dasar Mekatronika

Sumber-sumber energi photon:

Bahan-bahan yang dapat dijadikan sumber energi selain mata hari adalah antara

lain:

Incandescent Lamp yaitu lampu yang menghasilkan energi cahaya dari

pijaran filament bertekanan tinggi, misalnya lampu mobil, lampu spot

light, lampu flashlight.

Energi Atom, yaitu memanfaatkan loncatan atom dari valensi energi 1 ke

level energi berikutnya.

Fluorescense, yaitu sumber cahaya yang berasal dari perpendaran bahan

fluorescence yang terkena cahaya tajam. Seperti Layar Osciloskop

Sinar LASER adalah sumber energi mutakhir yang dimanfaatkan untuk

sebagai cahaya dengan kelebihannya antara lain : monochromatic (cahaya

tunggal atau membentuk garis lurus), coherent (cahaya seragam dari

sumber sampai ke beban sama), dan divergence (simpangan sangat kecil

yaitu 0,001 radians).

4.4.2. Photo Semikonduktor

Divais photo semikonduktor memanfaatkan efek kuantum pada junction,

energi yang diterima oleh elektron yang memungkinkan elektron pindah dari ban

valensi ke ban konduksi pada kondisi bias mundur.

Bahan semikonduktor seperti Germanium (Ge) dan Silikon (Si)

mempunyai 4 buah electron valensi, masing-masing electron dalam atom saling

terikat sehingga electron valensi genap menjadi 8 untuk setiap atom, itulah

sebabnya kristal silicon memiliki konduktivitas listrik yang rendah, karena setiap

electron terikan oleh atom-atom yang berada disekelilingnya. Untuk membentuk

semikonduktor tipe P pada bahan tersebut disisipkan pengotor dari unsure

golongan III, sehingga bahan tersebut menjadi lebih bermuatan positif, karena

terjadi kekosongan electron pada struktur kristalnya.

Bila semikonduktor jenis N disinari cahaya, maka elektron yang tidak

terikat pada struktur kristal akan mudah lepas. Kemudian bila dihubungkan

semikonduktor jenis P dan jenis N dan kemudian disinari cahaya, maka akan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 141

Page 148: Dasar Mekatronika

terjadi beda tegangan diantara kedua bahan tersebut. Beda potensial pada bahan

ilikon umumnya berkisar antara 0,6 volt sampai 0,8 volt.

(a) (b)

(c)

Gambar 4.3. Konstruksi Dioda Foto (a) junction harus dekat permukaan (b) lensa untuk memfokuskan cahaya (c) rangkaian dioda foto

Ada beberapa karakteristik dioda foto yang perlu diketahui antara lain:

Arus bergantung linier pada intensitas cahaya

Respons frekuensi bergantung pada bahan (Si 900nm, GaAs 1500nm, Ge

2000nm)

Digunakan sebagai sumber arus

Junction capacitance turun menurut tegangan bias mundurnya

Junction capacitance menentukan respons frekuensi arus yang diperoleh

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 142

Page 149: Dasar Mekatronika

Gambar 4.4. Karakteristik Dioda Foto (a) intensitas cahaya (b) panjang

gelombang (c) reverse voltage vs arus dan (d) reverse voltage vs kapasitansi

• Rangkaian pengubah arus ke tegangan

Untuk mendapatkan perubahan arus ke tegangan yang dapat dimanfaatkan

maka dapat dibuat gambar rangkaian seperti berikut yaitu dengan memasangkan

resistor dan op-amp jenis field effect transistor.

Gambar 4.5. Rangkaian pengubah arus ke tegangan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 143

Page 150: Dasar Mekatronika

4.4.3. Photo Transistor

Sama halnya dioda foto, maka transistor foto juga dapat dibuat sebagai

sensor cahaya. Teknis yang baik adalah dengan menggabungkan dioda foto

dengan transistor foto dalam satu rangkain.

– Karakteristik transistor foto yaitu hubungan arus, tegangan dan intensitas foto

– Kombinasi dioda foto dan transistor dalam satu chip

– Transistor sebagai penguat arus

– Linieritas dan respons frekuensi tidak sebaik dioda foto

40 30 20 10

Intensity (W/m2)

2 4 6 8 10 12 14 16 Collector-Emitter Voltage

28

20

12

8

4 Col

lect

or C

urre

nt (m

A)

Gambar 4.6. Karakteristik transistor foto, (a) sampai (d) rangkaian uji transistor

foto

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 144

Page 151: Dasar Mekatronika

4.4.4. Sel Photovoltaik

Efek sel photovoltaik terjadi akibat lepasnya elektron yang disebabkan

adanya cahaya yang mengenai logam. Logam-logam yang tergolong golongan 1

pada sistem periodik unsur-unsur seperti Lithium, Natrium, Kalium, dan Cessium

sangat mudah melepaskan elektron valensinya. Selain karena reaksi redoks,

elektron valensilogam-logam tersebut juga mudah lepas olehadanya cahaya yang

mengenai permukaan logam tersebut. Diantara logam-logam diatas Cessium

adalah logam yang paling mudah melepaskan elektronnya, sehingga lazim

digunakan sebagai foto detektor.

Tegangan yang dihasilan oleh sensor foto voltaik adalah sebanding dengan

frekuensi gelombang cahaya (sesuai konstanta Plank E = h.f). Semakin kearah

warna cahaya biru, makin tinggi tegangan yang dihasilkan. Tingginya intensitas

listrik akan berpengaruh terhadap arus listrik. Bila foto voltaik diberi beban maka

arus listrik dapat dihasilkan adalah tergantung dari intensitas cahaya yang

mengenai permukaan semikonduktor.

+ -

Katoda dari Selenium

Anoda dari Cessium

Sinar datang

Electron keluar dari permukaan

Tegangan keluaran Tabung Hampa

Gambar 4.7. Pembangkitan tegangan pada Foto volatik

Berikut karakteristik dari foto voltaik berdasarkan hubungan antara

intensitas cahaya dengan arus dan tegangan yang dihasilkan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 145

Page 152: Dasar Mekatronika

Gambar 4.8. (a) & (b) Karakteristik Intensitas vs Arus dan Tegangan

dan (c) Rangakain penguat tegangan.

4.4.5. Light Emitting Diode (LED)

– Prinsip kerja kebalikan dari dioda foto

– Warna (panjang gelombang) ditentukan oleh band-gap

– Intensitas cahaya hasil berbanding lurus dengan arus

– Non linieritas tampak pada arus rendah dan tinggi

– Pemanasan sendiri (self heating) menurunkan efisiensi pada arus tinggi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 146

Page 153: Dasar Mekatronika

Gambar 4.9. Karakteristik LED

• Karakteristik Arus Tegangan

– Mirip dengan dioda biasa

– Cahaya biru nampak pada tegangan 1,4 – 2,7 volt

– Tegangan threshold dan energi foton naik menurut energi band-gap

– Junction mengalami kerusakan pada tegangan 3 volt

– Gunakan resistor seri untuk membatasi arus/tegangan

4.4.6. Photosel

– Konduktansi sebagai fungsi intensitas cahaya masuk

– Resistansi berkisar dari 10MW (gelap) hingga 10W (terang)

– Waktu respons lambat hingga 10ms

– Sensitivitas dan stabilitas tidak sebaik dioda foto

– Untuk ukuran besar lebih murah dari sel fotovoltaik

– Digunakan karena biaya murah

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 147

Page 154: Dasar Mekatronika

Gambar 4.10. Konstruksi dan Karakteristik Fotosel

4.4.7. Photomultiplier

– Memanfaatkan efek fotoelektrik

– Foton dengan nergi lebih tinggi dari workfunction melepaskan elektron dari

permukaan katoda

– Elektron dikumpulkan (dipercepat) oleh anoda dengan tegangan (tinggi)

– Multiplikasi arus (elektron) diperoleh dengan dynode bertingkat

– Katoda dibuat dari bahan semi transparan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 148

Page 155: Dasar Mekatronika

Gambar 4.11. Konstruksi Photomultiplier

• Rangkaian untuk Photomultiplier

– Perbedaan tegangan (tinggi) tegangan katoda (negatif) dan dynode(positif)

– Beban resistor terhubung pada dynoda

– Common (ground) dihubungkan dengan terminal tegangan positif catu daya

– Rangkaian koverter arus-tegangan dapat digunakan

– Dioda ditempatkan sebagai surge protection

Gambar 4.12. Rangkaian Ekivalen dan uji Photomultiplier

• Pemanfaatan

– Sangat sensitif, dapat digunakan sebagai penghitung pulsa

– Pada beban resistansi rendah 50-1000 W, lebar pulsa tipikal 5-50 ns

– Gunakan peak detektor untuk mengukur tingat energi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 149

Page 156: Dasar Mekatronika

• Kerugian

– Mudah rusak bila terekspos pada cahaya berlebih (terlalu sensitif)

– Perlu catu tegangan tinggi

– Mahal

4.4.8. Lensa Dioda Photo

– Lensa dimanfaatkan untuk memfokuskan atau menyebarkan cahaya

– Lensa detektor cahaya sebaiknya ditempatkan dalam selonsong dengan filter

sehingga hanya menerima cahaya pada satu arah dan panjang gelombang

tertentu saja (misal menghindari cahaya lampu TL dan sinar matahari)

– Gunakan modulasi bila interferensi tinggi dan tidak diperlukan sensitivitas

tinggi

Gambar 4.13. Kontruksi dan karakteristik lensa dioda foto

4.4.9. Pyrometer Optis dan Detektor Radiasi Thermal

– Salah satu sensor radiasi elektro magnetik: flowmeter

– Radiasi dikumpulkan dengan lensa untuk diserap pada bahan penyerap radiasi

– Energi yang terserap menyebabkan pemanasan pada bahan yang kemudian

diukur temperaturnya menggunakan thermistor, termokopel dsb

– Sensitivitas dan respons waktu buruk, akurasi baik karena mudah dikalibrasi

(dengan pembanding panas standar dari resistor)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 150

Page 157: Dasar Mekatronika

– Lensa dapat digantikan dengan cermin

Gambar 4.14. Instalasi Pyrolektrik

– Detektor sejenis: film pyroelektrik

– Dari bahan sejenis piezoelektrik yang menghasilkan tegangan akibat

pemanasan

– Hanya ber-respons pada perubahan bukan DC

– Pirometer optik dapat diguanakanuntuk mengukur atau mendeteksi

totalradiation dan monochromatic radiation.

4.4.10. Isolasi Optis dan Transmiter-Receiver serat optik

– Cahaya dari LED dan diterima oleh dioda foto digunakan sebagai pembawa

informasi menggantikan arus listrik

– Keuntungan: isolasi listrik antara dua rangkaian (tegangan tembus hingga

3kV)

– Dimanfaatkan untuk safety dan pada rangkaian berbeda ground

– Hubungan input-output cukup linier, respons frekuensi hingga di atas 1 MHz

Gambar 4.15. Kontruksi dan karakteristik lensa dioda foto

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 151

Page 158: Dasar Mekatronika

• Rangkaian untuk isolasi elektrik

– Driver: konverter tegangan ke arus, receiver: konverter arus ke tegangan

– Hanya sinyal positif yang ditransmisikan

– Dioda dan resistor digunakan untuk membatasi arus

– Penguatan keseluruhan bergantung temperatur (tidak ada umpan balik)

– Untuk komunikasi dengan serat optik media antara LED dan dioda foto

dihubungan dengan serat optik

Gambar 4.16. Rangkaian isolasi elektrik menggunakan serat optik

4.4.11. Display Digital dengan LED

– Paling umum berupa peraga 7 segmen dan peraga heksadesimal , masing-

masing segmen dibuat dari LED

– Hubungan antar segmen tersedai dalam anoda atau katoda bersama (common

anode atau common cathode)

– Resistor digunakan sebagai pembatas arus 100-470 W

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 152

Page 159: Dasar Mekatronika

– Tersedia pula dengan dekoder terintegrasi

Gambar 4.17. Seven segment dan rangkaian uji

Gambar 4.18. LED bar display pengganti VU meter pada amplifier

• Peraga Arus dan Tegangan Tinggi

– Peraga 7 segmen berupa gas discharge, neon atau lampu pijar

– Cara penggunaan mirip dengan peraga 7 segmen LED tetapi tegangan yang

digunakan tinggi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 153

Page 160: Dasar Mekatronika

– Untuk neon dan lampu pijar dapat digunakan transistor dan resistor untuk

membatasi arusnya

– Untuk lampu pijar arus kecil diberikan pada saat off untuk mengurangi daya

penyalaan yang tinggi

– Vacuum fluorecent display (VFD) menggunakan tegangan 15-35 volt di atas

tegangan filament

– Untuk LED dengan arus tinggi dapat digunakan driver open collector yang

umunya berupa current sink

Gambar 4.19. Seven segment neon menggunakan tegangan tinggi

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 154

Page 161: Dasar Mekatronika

4.4.12. Liquid Crystal Display (LCD)

– Menggunakan molekul asimetrik dalam cairan organic transparan

– Orientasi molekul diatur dengan medan listrik eksternal

– Polarizer membatasi cahaya lewat hanya untuk polarisasi optik tertentu saja,

cahaya ini dapat kembali lolos setelah dipantulkan bila polarisasinya tidak

berubah

– Medan listrik pada liquid crystal mengubah polarisasi 90o, sehingga pantulan

tidak dapat melewati polarizer (tampak gelap).

Gambar 4.20. Kontruksi Liquid Crystal Display (LCD)

– Tegangan pembentuk medan listrik dibuat intermiten untuk memperpanjang

umur pemakaian

Gambar 4.21. Rangkaian uji Liquid Crystal Display (LCD)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 155

Page 162: Dasar Mekatronika

4.5.Aktuator

Aktuator adalah peralatan yang mengkonversi sinyal elektrik menjadi gerak mekanik. Secara internal actuator dapat dibagi dalam dua modul yang terpisah yaitu sinyal amplifier dan tranduser, amplifier mengkonversi sinyal daya rendah ke sinyal daya tinggi yang di umpan ke tranduser yang kemudian oleh tranduser dikonversi menjadi tenaga dalam bentuk kerja.

Bentuk umum dari aktuator, antara lain : solenoid, motor listrik, katup dan silinder

4.5.1 Solenoidnoids Solenoid merupakan aktuator yang terdiri dari koil atau gulungan

kawat, inti besi sebagai piston gerak linier, dan pegas sebagai pemegang inti besi. Ketika tegangan masuk pada koil sehingga terjadi aliran arus maka koil akan berubah menjadi bidang magnet sehigga akan menarik inti besi ke dalam koil sampai menuju titik tengah koil. Saat tegangan dimatikan makan posisi inti besi akan kembali seperti semula karena tarikan dari pegas. .

Gbr.Prinsip kerja solenoid

Gbr.Solenoid elektro-mekanik

Solenoid banyak diterapkan pada industri seperti solenoid elektro-mekanik (AC/DC) , katup pneumatik, katup hidrolik. Pada gambar di

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 156

Page 163: Dasar Mekatronika

bawah ini merupakan contoh aplikasi solenoid elektromekanik. Cara kerja solenoid ini hampir sama dengan motor (AC/DC), perbedaannya terletak pada gerakan yang dihasilkan yaitu linear dan rotasi.

4.5.2.Katup Katup adalah peralatan yang berfungsi untuk mengatur aliran fluida

sebagai penggerak aktuator. Katup banyak digunakan pada industri ataupun transportasi. Katup memiliki berbagai macam jenis antara lain: Katup ¾, katup 5/2 dsb. Penggerak katup memiliki berbagai jenis, antara lain: Penggerak manual (tuas, knop, pedal, dll), penggerak magnet/solenoid, udara, dll). Pembahasan tentang katup dapat dilihat pada pembahasan tentang Pneumatik/Hydrolik.

Gbr.Katup

4.5.3 Silinder Silinder merupakan jenis aktuator yang digerakan oleh fluida, bisa

berupa udara (pneumatik) ataupun minyak (hidrolik). Gerak yang dihasilkan silinder akibat dari gerakan linear atau maju dan mundur dari sebuah piston. Pemilihan jenis silinder tergantung dari kerja yang dibebankan, silinder jenis hidrolik memiliki kemampuan kerja yang lebih tinggi dibandingkan dengan silinder jenis pneumatik 4.5.3.1 Silinder Penggerak Tunggal

Silinder jenis ini menghasilkan kerja dalam satu arah saja apabila fluida masuk ke dalam tabung akibatnya piston akan bergerak mendorong pegas sampai pada titik tertentu, lihat gambar di bawah ini

Gbr.silinder gerak tunggal

4.5.3.2 Silinder Penggerak Ganda Pada silinder penggerak ganda terdapat dua lubang inlet dan

outlet. fluida masuk melalui sisi depan sehingga mendorong piston

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 157

Page 164: Dasar Mekatronika

bergerak mundur A- apabila fluida masuk dari sisi satunya maka akan mendorong piston bergerak pada titik A+

Gbr.Silinder Penggerak ganda

4.5.4. Motor Listrik Motor listrik terdiri dari rotor (bagian yang bergerak), stator (bagian

yang diam). Pada stator terdapat inti magnet, sedangkan pada stator terdapat koil yang berfungsi sebagai magnet listik apabiladialirkan arus. Motor diklasifikasikan menjadi dua jenis yaitu AC (arus searah) dan DC (arus bolak balik).

4.5.4.1 Motor DC Motor DC merupakan salah satu jenis aktuator yang paling banyak

digunakan dalam industri ataupun sistem robot. Prinsip kerja motor ini menggunakan magnet untuk menghasilkan kerja yaitu putaran. Motor DC terdiri dari armature yang berputar dan bagian magnet sebagai stator (bagian yang diam). Arus yang datang melalui sikat sehingga akan menyebabkan motor berputar. Bagian magnet pada stator bisa menggunakan electromagnet dan magnet permanent.

Motor DC dengan stator electromagnet dibagi menjadi 3 jenis, yaitu motor seri, motor shunt dan motor compound.

• Motor seri memiliki artmature yang dihubungkan dengan electromagnet secara seri. Motor jenis ini memiliki karakteristik torque yang tinggi pada putaran awal.

• Jenis motor shunt antara armature dan electromagnet terhubung secara parallel. Pengaturan pada motor ini lebih mudah dibandingkan dengan motor seri.

• Pada motor compound memiliki kombinasi seri dan parallel pada armature dan electromagnet.

Gbr.Prinsip kerja motor DC

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 158

Page 165: Dasar Mekatronika

Gambar di atas dapat di jelaskan sebagai berikut : Gambar a. Saat koil atau lilitan dalam armature dialiri arus listrik maka

armature akan menjadi magnet, sehingga sisi armature sebelah kiri menjadi magnet kutub utara dan sisi armature sebelah kanan menjadi magnet kutub selatan. Akibatnya magnet stator dan magnet rotor (armature)akan saling bertolak belakang sehingga armature akan berputar.

Gambar b. Armature masih bergerak dan sampai pada posisi vertical tegak lurus tepat pada bidang non-magnet sehingga armature akan terus bergerak.

Gambar c. Armature bergerak sampai pada posisi kutub yang berpasangan (kutub utara armature dengan kutub utara stator dan kutub selatan armature dengan kutub selatan stator). Kemudian komutator membalik arus yang menuju armature sehingga bidang magnet pada armature berubah. Akibatnya kutub utara armature bertemu dengan kutub utara stator dan kutub selatan armature bertemu kutub selatan stator sehingga saling bertolak belakang dan menyebabkan armature (rotor) berputar kembali.

4.5.4.2 Motor AC Motor AC merupakan jenis motor yang banyak digunakan pada dunia

modern sekarang ini. Walaupun motor AC sebagian besar digunakan untuk memutarkan peralatan yang membutuhkan kecepatan konstan tetapi penggunaan dengan kontrol kecepatan mulai sering dilakukan dalam berbagai aplikasi industri.

Gbr.Prinsip kerja motor AC

Kelebihan dari motor AC adalah sebagai berikut : 1. Efisiensi tinggi 2. Kehandalan yang tinggi 3. Perawatan yang mudah ; Perawatan menjadi mudah karena motor

AC tidak menggunakan sikat yang secara periodic harus diganti. 4. Harga yang relativ murah.;Harga yang murah dibandingkan dengan

motor DC dikarenakan motor AC tidak menggunakan sikat sebagaimana sikat yang digunakan pada motor DC. Motor AC tidak menggunakan rectifier seperti pada motor DC

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 159

Page 166: Dasar Mekatronika

Disamping kelebihan diatas motor AC memiliki kelemahan pada pengontrolannya. Motor AC dibuat untuk menghasilkan kecepatan yang konstan (tetap) sehingga untuk menghasilkan putaran yang bervariasi memerlukan sistem control yang cukup rumit. Pada motor DC sistem control dibuat dengan mengatur tegangan sedangkan pada motor AC untuk menghasilkan kecepatan yang bervariasi dengan mengatur tegangan dan frekuensi. Walaupun motor AC memiliki kelemahan terebut di atas, tetapi aplikasi motor yang tidak membutuhkan variasi kecepatan banyak ditemukan dindustri,seperti kipas, pompa, mixer dan peralatan rumah tangga lainnya.

Gbr.aplikasi motor AC

4.5.4.3 Motor Stepper Motor stepper atau bisa disebut motor langkah merupakan salah

satu jenis dari motor DC. Perbedaan dengan motor DC biasa adalah motor stepper memiliki langkah putaran tergantung pada jumlah stator. Langkah menggunakan derajat putaran, mulai dari 0 0 sampai 90 0. Bagian motor steper, rotor merupakan magnet yang permanent sedangkan pada bagian stator menggunakan electromagnet. Rotor akan bergerak bila masing masing stator menjadi magnet dengan dialiri arus listrik. Gerak putaran rotor langkah demi langkah berputar menuju sesuai dengan kemagnetan stator. Apabila semua stator telah menjadi magnet maka rotor dapat menyelesaikan satu putaran.

Gbr.motor stepper/motor langkah

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 160

Page 167: Dasar Mekatronika

Motor steper banyak digunakan dalam berbagai aplikasi peralatan yang memiliki ketapatan putaran yang tinggi seperti dalam bidang robot sehingga tidak memerlukan sensor untuk menentukan posisi. Dengan menjumlahkan sudut maka akan didapat berapa posisi yang dikehendaki dari peralatan. Besarnya langkah tergantung pada jumlah stator sehingga tidak ada peningkatan galat (error) dari posisi putaran motor.

Motor steper dibagi menjadi tiga jenis yaitu motor steper magnet permanent, motor steper variable relucatance dan jenis motor steper hybrid. Masing masing memiliki perbedaan dalam penggunaannya.

Gbr.Prinsip kerja motor stepper

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 161

Page 168: Dasar Mekatronika

BAB V SISTEM KONTROL DAN PENGKONDISIAN SINYAL

5.1.Perkenalan Sistem Kontrol

Sistem kontrol adalah sistem dengan kecerdasan elektronik yang mengendalikan suatu proses fisik. Diktat ini akan membahas seluruh tahap sistem kontrol: elektronika, sumber daya (seperti motor), mekanika, dan teori sistem kontrol, yang mengkaitkan bersama semua konsep tersebut.

Sistem kontrol digambarkan dengan mempergunakan diagram blok. Blok pertama adalah pengontrol yang melambangkan kecerdasan elektronik. Pengontrol mengeluarkan sinyal kontrol kepada blok berikutnya, yakni aktuator. Aktuator adalah piranti fisik pertama dari sistem yang melakukan sesuatu (misalnya, motor atau elemen pemanas).

Ada dua kelompok umum dari sistem kontrol: kalang-terbuka dan kalang-tertutup. Da-lam kontrol kalang-terbuka, pengontrol mengirimkan sinyal terukur, yang menetapkan aksi yang diinginkan, kepada aktuator (namun, pengontrol tidak memiliki cara untuk mengeta-hui apa yang sesungguhnya dilakukan aktuator). Kontrol kalang-tertutup menyertakan sensor yang mengumpan-balikkan sinyal dari aktuator kepada pengontrol, memberitahu-kan pengontrol sesungguhnya apa yang sedang dilakukan output. Hal ini memungkinkan pengontrol membuat penyesuaian-penyesuaian yang memperbaiki keadaan.

Setiap komponen dalam sistem kontrol dapat dijelaskan secara matematik dengan fungsi transfer (TF), dengan TF = output/input. Fungsi transfer dari masing-masing kompo-nen di dalam suatu sistem dapat digabungkan secara matematik untuk menghitung kinerja keseluruhan sistem. Fungsi transfer yang sejati menyertakan karakteristik gayut-waktu dan karakteristik keadaan-ajeg, sedangkan penyederhanaan (seperti yang dipakai dalam diktat ini) hanya meninjau kondisi-kondisi ajeg saja.

Sistem kontrol dikelompokkan sebagai bersifat analog atau digital. Dalam sistem kontrol analog, pengontrol menggunakan rangkaian elektronik analog tradisional seperti penguat linear. Dalam sistem kontrol digital, pengontrol menggunakan rangkaian digital, acapkali suatu komputer.

Sistem kontrol dikelompokkan berdasarkan penerapannya. Kontrol proses umumnya mengacu pada proses industri yang dikontrol secara elektronik demi tujuan memperta-hankan output yang benar dan seragam. Kontrol gerakan mengacu pada sistem yang di dalamnya benda-benda bergerak. Mekanisme-servo adalah sistem kontrol umpan-balik yang menghasilkan gerakan terkontrol jarak-jauh dari suatu obyek, seperti lengan robot atau radar antena. Sistem kontrol numerik (NC) mengarahkan perkakas mesin, seperti mesin bubut, untuk membuat bagian-mesin secara otomatis.

Pada masa lalu, yang disebut mesin atau proses otomatis adalah semua yang dikontrol, baik dengan rangkaian elekronika analog, maupun

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 162

Page 169: Dasar Mekatronika

dengan rangkaian yang memakai saklar [switch], relai [relay] dan pewaktu [timer]. Sejak kemajuan mikroprosesor yang murah, semakin banyak piranti dan sistem yang dirancang-ulang untuk menyertakan pengontrol mikroprosesor. Contohnya termasuk mesin fotokopi, mesin minuman-ringan, robot dan pengontrol proses industri. Banyak dari mesin-mesin ini memanfaatkan kemampuan pengolahan mikroprosesor yang semakin ampuh, dan akibatnya menjadi lebih canggih dan menyertakan fitur-fitur baru. Dengan sekali lagi mengambil mobil modern sebagai contoh, alasan awal mengapa komputer terpasang di mobil adalah untuk menggantikan subsistem-mekanik dan subsistem yang digerakkan vakum yang banyak dipergunakan di dalam distributor dan karburator [carburetor]. Namun, setelah komputer termasuk dalam rancangan, pengubahan sistem agar lebih canggih menjadi relatif mudah—misalnya, penyesuaian rasio bahan bakar/udara terhadap perubahan ketinggian. Selain itu, fitur-fitur seperti diagnosis mesin yang dibantu komputer dapat diwujudkan tanpa banyak biaya tambahan. Kecenderungan ke arah kontrol terkomputerkan ini tidak diragukan lagi akan terus berlanjut ke masa depan. 5.2 Sistem Kontrol

Dalam suatu sistem kontrol modern, kecerdasan elektronik mengendalikan beberapa proses fisik. Kemampuan "otomatis" di dalam piranti-piranti seperti pilot otomatis dan mesin cuci otomatis adalah berkat adanya sistem kontrol. Karena mesin itu sendiri yang membuat keputusan-keputusan rutin, operator manusia menjadi terbebaskan untuk mela-kukan tugas-tugas lainnya. Dalam banyak kasus, kecerdasan mesin adalah lebih baik daripada kontrol manusia secara langsung karena ia dapat bereaksi lebih cepat atau lebih lambat (melacak perubahan lambat berjangka-panjang), menanggapi lebih cermat, dan membuat catatan yang akurat tentang kinerja sistem. Sistem kontrol dapat dikelompokkan menurut beberapa cara. Sistem regulator secara otomatis menjaga suatu parameter agar bernilai pada (atau sekitar) harga tertentu. Con-tohnya adalah sistem pemanasan rumah yang menjaga suhu pada nilai tertentu meskipun terjadi kondisi-kondisi luar yang berubah. Sistem pembuntut [follow-up system] mengupayakan outputnya agar mengikuti lintasan tertentu yang telah ditetapkan sebelumnya. Contohnya adalah robot industri yang memindahkan bagian-bagian [parts] dari suatu tempat ke tempat lainnya. Sistem kontrol event mengendalikan serangkaian peristiwa [event] yang berurutan.

Contohnya adalah mesin cuci yang terus-menerus melak-sanakan sederetan langkah-langkah terprogram. Sistem kontrol alamiah telah ada sejak awal kehidupan. Pikirkan cara tubuh manusia mengatur suhu badan. Jika tubuh perlu memanaskan dirinya, kalori makanan diubah untuk menghasilkan panas; sebaliknya, penguapan menghasilkan pendinginan. Karena penguap-an berjalan kurang efektif (khususnya dalam iklim yang basah), tidaklah mengejutkan bahwa suhu tubuh kita (98.6°F) dipasang dekat ujung tertinggi dari spektrum suhu Bumi (untuk mengurangi kebutuhan akan sistem pendinginan). Jika sensor-sensor suhu di dalam tubuh mengindera adanya jatuhan [drop] suhu, mereka mengisyaratkan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 163

Page 170: Dasar Mekatronika

tubuh agar mem-bakar lebih banyak bahan bakar. Jika sensor-sensor tersebut mengindikasikan suhu yang terlalu tinggi, mereka mengisyaratkan tubuh agar berkeringat.

Sistem kontrol buatan manusia [man-made] telah hadir dalam bentuk tertentu sejak masa Yunani kuno. Satu piranti menarik perhatian yang diuraikan dalam pustaka adalah kolam air yang tidak pernah kosong. Kolam ini memiliki susunan bola-pelampung [float-ball] dan katup yang tersembunyi mirip dengan mekanisme tangki toilet. Ketika ketinggian permukaan air menjadi rendah, pelampung terjatuh dan membuka katup sehingga menga-lirkan masuk lebih banyak air.

Sistem kontrol elektrik adalah karya dari abad keduapuluh. Relai elekromekanik dikem-bangkan dan dipergunakan untuk mengendalikan motor dan piranti [device] secara jarak-jauh. Relai dan saklar juga dipergunakan sebagai gerbang-gerbang logika [logic gates] sederhana untuk mewujudkan semacam kecerdasan. Dengan memakai teknologi tabung-vakum, berbagai perkembangan penting dalam sistem kontrol terjadi sepanjang Perang Dunia II. Sistem kontrol posisi dinamik (mekanisme-servo) telah dikembangkan untuk pe-nerapan pesawat terbang, turret meriam dan torpedo. Kini, sistem kontrol posisi dipergu-nakan dalam perkakas mesin [machine tool], proses industri, robot, mobil dan mesin perkantoran, antara lain.

Sementara itu, perkembangan lainnya dalam bidang elektronika telah menimbulkan dampak pada perancangan sistem kontrol. Piranti solid-state mulai menggantikan relai daya di dalam rangkaian kontrol motor. Transistor dan penguat operasional [operational amplifier] berbentuk rangkaian terpadu (IC op-amp) muncul untuk menyusun pengontrol analog. Rangkaian terpadu digital menggantikan logika relai yang ruwet. Akhirnya, dan mungkin yang terpenting, mikroprosesor memungkinkan pembuatan pengontrol digital yang murah, andal, mampu mengendalikan proses-proses yang rumit, dan dapat-disesu-aikan [adaptable] (jika tugas berubah, pengontrol ini dapat diprogram-ulang).

Pelajaran sistem kontrol sesungguhnya berisikan banyak pelajaran: elektronika (baik analog maupun digital), piranti kontrol-daya, sensor, motor, mekanika, dan teori sistem kontrol, yang mengkaitkan semua konsep-konsep ini. Banyak mahasiswa merasakan pela-jaran sistem kontrol ini menarik hati karena berhubungan dengan penerapan dari berbagai teori yang telah mereka kenal. Di dalam diktat ini, kami akan menyajikan materi dari setiap bidang bahasan pokok yang menyusun suatu sistem kontrol, dengan urutan yang kurang-lebih sama seperti urutannya di dalam diagram blok sistem kontrol. Beberapa pembaca boleh saja melompati (atau mengulas secara cepat) bab-bab yang menurutnya terasa mengulang-ulang.

Akhirnya, gambar-gambar di dalam diktat ini menggunakan aliran arus elektrik yang konvensional, arus mengalir dari terminal positif menuju ke terminal negatif. Jika anda lebih akrab dengan aliran elektron, ingatlah bahwa teori dan "bilangan"-nya sama; hanya arah arus yang ditunjukkan berlawanan dengan arah yang biasa anda pergunakan.

Setiap sistem kontrol memiliki (sekurang-kurangnya) satu pengontrol

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 164

Page 171: Dasar Mekatronika

[controller] dan satu aktuator [actuator] (yang juga disebut sebagai elemen kontrol akhir [final control element]). Seperti yang diperlihatkan di dalam diagram blok pada Gambar 1.1, pengontrol adalah kecerdasan dari sistem dan biasanya bersifat elektronik. Input ke pengontrol dise-but rujukan [set point], suatu sinyal yang melambangkan output sistem yang diinginkan [desired result]. Aktuator adalah piranti elektromekanik yang menerima sinyal dari pengontrol dan mengu-bahnya menjadi semacam aksi fisik. Contoh dari beberapa aktuator yang umum adalah motor elektrik, katup yang dikendalikan secara elektrik, atau elemen pemanas [heating element]. Blok terakhir pada Gambar 1.1 diberi label proses [process] dan memiliki output yang berlabel variabel terkontrol [controlled variable]. Blok proses melambangkan pro-ses fisik yang terpengaruh oleh aktuator, dan variabel terkontrol adalah hasil terukur dari proses tersebut. Sebagai contoh, jika aktuator adalah elemen pemanas di dalam suatu tungku [furnace], maka prosesnya adalah "pemanasan tungku" dan variabel terkontrolnya adalah suhu di dalam tungku tersebut. Jika aktuator adalah motor elektrik yang memutar suatu antena, maka prosesnya adalah "pemutaran antena" dan variabel terkontrolnya adalah posisi sudut dari antena tersebut.

Sistem Kontrol Kalang-Terbuka

Secara umum, sistem kontrol dapat dibagi menjadi dua kelompok: sistem kalang-terbuka [open-loop] dan kalang-tertutup [closed-loop]. Di dalam sistem kontrol kalang-terbuka, secara mandiri pengontrol menghitung nilai tepat dari tegangan atau arus yang dibutuhkan aktuator untuk melakukan tugasnya dan lalu mengirimkan sinyal tersebut. Tetapi dengan cara begini, pengontrol sesungguhnya tidak pernah tahu apakah aktuator melakukan yang seharusnya dilakukan karena tidak ada umpan-balik [feedback]. Sistem ini secara mutlak tergantung pada pengontrol mengetahui karakteristik kerja dari aktuator.

CONTOH 1.1 Gambar 1.2 memperlihatkan suatu sistem kontrol kalang-terbuka. Aktuatornya adalah motor yang menggerakkan lengan robot. Dalam kasus ini, prosesnya adalah peng-gerakan lengan, dan variabel terkontrolnya adalah posisi sudut dari lengan tersebut. Uji-uji sebelumnya telah menunjukkan bahwa motor berputar 5 derajat/detik (°/s) pada tegangan terpasang [rated voltage]. Anggaplah bahwa pengontrol diarahkan un-tuk menggerakkan lengan dari 0° ke 30°. Karena telah mengetahui

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 165

Page 172: Dasar Mekatronika

karakteristik dari prosesnya, pengontrol mengirimkan pulsa daya selama 6 detik kepada motor. Jika motor bertindak secara benar, maka ia akan berputar tepat 30° selama 6 detik terse-but dan lalu berhenti. Namun, pada hari-hari khusus yang sejuk, pelumas motor men-jadi lebih kental (menebal), mengakibatkan gesekan-dalam [internal friction] motor yang lebih besar, dan motor hanya berputar 25° saja selama 6 detik; akibatnya adalah ralat [error] sebesar 5°. Pengontrol tidak memiliki satu cara apa pun untuk mengeta-hui ralat tersebut dan tidak melakukan apa-apa untuk memperbaikinya.

Sistem kontrol kalang-terbuka cocok untuk penerapan dengan aksi aktuator pada proses yang bersifat sangat berulang-ulang [repeatable] dan dapat diandalkan [reliable]. Relai dan motor stepper (masing-masing akan dibahas dalam Bab 4 dan 8) adalah piranti-piranti dengan karakteristik yang dapat diandalkan dan kerap dipakai dalam operasi kalang-terbu-ka. Aktuator-aktuator seperti motor dan katup aliran terkadang dipakai dalam operasi ka-lang-terbuka, tetapi mereka harus dikalibrasi dan disesuaikan [adjusted] pada rentang waktu yang teratur untuk menjamin operasi sistem yang benar. Sistem Kontrol Kalang-Tertutup

Dalam sistem kontrol kalang-tertutup, output dari proses (variabel terkontrol) secara terus menerus dipantau oleh suatu sensor, seperti yang diperlihatkan pada Gambar 1.3(a). Sensor mencuplik output sistem dan mengubah hasil pengukuran ini menjadi sinyal elek- trik yang dikirimkannya balik kepada pengontrol. Karena pengontrol mengetahui apa yang sesungguhnya dilakukan sistem, ia dapat membuat penyesuaian apa pun yang dibutuhkan untuk mempertahankan output pada nilai yang semestinya. Sinyal dari pengontrol kepada aktuator adalah jalur maju [forward path], dan sinyal dari sensor kepada pengontrol adalah umpan-balik (yang "menutup" kalang sistem kontrol).

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 166

Page 173: Dasar Mekatronika

Pada Gambar 1.3(a), sinyal umpan-balik dikurangkan dari rujukan pada pembanding [comparator] (bagian depan dari pengontrol). Dengan mengurangkan posisi yang sesung-guhnya (seperti yang dilaporkan sensor) dari posisi yang diinginkan (seperti yang didefini-sikan rujukan), kita memperoleh ralat sistem. Sinyal ralat melambangkan selisih di antara "tempat anda berada kini" dan "tempat yang anda inginkan". Pengontrol senantiasa bekerja untuk memperkecil sinyal ralat ini. Ralat yang bernilai nol berarti output sistem sudah te-pat seperti yang seharusnya dinyatakan oleh rujukan.

Dengan menggunakan strategi kontrol, yang bisa-jadi sederhana atau rumit, pengon-trol berupaya memperkecil ralat. Strategi kontrol yang sederhana akan memungkinkan pengontrol menyalakan atau memadamkan aktuator—contohnya, termostat yang menyala-kan atau memadamkan tungku demi mempertahankan suhu tertentu. Strategi kontrol yang lebih rumit akan memungkinkan pengontrol menyesuaikan gaya aktuator demi memenuhi tuntutan beban [load], seperti yang diuraikan dalam Contoh 1.2.

CONTOH 1.2 Sebagai contoh dari sistem kontrol kalang-tertutup, tinjaulah kembali lengan robot yang berawal pada 0° [lihat Gambar 1.3(b)]. Kali ini suatu potensiometer (pot) telah disambungkan langsung dengan batang [shaft] motor. Sewaktu batang tersebut berputar, resistans pot berubah. Resistans diubah menjadi tegangan dan lalu diumpan balikkan kepada pengontrol.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 167

Page 174: Dasar Mekatronika

Untuk memerintahkan lengan tersebut menuju sudut 30°, tegangarujukan yang setara dengan 30° dikirimkan kepada pengontrol. Karena lengan sesungguhnya masih berada pada 0°, sinyal ralat langsung "melonjak" menjadi 30°. Segera pengontrol mulai menggerakkan motor dalam arah yang mengurangi ralat tadi.Sewaktu lengan mendekati sudut 30°, pengontrol memperlambat motor; ketika lengan pada akhirnya mencapai 30°, motor berhenti. Jika pada suatu saat berikutnya, suatu gaya luar memindahkan lengan lepas dari marka 30°, sinyal ralat akan muncul kembali, dan motor akan menggerakkan lengan lagi ke posisi 30°.

Fitur perbaikan-diri dari kontrol kalang-tertutup ini membuatnya

lebih disukai daripada kontrol kalang-terbuka, meskipun dibutuhkan perangkat-keras tambahan. Hal ini disebab-kan sistem kontrol kalang-tertutup memberikan kinerja yang andal dan dapat diulangi mes-kipun komponen-komponen sistem itu sendiri (pada jalur maju) tidak mutlak dapat ber-ulang dan diketahui secara cermat. Fungsi Transfer

Secara fisik, sistem kontrol adalah sekumpulan komponen dan rangkaian yang terhubung bersama untuk melakukan suatu fungsi yang bermanfaat. Setiap komponen di dalam sistem mengubah energi dari satu bentuk ke bentuk lainnya; misalnya, kita dapat membayangkan sensor suhu sebagai pengubah derajat menjadi volt atau motor sebagai pengubah volt menjadi putaran per menit [rotation per minute atau rpm]. Untuk menjelaskan kinerja ke-seluruhan sistem kontrol, kita harus memiliki suatu bahasa yang sama sehingga kita dapat menghitung efek gabung-an dari berbagai komponen di dalam sistem. Kebutuhan inilah yang berada dibalik konsep fungsi transfer.

Fungsi transfer [Transfer Function atau TF] adalah hubungan matematik di antara input dan output suatu komponen sistem kontrol. Secara khusus, fungsi transfer didefinisi-kan sebagai output dibagi input, yang dinyatakan sebagai

Secara teknik, fungsi transfer seharusnya menggambarkan baik karakteristik gayut-waktu [time-dependent] maupun karakteristik keadaan-ajeg [steady-state] dari suatu komponen. Sebagai contoh, suatu motor dapat memiliki lonjakan [surge] arus pada keadaan awal yang akhirnya mendatar pada nilai keadaan-ajeg. Matematika yang diperlukan untuk menjelas-kan kinerja gayut-waktu berada di luar lingkup diktat ini. Dalam diktat ini, kita hanya akan meninjau nilai-nilai keadaan-ajeg dari fungsi transfer, yang terkadang disebut sebagai pelipatan [gain], dan dinyatakan sebagai

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 168

Page 175: Dasar Mekatronika

CONTOH 1.3 Suatu potensiometer dipergunakan sebagai sensor posisi [lihat Gambar 1.3(b)]. Pot ini dirancang sedemikian hingga putaran 0° menimbulkan 0 V dan 300° menimbulkan 10 V. Tentukan fungsi transfer dari pot tersebut.

SOLUSI Fungsi transfer adalah output dibagi input. Dalam kasus ini, input ke pot adalah “po-sisi dalam derajat,” and outputnya adalah volt:

Fungsi transfer dari suatu komponen merupakan bilangan yang sangat bermanfaat. Bilangan ini memungkinkan anda menghitung output suatu komponen jikalau anda mengetahui inputnya. Prosedurnya adalah sekedar mengalikan fungsi transfer deng-an input, seperti yang diperlihatkan pada Contoh 1.4. CONTOH 1.4 Untuk sensor yang mengukur suhu, inputnya adalah suhu dan outputnya adalah te-gangan. Fungsi transfer sensor diberikan sebagai 0,01 V/°F. Tentukan tegangan out-put sensor jikalau suhunya adalah 600°F.

SOLUSI

Seperti yang disinggung sebelumnya, fungsi transfer dapat dipergunakan untuk meng-analisis keseluruhan sistem komponen-komponen. Suatu situasi yang umum ditemui meli-batkan sederetan komponen dengan output satu komponen menjadi input komponen beri-kutnya dan setiap komponen memiliki fungsi transfernya masing-masing. Gambar 1.4(a) memperlihatkan diagram blok dari situasi ini. Diagram ini dapat diciutkan menjadi satu blok tunggal yang memiliki TFtot, yang merupakan hasil-kali dari semua fungsi-fungsi transfer. Konsep ini dijelaskan pada Gambar 1.4(b) dan dinyatakan dalam Persamaan 1.3*:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 169

Page 176: Dasar Mekatronika

TF1 , TF2 ,TF3 , : masing-masing fungsi tranfer yang berderet Konsep-konsep tadi diperjelas dalam Contoh 1.5. Contoh 1.5 Perhatikan sistem yang diperlihatkan pada Gambar 1.5. Sistem ini terdiri dari motor elektrik yang menggerakkan rantaian roda-gigi [gear train], yang menggerakkan suatu winch (alat pengangkat beban). Setiap komponen memiliki karakteristiknya sendiri: Motor (dalam kondisi ini) berputar pada 100 rpmm untuk setiap volt (Vm) yang dipasokkan padanya; batang output dari rantaian roda-gigi berputar pada setengah laju putaran motor; winch (dengan keliling batang sebesar 3 inci) mengubah gerakan putaran (rpmw) menjadi laju linear. Fungsi transfer masing-masing komponen diberikan sebagai berikut:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 170

Page 177: Dasar Mekatronika

5.3 Sistem Kontrol Analog Digital

Dalam sistem kontrol analog, pengontrol tersusun dari piranti dan rangkaian analog yang tradisional, yakni penguat linear [linear amplifier]. Sistem kontrol yang pertama bersifat analog karena teknologi analog adalah satu-satunya yang tersedia pada saat itu. Dalam sistem kontrol analog, setiap perubahan, baik pada rujukan maupun pada umpan-balik, dapat terindera secara segera, dan langsung penguat menyesuaikan outputnya (ke-pada aktuator).

Dalam sistem kontrol digital, pengontrol menggunakan rangkaian digital. Kerap kali, rangkaian ini sesungguhnya adalah komputer yang biasanya berbasis mikroprosesor atau mikrokontroler. Komputer tersebut melaksanakan program yang berulang berkali-kali (setiap perulangan disebut iterasi atau scan). Program memerintahkan komputer untuk membaca data rujukan dan sensor, lalu menggunakan bilangan-bilangan ini untuk menghi-tung output pengontrol (yang kemudian dikirim kepada aktuator). Program tersebut lalu memutar balik ke permulaan dan memulai lagi.

Waktu total untuk satu kali melintasi program mungkin kurang dari 1 milidetik (ms). Sistem digital hanya "melihat" inputnya pada saat tertentu dalam suatu scan dan memperbarui outputnya pada saat yang lain. Jika input berubah sejenak setelah komputer melihatnya, perubahan itu masih tidak terdeteksi sampai waktu berikutnya melintasi scan. Hal ini secara mendasar berbeda daripada sistem analog, yang bersifat kontinu dan menanggapi setiap perubahan secara segera. Meskipun demikian, pada kebanyakan sistem kontrol digital, waktu scan sedemikian singkat diban-dingkan waktu tanggapan proses yang dikontrol sehingga, untuk semua tujuan praktis, tanggapan pengontrol terasa seketika.

Dunia fisik pada dasarnya adalah "alam analog". Gejala-gejala alamiah membutuhkan waktu untuk terjadi, dan biasanya mereka bergerak secara sinambung dari satu posisi ke posisi berikutnya. Oleh karena itu, kebanyakan sistem kontrol mengendalikan proses-proses analog. Hal ini berarti bahwa, pada banyak kasus, sistem kontrol digital mula-mula harus mengubah data input analog dari dunia-nyata menjadi bentuk digital sebelum data tersebut dapat dipergunakan. Begitu pula,

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 171

Page 178: Dasar Mekatronika

output dari pengontrol digital harus diubah dari bentuk digital kembali menjadi bentuk analog. Gambar 1.6 memperlihatkan diagram blok dari sistem kontrol kalang-tertutup digital. Perhatikan dua blok tambahan: pengubah digital-ke-analog [Digital-to-Analog Converter atau DAC] dan pengubah analog-ke-digital [Analog-to-Digital Converter atau ADC]. (Piranti-piranti ini, yang mengubah data di antara format digital dan analog, akan dibahas dalam Bab 2). Juga perhatikan garis umpan-balik diperlihatkan langsung menuju ke pengontrol. Hal ini menekankan kenyataan bahwa kom-puter, bukan rangkaian pengurangan yang terpisah, yang melakukan pembandingan di antara sinyal rujukan dan sinyal umpan-balik.

5.4 Pengelompokan system kontrol

Sejauh ini kita telah membahas sistem kontrol sebagai baik kalang-terbuka maupun kalang-tertutup, analog atau digital. Walau begitu, kita masih dapat mengelompokkan sistem kontrol dengan cara lainnya yang berkaitan dengan penerapan. Beberapa penerapan yang paling sering dijumpai akan dibahas berikut ini. Kontrol Proses

Kontrol proses mengacu pada sistem kontrol yang mengawasi beberapa proses industri sehingga output yang seragam dan benar dapat dipertahankan. Kontrol proses dapat mela-kukan hal ini dengan memantau dan menyesuaikan parameter-parameter kontrol (seperti suhu dan laju aliran) untuk menjamin produk output tetap sebagaimana seharusnya.

Contoh klasik dari kontrol proses adalah sistem kalang-tertutup yang mempertahankan suhu yang telah ditetapkan dari oven elektrik, seperti yang dilukiskan pada Gambar 1.7.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 172

Page 179: Dasar Mekatronika

Dalam hal ini, aktuator adalah elemen pemanas, variabel terkontrol adalah suhu, dan sensor adalah termokopel (suatu piranti yang mengubah suhu menjadi tegangan). Pengontrol mengatur daya ke elemen pemanas sedemikian hingga mempertahankan suhu (sebagaimana yang dilaporkan oleh termokopel) pada nilai yang ditetapkan oleh rujukan.

Contoh lain dari proses kontrol adalah pabrik cat yang di dalamnya dua warna, biru dan kuning, dicampur untuk menghasilkan hijau (Gambar 1.8). Untuk menjaga warna output yang tetap, perbandingan biru dan kuning yang tepat harus dipertahankan. Susunan piran-ti yang dilukiskan pada Gambar 1.8(a) dapat melakukan hal ini dengan memakai katup-katup aliran 1 dan 2, yang secara manual disesuaikan sampai tercapai derajat warna hijau diinginkan. Permasalahannya adalah sewaktu tinggi-permukaan [level] warna di dalam bejana-bejana berubah, alirannya akan berubah dan campuran tidak bertahan tetap.

Untuk mempertahankan aliran yang ajeg dari bejana-bejana, kita dapat menambahkan dua katup aliran yang dioperasikan secara elektrik (beserta kontrolnya) seperti yang diper-lihatkan pada Gambar 1.8(b). Setiap katup akan mempertahankan aliran cat yang telah ditetapkan ke dalam pencampur [mixer], tanpa terpengaruh oleh tekanan dari bagian hulu. Secara teori, jika aliran biru dan kuning dipertahankan tanpa saling mempengaruhi, hijau seharusnya tidak mengalami perubahan. Namun, pada prakteknya, faktor-faktor lain seperti suhu dan kebasahan dapat mempengaruhi proses kimia pencampuran dan oleh karenanya mengganggu warna output.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 173

Page 180: Dasar Mekatronika

Pendekatan yang lebih baik mungkin dengan sistem yang

diperlihatkan pada Gambar 1.8(c); satu sensor memantau warna output. Jika hijau makin gelap, pengontrol memperbe-sar aliran kuning. Jika hijau semakin cerah, aliran kuning dikurangi. Sistem ini lebih dapat diterima karena ia memantau parameter yang sesungguhnya harus dipertahankan. Dalam kehidupan nyata, sistem yang gamblang begini mungkin tidak dapat diwujudkan karena sensor yang mampu mengukur output secara langsung mungkin tidak ada dan/atau proses-nya bisa-jadi melibatkan banyak variabel. Kontrol proses dapat dikelompokkan sebagai proses batch atau proses kontinu.

Dalam proses kontinu terjadi aliran material atau produk yang terus-menerus, seperti pada con-toh pencampuran cat yang baru saja dijelaskan. Proses batch memiliki bagian permulaan dan bagian akhir (yang biasanya dilakukan berulang-kali). Contoh-contoh dari proses batch termasuk pencampuran sejumlah adonan roti dan pemuatan kotak-kotak ke dalam suatu bingkai besar.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 174

Page 181: Dasar Mekatronika

Dalam pabrik besar seperti penyulingan [refinery], banyak proses

yang terjadi secara bersamaan dan harus diarahkan karena output dari satu proses menjadi input bagi lainnya. Pada masa awal kontrol proses, pengontrol-pengontrol yang mandiri dan terpisah dipergu-nakan untuk setiap proses, seperti yang diperlihatkan pada Gambar 1.9(a). Permasalahan dengan pendekatan ini adalah untuk mengubah keseluruhan aliran produk, setiap pengon-trol harus disesuaikan-ulang secara manual.

Pada tahun 1960-an, sistem baru dikembangkan di mana semua pengontrol mandiri digantikan oleh satu komputer besar tunggal. Dilukiskan pada Gambar 1.9(b), sistem ini disebut kontrol digital langsung [Direct Digital Control atau DDC]. Keuntungan dari pendekatan ini adalah semua proses lokal dapat diimplementasikan, dipantau, dan disesu-aikan dari satu tempat yang sama. Tambahan lagi, komputer dapat "melihat" keseluruhan sistem, komputer berada pada posisi untuk membuat penyesuaian-penyesuaian yang meningkatkan kinerja sistem total. Kerugiannya adalah keseluruhan pabrik tergantung pada satu komputer itu. Jika komputer tersebut terputus [off line] untuk memperbaiki problem pada satu proses, maka keseluruhan pabrik mengalami pemadaman [shutdown].

Kemajuan pengontrol berbasiskan mikroprosesor yang kecil telah membawa pendekatan baru yang disebut kontrol komputer tersebar [Distributed Computer Control atau DCC], seperti yang dilukiskan pada Gambar 1.9(c). Dalam sistem ini, setiap proses memiliki pengontrol terpisah sendiri yang bertempat di lokasinya. Pengontrol-pengontrol lokal ini saling berkaitan melalui suatu jaringan wilayah lokal [Local Area Network atau LAN] sehingga semua pengontrol pada jaringan tersebut dapat dipantau dan diprogram-ulang dari satu komputer penyelia [supervisory] tunggal. Sekali diprogram, setiap proses pada hakikatnya beroperasi secara mandiri. Hal ini menghasilkan sistem yang lebih kokoh [robust] dan aman, karena semua proses lokal akan terus berfungsi meskipun komputer penyelia atau jaringan mengalami kega-galan. Sebagai contoh, suatu pengontrol lokal yang tugasnya menjaga material tertentu pada suhu yang kritis akan terus berfungsi walaupun komputer penyelia sedang lumpuh untuk sementara waktu.

Kini semakin sering terjadi, komponen-komponen sistem kontrol dihubungkan dengan jaringan "kantor bisnis" dalam suatu pabrik, yang memungkinkan status proses mana pun di pabrik tersebut diawasi oleh komputer mana pun pada meja siapa pun. Anda dapat saja duduk menghadap suatu PC [Personal Computer atau komputer pribadi] di mana

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 175

Page 182: Dasar Mekatronika

pun di dalam gedung dan memutuskan apakah sensor sinar tertentu pada lini perakitan memiliki lensa yang kotor atau seberapa kuat arus yang ditarik oleh motor tertentu. Sistem Terkontrol Berurutan

Sistem terkontrol secara berurutan [sequentially controlled system] mengendalikan proses yang didefinisikan sebagai sederetan tugas yang harus dilaksanakan—dengan kata lain, sederetan operasi, satu demi satu. Setiap operasi di dalam deretan dilaksanakan, baik untuk selama waktu tertentu, dalam hal ini disebut digerakkan-waktu [time-driven], maupun sampai tugas tersebut tuntas (sebagaimana ditandai oleh, misalnya, suatu saklar pembatas [limit switch]), dalam hal ini disebut digerakkan-event [event-driven]. Deretan yang digerakkan-waktu bersifat kalang-terbuka karena tidak ada umpan-balik, sedangkan tugas yang digerakkan-event bersifat kalang-tertutup karena sinyal umpan-balik diperlukan untuk menetapkan bilamana tugas selesai dilaksanakan.

Contoh klasik dari sistem yang dikontrol secara berurutan adalah mesin cuci otomatis. Langkah pertama dalam daur pencucian adalah mengisi tabung cuci. Ini adalah tugas yang digerakkan-event karena air dibiarkan masuk sampai mencapai tinggi-permukaan yang benar seperti yang ditunjukkan oleh suatu pelampung dan saklar pembatas (kalang-tertutup). Dua tugas berikutnya, bilas [wash] dan putar-keringkan [spin-drain], masing-masing dilaksanakan selama periode waktu tertentu dan merupakan langkah-langkah yang digerakkan-waktu (kalang-terbuka). Diagram pewaktuan untuk mesin cuci diperlihatkan pada Gambar 1.10.

Contoh lainnya dari sistem terkontrol berurutan adalah lampu pengatur lalu-lintas. Urutan dasarnya mungkin saja bersifat digerakkan-waktu: 45 detik untuk hijau, 3 detik untuk kuning, dan 45 detik untuk merah. Meskipun demikian, ada atau tidak adanya lalu-lintas, sebagaimana yang ditunjukkan oleh sensor-sensor di badan-jalan [roadbed], bisa-jadi mengubah urutan dasar tadi, yang merupakan kontrol digerakkan-event.

Banyak proses industri yang diotomatiskan tergolong sebagai sistem terkontrol berurut-an. Satu contoh adalah proses di mana bagian-bagian dimuatkan ke atas nampan, dimasuk-kan ke dalam tungku selama 10 menit, lalu dikeluarkan dan didinginkan selama 10 menit, akhirnya dimuatkan ke dalam kotak-kotak dengan setiap kotak berisi 6 bagian. Pada masa lalu, kebanyakan sistem terkontrol berurutan menggunakan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 176

Page 183: Dasar Mekatronika

saklar, relai, dan pewaktu elektromekanik untuk mewujudkan logika kontrolnya. Tugas-tugas tersebut kini semakin banyak dilakukan oleh komputer-komputer kecil yang dikenal sebagai pengontrol logika terprogram [Programmable Logic Controller atau PLC], yang murah, lebih andal, dan mudah untuk diprogram-ulang untuk memenuhi kebutuhan yang berubah—misalnya, memuatkan delapan bagian ke dalam satu kotak alih-alih enam. (PLC akan dibahas dalam Bab 12). Kontrol Gerakan

Kontrol gerakan adalah istilah luas yang dipergunakan untuk menjelaskan sistem elektro-mekanik kalang-terbuka atau kalang-tertutup yang di dalamnya benda-benda mengalami perpindahan. Sistem semacam ini biasanya mengikutkan motor, bagian-bagian mekanik yang bergerak, dan (dalam banyak kasus) sensor-sensor umpan-balik. Mesin-mesin perakit-an [assembling] otomatis, robot-robot industri dan mesin-mesin kontrol numerik adalah contoh-contohnya.

Mekanisme-servo

Mekanisme-servo [servomechanism] adalah istilah tradisonal yang dipakai untuk menje-laskan sistem kontrol elektromekanik kalang-tertutup yang mengarahkan perpindahan yang cermat dari suatu obyek fisik seperti antena radar atau lengan robot. Biasanya, yang dikendalikan bisa-jadi posisi output atau kecepatan output (atau pun kedua-duanya). Contoh dari mekanisme-servo adalah sistem penentuan posisi untuk antena radar, seperti yang diperlihatkan pada Gambar 1.11. Dalam kasus ini, variabel terkontrol adakah posisi antena. Antena diputar dengan motor elektrik yang terhubung dengan pengontrol yang terletak pada jarak tertentu. Pengguna memilih suatu arah, dan pengontrol mengarahkan antena untuk berputar ke posisi yang telah ditetapkan.

Kontrol Numerik

Kontrol numerik [Numerical Control atau NC] adalah jenis kontrol digital yang dipergu-nakan pada perkakas mesin seperti mesin bubut [lathe] dan mesin tempa [milling]. Mesin-mesin ini dapat secara otomatis memotong dan membentuk benda-kerja tanpa operator manusia. Setiap mesin memiliki seperangkat sumbu [axis] dan parameternya sendiri yang

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 177

Page 184: Dasar Mekatronika

harus dikontrol; sebagai contoh, perhatikan mesin tempa yang diperlihatkan pada Gambar 1.12. Benda-kerja [workpiece] yang sedang dibentuk dilekatkan pada meja yang dapat ber-gerak. Meja tersebut dapat digerakkan (memakai motor-motor elektrik) pada tiga arah: X, Y, dan Z. Laju perkakas-pemotong juga dikontrol secara otomatis. Untuk membuat suatu bagian, meja tersebut menggerakkan benda-kerja melewati perkakas-pemotong [cutting tool] pada kecepatan dan kedalaman pemotongan yang telah ditetapkan. Dalam contoh ini, empat parameter (X, Y, Z, dan rpm) secara kontinu dan mandiri dikendalikan oleh pengon-trol. Sebagai inputnya pengontrol menerima sederetan bilangan yang secara lengkap menggambarkan bagaimana bagian tersebut harus dibuat. Bilangan-bilangan ini termasuk ukuran-ukuran fisik dan rincian seperti laju pemotongan dan laju suapan [feed].

Mesin-mesin NC telah digunakan sejak tahun 1960-an, dan beberapa standar yang khas untuk penerapan ini telah dikembangkan.

Secara tradisional, data dari gambar bagian dimasukkan secara manual ke dalam program komputer. Program ini mengubah data input menjadi sederetan bilangan dan perintah yang dapat dipahami oleh pengontrol NC, dan program ini bisa-jadi menyimpan data di dalam cakram lentur [floppy disk] atau pita [tape], atau mengirimkan data langsung ke perkakas-mesin. Data ini dibaca oleh pengontrol perkakas-mesin sewaktu bagian yang dimaksud sedang dibuat. Dengan kemajuan perancangan terbantukan-komputer [Com-puter-Aided Design atau CAD], tugas memprogramkan secara manual perintah-perintah pembuatan [manufacturing] telah ditiadakan. Kini suatu program komputer yang khusus (disebut pengolah-akhir) mampu untuk membaca gambar yang dibangkitkan CAD dan lalu menghasilkan perintah-perintah yang diperlukan mesin NC untuk membuat bagian terse-but. Keseluruhan proses ini—dari CAD hingga bagian yang selesai dibuat—disebut pembu-atan terbantukan-komputer [Computer-Aided Manufacturing atau CAM].

Satu keuntungan besar dari proses ini adalah satu perkakas mesin tunggal secara efisien dapat membuat banyak bagian yang berbeda-beda, satu demi satu. Sistem ini berkecenderungan mengurangi kebutuhan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 178

Page 185: Dasar Mekatronika

invetaris bagian yang besar. Asalkan pita (atau perangkat lunak) input tersedia, maka bagian mana pun yang dibutuhkan dapat dibuat selama periode waktu yang singkat. Ini adalah satu contoh dari pembuatan terpadukan-komputer [Computer-Integrated Manufacturing atau CIM], suatu cara yang sama sekali baru untuk bekerja di industri manufaktur. CIM melibatkan penggunaan komputer pada setiap langkah operasi pembuatan—dari pesanan pelanggan, hingga memesan bahan mentah, hingga membuat bagian tersebut dengan mesin, hingga mengirimkannya ke tuju-an akhir. Robotika

Robot industri adalah contoh klasik dari sistem kontrol posisi. Dalam kebanyakan kasus, robot memiliki satu lengan tunggal dengan sendi-sendi bahu, siku, dan pergelangan, serta juga semacam tangan yang disebut effector akhir.

Effector akhir ini dapat berupa penggenggam [gripper] maupun perkakas lainnya seperti bedil penyemprot cat [paint spray gun]. Robot dipergunakan untuk memindahkan bagian dari satu tempat ke tempat lainnya, merakit bagian, memuatkan ke dan mengambil dari mesin NC, dan melaksanakan tugas-tugas seperti menyemprotkan cat dan mengelas.

Robot pungut-dan-letakkan [pick-and-place], jenis yang tersederhana, memungut bagian-bagian dan meletakkannya di tempat lain yang berdekatan. Alih-alih memakai kon-trol umpan-balik yang canggih, robot ini seringkali bekerja secara kalang-terbuka dengan menggunakan saklar-saklar penghenti [stop switch] dan pembatas mekanik untuk menentukan sejauh mana pada setiap arah ia harus bergerak (terkadang disebut sistem "bang-bang"). Satu contoh diperlihatkan pada Gambar 1.13. Robot ini meng-gunakan silinder pneumatik untuk mengangkat, memutar, dan memperpanjang lengannya. Ia dapat diprogram untuk mengulangi sederetan operasi yang sederhana.

Robot yang lebih canggih menggunakan sistem posisi kalang-tertutup untuk semua sendinya. Satu contoh adalah robot industri yang diperlihatkan pada Gambar 1.14. Ia memiliki enam sumbu yang dikontrol secara mandiri (terkenal sebagai memiliki enam derajat kebebasan [degree of freedom]) yang memungkinkannya meraih tempat-tempat yang

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 179

Page 186: Dasar Mekatronika

sulit dijangkau. Robot ini disertai dengan dan dikendalikan oleh pengontrol berbasis-komputer yang dirancang khusus [dedicated]. Unit ini juga mampu menerjemahkan perin-tah manusia menjadi program robot selama masa "mengajar". Lengan tersebut dapat ber-gerak dari titik ke titik pada kecepatan yang ditetapkan dan tiba beberapa per seribu inci di sekitar tujuannya.

5.5 Sinyal

Sinyal merupakan sebuah fungsi yang berisi informasi mengenai keadaan tingkah laku dari sebuah sistem secara fisik. Meskipun sinyal dapat diwujudkan dalam beberapa cara, dalam berbagai kasus, informasi terdiri dari sebuah pola dari beberapa bentuk yang bervariasi. Sebagi contoh sinyal mungkin berbentuk sebuah pola dari banyak variasi waktu atau sebagian saja.Secara matematis, sinyal merupakan fungsi dari satu atau lebih variable yang berdiri sendiri (independent variable). Sebagai contoh, sinyal wicara akan dinyatakan secara matematis oleh tekanan akustik sebagai fungsi waktu dan sebuah gambar dinyatakan sebagai fusngsi ke-terang-an (brightness) dari dua variable ruang (spatial).

Secara umum, variable yang berdiri sendiri (independent) secara

matematis diwujudkan dalam fungsi waktu, meskipun sebenarnya tidak menunjukkan waktu. Terdapat 2 tipe dasar sinyal, yaitu:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 180

Page 187: Dasar Mekatronika

1.Sinyal waktu kontinyu (continous-time signal) 2. Sinyal waktu diskrit (discrete-time signal)

Pada sinyal kontinyu, variable independent (yang berdiri sendiri) terjadi

terus-menerus dan kemudian sinyal dinyatakan sebagai sebuah kesatuan nilai dari variable independent. Sebaliknya, sinyal diskrit hanya menyatakan waktu diskrit dan mengakibatkan variabel independent hanya merupakan himpunan nilai diskrit.

Fungsi sinyal dinyatakan sebagai x dengan untuk menyertakan variable dalam tanda (.). Untuk membedakan antara sinyal waktu kontinyu dengan sinyak waktu diskrit kita menggunakan symbol t untuk menyatakan variable kontinyu dan symbol n untuk menyatakan variable diskrit. Sebagai contoh sinyal waktu kontinyu dinyatakan dengan fungsi x(t) dan sinyal waktu diskrit dinyatakan dengan fusng x(n). Sinyal waktu diskrit hanya menyatakan nilai integer dari variable independent.

5.5.1 Sinyal Waktu Kontinyu Suatu sinyal x(t) dikatakan sebagai sinyal waktu-kontinyu atau sinyal

analog ketika dia memiliki nilai real pada keseluruhan rentang waktu t yang ditempatinya. Sinyal waktu kontinyu dapat didefinisikan dengan persamaan matematis sebagai berikut.

Fungsi Step dan Fungsi Ramp (tanjak)

Dua contoh sederhana pada sinyal kontinyu yang memiliki fungsi step dan fungsi ramp (tanjak) dapat diberikan seperti pada Gambar 2a. Sebuah fungsi step dapat diwakili dengan suatu bentuk matematis sebagai:

Disini tangga satuan (step) memiliki arti bahwa amplitudo pada u(t) bernilai 1 untuk semua t > 0.

Gambar 2. Fungsi step dan fungsi ramp sinyal kontinyu

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 181

Page 188: Dasar Mekatronika

Untuk suatu sinyal waktu-kontinyu x(t), hasil kali x(t)u(t) sebanding dengan x(t) untuk t > 0 dan sebanding dengan nol untuk t < 0. Perkalian pada sinyal x(t) dengan sinyal u(t) mengeliminasi suatu nilai non-zero(bukan nol) pada x(t) untuk nilai t < 0.

Fungsi ramp (tanjak) r(t) didefinisikan secara matematik sebagai:

Catatan bahwa untuk t> 0, slope (kemiringan) pada r(t) adalah senilai 1. Sehingga pada kasus ini r(t) merupakan “unit slope”, yang mana merupakan alasan bagi r(t) untuk dapat disebut sebagai unit-ramp function. Jika ada variable K sedemikian hingga membentuk Kr(t), maka slope yang dimilikinya adalah K untuk t > 0. Suatu fungsi ramp diberikan pada Gambar 2b.

Sinyal Periodik

Ditetapkan T sebagai suatu nilai real positif. Suatu sinyal waktu kontinyu x(t) dikatakan periodik terhadap waktu dengan periode T jika

x(t + T) = x(t) untuk semua nilai t, −∞<t<∞ (4)

Sebagai catatan, jika x(t) merupakan periodik pada periode T, ini juga periodik dengan qT, dimana q merupakan nilai integer positif. Periode fundamental merupakan nilai positif terkecil T untuk persamaan (5). Suatu contoh, sinyal periodik memiliki persamaan seperti berikut

x(t) = A cos(ωt + θ) (5)

Disini A adalah amplitudo, ω adalah frekuensi dalam radian per

detik (rad/detik), dan θadalah fase dalam radian. Frekuensi f dalam hertz

(Hz) atau siklus per detik adalah sebesar f = ω/2π. Untuk melihat bahwa fungsi sinusoida yang diberikan dalam

persamaan (5) adalah fungsi periodik, untuk nilai pada variable waktu t, maka:

Sedemikian hingga fungsi sinusoida merupakan fungsi periodik dengan periode 2π/ω, nilai ini selanjutnya dikenal sebagai periode fundamentalnya.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 182

Page 189: Dasar Mekatronika

Sebuah sinyal dengan fungsi sinusoida x(t) = A cos(ωt+θ) diberikan pada Gambar 3 untuk nilai θ= −π/2 , dan f = 1 Hz.

Gambar 3 Sinyal periodik sinusoida

5.5.2 Sinyal Diskrit

Pada teori system diskrit, lebih ditekankan pada pemrosesan sinyal yang berderetan. Pada sejumlah nilai x, dimana nilai yang ke-x pada deret x(n) akan dituliskan secara formal sebagai:

x =x(n);−∞<n <∞ (7)

Dalam hal ini x(n) menyatakan nilai yang ke-n dari suatu deret, persamaan (7) biasanya tidak disarankan untuk dipakai dan selanjutnya sinyal diskrit diberikan seperti Gambar (4)

Meskipun absis digambar sebagai garis yang kontinyu, sangat penting untuk menyatakan bahwa x(n) hanya merupakan nilai dari n. Fungsi x(n) tidak bernilai nol untuk n yang bukan integer; x(n) secara sederhana bukan merupakan bilangan selain integer dari n.

Sinyal waktu diskrit mempunyai beberapa fungsi dasar seperti berikut:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 183

Page 190: Dasar Mekatronika

-Sekuen Impuls

δ(n)

Gambar 5. Sinyal impuls

Deret unit sample (unit-sampel sequence), δ(n), dinyatakan

sebagai deret dengan nilai

Deret unit sample mempunyai aturan yang sama untuk sinyal diskrit dan system dnegan fungsi impuls pada sinyal kontinyu dan system. Deret unit sample biasanya disebut dengan impuls diskrit (diecrete-time impuls), atau disingkat impuls (impulse).

-Sekuen Step

Deret unit step (unit-step sequence), u(n), mempunyai nilai:

Unit step dihubungkan dengan unit sample sebagai:

Unit sample juga dapat dihubungkan dengan unit step sebagai:

δ(n) = u(n) − u(n− 1) (11)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 184

Page 191: Dasar Mekatronika

-Sinus Diskrit Deret eksponensial real adalah deret yang nilainya berbentuk a

n,

dimana a adalah nilai real. Deret sinusoidal mempunyai nilai berbentuk Asin(ωon + φ).

Deret y(n) dinyatakan berkalai (periodik) dengan nilai periode N

apabila y(n) = y(n+N) untuk semua n. Deret sinuosuidal mempunyai periode 2π/ω0 hanya pada saat nilai real ini berupa berupa bilangan integer. Parameter ω0 akan dinyatakan sebagai frekuensi dari sinusoidal atau eksponensial kompleks meskipun deret ini periodik atau tidak. Frekuensi ω0 dapat dipilih dari nilai jangkauan kontinyu. Sehingga jangkauannya adalah 0 < ω0 < 2π (atau -π < ω0 < π) karena deret sinusoidal atau eksponensial kompleks didapatkan dari nilai ω0 yang bervariasi dalam jangkauan 2πk <ω0< 2π(k+1) identik untuk semua k sehingga didapatkan ω0 yang bervariasi dalam jangkauan 0 < ω0 < 2π.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 185

Page 192: Dasar Mekatronika

BAB VI. SOFTWARE DAN AKUISISI DATA

6.1. DASAR-DASAR AKUISISI DATA

Elemen-elemen dasar dari sistem akuisisi data berbasis komputer (PC), sebagaimana ditunjukkan pada gambar 6.1, antara lain :

• Sebuah komputer PC; • Transduser; • Pengkondisi sinyal (signal conditioning); • Perangkat keras akuisisi data; • Perangkat keras analisa; dan • Perangkat lunak yang terkait.

6.1.1. Komputer Personal (PC) Komputer yang digunakan dapat mempengaruhi kecepatan akuisisi

data. Tipetipe transfer data yang tersedia pada komputer yang bersangkutan juga, secara signifikan, mempengaruhi unjuk-kerja dari sistem akuisisi data secara keseluruhan. Penggunaan DMA mampu meningkatkan unjuk-kerja melalui penggunaan perangkat keras terdedikasi (khusus) untuk mentransfer data langsung ke memori, sehingga prosesor bisa bebas mengerjakan tugas lain.

Faktor yang mempengaruhi jumlah data yang dapat disimpan dan kecepatan penyimpanan adalah kapasitas dan waktu akses hard disk. Dengan demikian, untuk sistem akuisisi data kontinyu dengan frekuensi sinyal yang diamati cukup tinggi akan dibutuhkan hard disk dengan waktu akses yang cepat dan kapasitas yang cukup besar. Hard disk yang mengalami fragmentasi akan mengurangi laju akuisisi data.

Aplikasi-aplikasi akuisisi data secara real-time (waktu-nyata) membutuhkan prosesor yang cepat (dan tentunya akurat) atau meng-gunakan suatu prosesor terdedikasi seperti prosesor khusus untuk pemrosesan sinyal digital (DSP -Digital Signal Processor). 6.1.2. Transduser

Transduser mendeteksi fenomena fisik (suhu, tekanan dan lain-lain) kemudian mengubahnya menjadi sinyal-sinyal listrik. Misalnya termokopel,

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 186

Page 193: Dasar Mekatronika

RTD (Resistive Temperature Detectors), termistor, flow-meter dan lain-lain. Pada masing-masing kasus, sinyal listrik yang dihasilkan sebanding dengan parameter fisik yang diamati. 6.1.3. Pengkondisi Sinyal

Sinyal-sinyal listrik yang dihasilkan oleh transduser harus dikonversi ke dalam bentuk yang dikenali oleh papan akuisisi data yang dipakai. Tugas pengkondisi sinyal yang sering dilakukan adalah penguatan (amplification). Misalnya sinyal-sinyal lemah yang berasal dari termokopel, sebaiknya dikuatkan untuk meningkatkan resolusi pengukuran. Dengan menempatkan penguat cukup dekat dengan transduser, maka interferensi atau gangguan yang timbul pada kabel penghubung antara transduser dengan komputer dapat diminimal-kan. Minimisasi terjadi karena sinyal telah dikuatkan sebelum menempuh perjalanan melalui kabel tersebut.

Tugas lain dari pengkondisi sinyal adalah melakukan linearisasi. Beberapa alat pengkondisi sinyal dapat melakukan penguatan sekaligus linearisasi untuk berbagai macam tipe transduser sedangkan jenis alat pengkondisi sinyal lainnya hanya bisa melakukan penguatan, linearisasinya menggunakan perangkat lunak (program) yang digunakan. Aplikasi umum dari pengkondisi sinyal lainnya adalah melakukan isolasi sinyal dari transduser terhadap komputer untuk ke-amanan. Sistem yang diamati bisa mengandung perubahan-perubahan tegangan-tinggi yang dapat merusak komputer atau bahkan melukai operatornya.

Selain itu pengkondisi sinyal bisa juga melakukan penapisan sinyal yang diamati. Misalnya pengkondisi sinyal dengan penapis lo-los-rendah digunakan untuk meloloskan sinyal-sinyal dengan frekuensi rendah dan menahan sinyal-sinyal dengan frekuensi tinggi.

6.2. PERANGKAT KERAS AKUISISI DATA (DAQ) 6.2.1. Masukan Analog

Spesifikasi papan perangkat keras akuisisi data meliputi jumlah kanal, laju pencuplikan, resolusi, jangkauan, ketepatan (akurasi), derau dan ketidak-linearan, yang semuanya berpengaruh pada kualitas sinyal yang terdigitisasi (terakuisisi secara digital). Jumlah kanal masukan analog telah ditentukan, baik untuk masukan diferensial maupun ujung-tunggal (single-ended) pada papan akuisisi data yang memiliki kedua macam masukan tersebut. Masukan ujung-tunggal merupakan masukan dengan referensi titik pentanahan (ground) yang sama. Masukan-masukan ini digunakan untuk sinyal masukan yang memiliki aras tegangan yang cukup tinggi (lebih besar dari 1 volt), kabel penghubungnya juga cukup pendek (kurang dari 4,5 meter) dan semua sinyal masukan memiliki referensi ground yang sama. Jika sinya-sinyal masukan tersebut tidak memenuhi kriteria ini, maka digunakan masukan diferensial, dengan tipe masukan diferensial ini, masing-masing masukan memiliki referensi ground-nya sendiri-sendiri. Ralat derau, dalam hal ini, dapat dikurangi karena derau common-mode (karena menggunakan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 187

Page 194: Dasar Mekatronika

referensi ground yang sama pada masukan ujung-tunggal) pada kabel sudah tidak ada. Laju pencuplikan menentukan seberapa sering konversi data dilakukan. Laju pencuplikan yang cepat akan menghasilkan data yang lebih banyak dan akan menghasilkan penyajian-ulang sinyal asli yang lebih baik. Misal-nya, sinyal suara (audio) yang diubah ke sinyal listrik melalui mikrofon memiliki komponen frekuensi hingga mencapai 20 KHz. Untuk mendigitasi sinyal ini secara benar diguna-kan teorema Pencuplikan Nyquist yang mengatakan bahwa kita harus melakukan pencuplikan dengan laju atau frekuensi pencuplikan lebih besar dari dua kali komponen frekuensi maksimum yang ingin dideteksi (diakuisisi). Dengan demikian untuk sinyal audio tersebut diperlukan perangkat keras akuisisi data dengan frekuensi pencuplikan lebih dari 40 kHz (40.000 cuplikan tiap detik).

Sinyal-sinyal yang dihasilkan oleh transduser suhu biasanya tidak membutuhkan laju pencuplikan yang tinggi karena suhu tidak akan berubah secara cepat (pada kebanyakan aplikasi). Dengan demikian, perangkat keras akuisisi data dengan laju pencuplikan rendah sudah mencukupi untuk digunakan pada akuisisi data suhu/temperatur.

Pemultipleksan merupakan cara yang sering digunakan untuk menambah jumlah kanal masukan ke ADC (papan akuisisi data). ADC yang bersangkutan mencuplik sebuah kanal, kemudian berganti ke kanal berikutnya, kemudian mencuplik kanal tersebut, berganti lagi ke kanal berikutnya dan seterusnya. Karena menggunakan sebuah ADC untuk mencuplik beberapa kanal, maka laju efektif pencuplikan pada masing-masing kanal berbanding terbalik dengan jumlah kanal yang dicuplik. Misalnya sebuah papan akuisisi data mampu mencuplik dengan laju 100 Kcuplik/detik pada 10 kanal, maka masing-masing kanal secara efektif memiliki laju pencuplikan :

100 kcuplik /det ik

=10 kcuplik /det ik 10 kanal

Dengan kata lain laju pencuplikan menurun seiring dengan bertambahnya kanal yang dimultipleks.

Resolusi adalah istilah untuk jumlah atau lebar bit yang digunakan oleh ADC dalam penyajian-ulang sinyal analog. Semakin besar resolusinya, semakin besar pembagi jangkauan tegangan masukan sehingga semakin kecil perubahan tegangan yang bisa dideteksi. Pada ganibar 5.2 ditunjukkan sebuah grafik gelornbang sinus serta grafik digital yang diperoleh menggunakan ADC 3-bit.

Konverter 3-bit tersebut digunakan untuk membagi jangkauan sinyal analog menjadi 2

3

atau 8 bagian. Masing-masing bagian disajikan dalam kode-kode biner antara 000 hingga 111. Penyajian-ulang digital bukan merupakan penyajian-ulang yang baik dari sinyal analog asli karena ada informasi yang hilang selama proses konversi. Dengan meningkatkan resolusi hinggga 16 bit, misalnya, maka jumlah kode-kode bilangan ADC meningkat dari 8 menjadi 65.536. Dengan demikian, penyajian-ulang digitalnya lebih akurat dibanding 3-bit.

Jangkauan berkaitan dengan tegangan minimum dan maksimum

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 188

Page 195: Dasar Mekatronika

yang bisa ditangani oleh ADC yang bersangkutan. Papan akuisisi data ragam fungsi memiliki jangkauan yang bisa dipilih sedemikian rupa hingga mampu dikonfigurasi untuk menangani berbagai macam jangkauan tegangan yang berbeda-beda. Dengan fleksibilitas ini, anda dapat menyesuaikan jangkauan sinyal masukan dengan jangkauan papan akuisisi data agar diperoleh resolusi yang akurat dan tepat untuk pengukuran sinyal yang bersangkutan.

Spesifikasi jangkauan, resolusi dan penguatan (gain) pada papan akuisisi data menentukan seberapa kecil perubahan tegangan yang mampu dideteksi. Perubahan tegangan ini menyatakan 1 LSB (Least Signifincant Bit) pada nilai digital dan sering dinamakan sebagai Lebar Kode (code width). Lebar kode yang ideal ditentukan menggunakan persamaan berikut :

Jika diketahui jangkauan tegangannya antara 0 sampai dengan 5 V dan penguatan 500 dan resolusi 16 bit, maka diperoleh :

Lebar_kode_ideal = 5 / (500 x 2™) = 153 nanovolt

Ralat atau kesalahan lain yang mempengaruhi masukan analog

adalah derau (noise). Derau ini bisa menurunkan resolusi ADC karena seiring dengan aras derau mencapai 1 LSB, ADC tidak mampu lagi membedakan antara kenaikan sinyal satu lebar kode dengan aras derau yang lebarnya sama. Ralat yang terkait dengan derau dapat dikurangi dengan mencuplik data pada laju yang tinggi serta melakukan rerata data terakuisisi tersebut.

Idealnya, lebar kode pada masing-masing bagian tegangan adalah sama sebagaimana grafiknya ditunjukkan pada gambar 5.3. Non-linearitas integral pada suatu ADC menunjukkan seberapa jauh simpangan terhadap garis ideal (garis lurus). Sedangkan non-linearitas diferensial menunjukkan seberapa sama lebar kode pada masing-masing bagian tegangan, perhatikan gambar

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 189

Page 196: Dasar Mekatronika

Linearitas integral yang baik, adalah penting karena terjemahan akurat dari kode biner ke tegangan merupakan penskalaan yang sederhana. Non-lineritas diferensial yang ideal memastikan bahwa pembacaan tegangan yang diterjemahkan ada dalam ± 0,5 LSB dari tegangan masukan yang sebenarnya.

6.2.2. Keluaran Analog

Rangkaian keluaran analog dibutuhkan untuk menstimulus suatu proses atau unit yang diuji pada sistem akuisisi data. Beberapa spesifikasi DAC yang menentukan kualitas sinyal keluaran yang dihasilkan adalah settling time, slew rate dan resolusi. Settling time dan slew rate bersama-sama menentukan seberapa cepat DAC dapat mengubah aras sinyal keluaran. Settling time adalah waktu yang dibutuhkan oleh keluaran agar stabil dalam durasi tertentu. Slew rate adalah laju perubahan maksimum agar DAC bisa menghasilkan keluaran. Dengan demikian, settling time yang kecil dan slew rate yang besar dapat menghasilkan sinyal-sinyal dengan frekuensi tinggi karena hanya dibutuhkan waktu sebentar untuk mengubah keluaran ke aras tegangan baru secara akurat.

Suatu contoh aplikasi yang membutuhkan unjuk kerja tinggi dengan parameter-parameter tersebut adalah pembangkit sinyal-sinyal audio. DAC membutuhkan slew rate yang tinggi dan settling time yang kecil agar menghasilkan frekuensi pencuplikan tinggi yang cukup untuk mencakup jangkauan audio. Sebaliknya, suatu contoh aplikasi yang tidak membutuhkan konversi D/A yang cepat adalah aplikasi sumber tegangan yang digunakan untuk mengontrol pemanas (heater). Karena pemanas

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 190

Page 197: Dasar Mekatronika

tidak mampu merespon secara cepat perubahan tegangan, maka tidak diperlukan waktu konversi D/A yang cepat.

Resolusi keluaran mirip dengan resolusi masukan. Yaitu jumlah bit kode digital yang (nantinya) akan menghasilkan keluaran analog. Semakin banyak jumlah bit resolusinya semakin berkurang besar kenaikan tegangan nya (semakin kecil perubahan tegangan yang mampu dideteksi), sehingga dimungkinkan untuk menghasilkan perubahan sinyal yang halus. Aplikasi yang membutuhkan jangkauan dinamis yang lebar dengan perubahan kenaikan tegangan yang kecil pada keluaran sinyal analog membutuhkan keluaran tegangan dengan resolusi tinggi. 6.2.3. Pemicuan

Banyak aplikasi akuisisi data yang membutuhkan pemicuan eksternal yang digunakan untuk memulai dan menghentikan operasi akuisisi data. Pemicuan digital mensinkronkan antara akuisisi dan pembangkit tegangan ke suatu pulsa digital eksternal. Pemicu analog, yang banyak digunakan pada operasi masukan analog, akan memulai atau menghentikan operasi akuisisi data saat suatu sinyal masukan mencapai suatu aras dan slope suatu tegangan analog. 6.2.4. Digital I/O

Antarmuka digital I/O sering digunakan pada sistem akuisisi data PC untuk mengontrol proses-proses, membangkitkan pola-pola pengujian dan untuk berkomunikasi dengan perangkat lain. Pada tiap-tiap kasus, parameter-parameter yang penting mencakup jumlah jalur digital yang tersedia, laju pemasukan dan pengeluaran data digital pada jalur-jalur tersebut dan kemampuan penggeraknya. Jika suatu jalur digital digunakan untuk mengontrol suatu kejadian seperti menghidupkan dan mematikan pemanas, motor atau lampu, maka tidak dibutuhkan laju data yang tinggi karena peralatan-peralatan tersebut tidak dapat merespon dengan cepat. Pada contoh tersebut, jumlah arus yang dibutuhkan untuk menghidupkan dan mematikan alat harus lebih kecil dari arus penggerak yang disediakan oleh papan akuisisi data yang bersangkutan.

Suatu apllikasi umum lainnya adalah memindah data antara satu komputer dengan peralatan lain seperti data logger, pemroses data dan printer. Karena alat-alat ini biasanya menstranfer data dalam satuan byte atau 8 bit maka masing-masing jalur digital pada papan digital I/O dibentuk dalam kelompok 8. Selain itu beberapa papan memiliki rangkaian handsaking untuk tujuan sinkronisasi komunikasi. Jumlah kanal data dan kebutuhan handsaking harus sesuai (disesuaikan) dengan aplikasi yang dibutuhkan. 6.2.5. Pewaktuan I/O

Rangkaian pencacah/timer berguna untuk berbagai macam aplikasi, termasuk menghitung jumlah kejadian-kejadian (event), mengukur pewaktu pulsa digital serta membangkikan gelombang kotak. Semua hal

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 191

Page 198: Dasar Mekatronika

tersebut dapat diimplementasikan menggunakan 3 sinyal pencacah/timer yaitu gerbang, sumber dan keluaran. Gerbang adalah suatu masukan digital yang digunakan untuk mengaktifkan dan mematikan fungsi pencacah. Sumber adalah masukan digital yang menyediakan pulsa-pulsa untuk menaikkan isi pencacah. Keluaran dari pencacah dapat berupa gelombang kotak atau pulsa-pulsa digital. Spesifikasi yang terkait dalam operasi pencacah/timer adalah resolusi dan f'rekuensi detak. Resolusi adalah jumlah bit pada pencacah. Semakin besar resolusinya mengakibatkan jumlah pencacahan semakin banyak. Sedangkan frekuensi detak menentukan seberapa cepat kerja dari pencacah/mer, artinya semakin tinggi frekuensinya semakin cepat pencacah itu bekerja sehingga mampu mendeteksi sinyalsinyal masukan serta mampu menghasilkan pulsa dan gelombang kotak dengan frekuensi tinggi. 6.3. PERANGKAT KERAS PENGANALISA (ANALYZER HARDWARE)

Kernampuan pemrosesan komputer pada saat ini telah meng-alami

peningkatan sedemikian rupa sehingga mencapai suatu tingkat kemampuan untuk melakukan akuisisi dan pemrosesan (analisa) data yang kompleks. Namun untuk aplikasi-aplikasi yang membutuhkan unjuk-kerja yang tinggi, seringkali komputer sudah tidak mampu lagi untuk melakukan pemrosesan data dengan cukup cepat untuk merespon sinyal-sinyal waktunyata (real-time). Dengan demi-kian dibutuhkan perangkat keras tambahan yang harus dipasang pada komputer yang bersangkutan.

Prosesor sinval digital dapat melakukan komputasi atau pemrosesan data lebih cepat dibandingkan dengan mikroprosesor pada umumnya, karena prosesor khusus tersebut mampu melakukan proses akumulasi dan multiplikasi data hanya dalam satu siklus detak, sedangkan mikroprosesor kebanyakan tidak dapat melakukan hal tersebut (dibutuhkan lebih dari satu siklus detak).

Saat ini prosesor sinyal digital telah tersedia dalam berbagai macam format dan tingkat akurasi. Misalnya prosesor sinyal digital 32-bit dengan format penyimpanan data floating-point (bilangan pecahan), memiliki jangkauan dinamis yang lebih tinggi dibandingkan dengan prosesor dengan format fixed-point (bilangan bulat). Sehingga aplikasi-aplikasi yang dikembangkan menggunakan prosesor floating-point ini tidak memerlukan pemrograman yang kompleks (dibanding fixed-point) untuk menangani data-data pecahan. Kemampuan komputasi atau kalkulasi dari prosesor sinyal digital ini dinyatakan dalam jumlah operasi (komputasi) floatingpoint yang dapat dikerjakan dalam satu detik. Misalnya prosesor TMS320C30 dan Texas Instrument, mampu melakukan 33 juta operasi floating-point dalam satu detik (Million Floating-point Operations Per Second = MFLOPS).

6.4. PERANGKAT LUNAK AKUISISI DATA (DAQ)

Suatu perangkat lunak dan perangkat keras akuisisi data dapat merubah komputer PC menjadi suatu sistem akuisisi, pemroses (analisa)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 192

Page 199: Dasar Mekatronika

dan penampil data yang terpadu (Data Acquisition System). Melakukan pemrograman langsung pada tingkat register pada papan akuisisi data merupakan tingkat pemrograman yang paling sulit dalam pengembangan perangkat lunak akuisisi data. Dalam hal ini, Anda harus menentukan nilai biner yang tepat dan benar yang harus dituliskan pada register-register tersebut. Selain itu, bahasa pemrograman yang digunakan harus mampu melakukan pembacaan dan penulisan data dari atau ke papan akuisisi data yang terpasang pada komputer.

Perangkat lunak akuisisi data dibagi menjadi dua macam: (1) Perangkat lunak aras-penggerak (driver-level) dan (2) Perangkat lunak aras-aplikasi (application-level). Perangkat lunak aras-penggerak menyederhanakan pemrograman akuisisi data dengan cara menangani secara langsung pemrograman aras-rendah (low-level pro-graming) dan memberikan Anda berbagai fungsi aras-tinggi (high-level functions) yang dapat dipanggil dalam bahasa pemrograman yang Anda gunakan.

Perangkat lunak tingkat-aplikasi adalah perangkat lunak akuisisi data yang langsung bisa Anda gunakan, seperti Lab View, LabWindows dan lain-lain. 6.5. DAC (DIGITAL TO ANALOG CONVERTER)

Rangkaian pada gambar 5.5, diambil dari data sheet DAC 0832 yang merupakan suatu pendekatan dengan melakukan konversi dari data-data digital menjadi analog (tegangan) menggunakan rangkaian tangga R 2R (R 2R ladder). Nilai dari R dan Rfb sekitar 15 K ohm sehingga 2R-nya sekitar 30 Kohm. Nilai-nilai yang sebenarnya tidak terlalu penting karena kenyataannya nilai-nilai resistor tersebut masing-masing sangat dekat (sama) antara satu dengan yang lain.

Logika "1" dan "0" mengindikasikan posisi-posisi saklar MOSFET

yang ada dalam konverter. Saklar-saklar tersebut akan terhubung pada "1" jika bit yang terkait dalam kondisi ON dan akan terhubung "0" jika OFF. Suatu saklar yang terhubung ke posisi "1" akan meneruskan arus dari Vref ke loutl, sedangkan saklar yang terhubung ke posisi "0" akan meneruskan arus dari Vref ke Iout2, masing-masing melalui resistor-resistor yang terkait.

Untuk melihat bagaimana rangkaian tangga R 2R bekarja, perhatikan rangkaian pada gambar 5.6. Gambar 5.6(a) merupakan rangkaian aplikasi DAC 0832 yang sederhana dan (b) merupakan diagram blok yang disederhanakan, diambil dari data sheet. Pada gambar 5.6(b) Rfb digambarkan sedemikian rupa sehingga Rfb ada didalam DAC, tapi dapat

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 193

Page 200: Dasar Mekatronika

diakses dari luar dan dapat dihubungkan ke Op-amp.

Gambar 5.6. (a) Rangkaian aplikasi DAC 0832 (b) Blok diagram DAC

0832 Lout1 pada tangga R2R terhubung pada masukan terinversi pada Op-amp, sedangkan Iout2 terhubungkan pada masukan tak-terinversi dan ground. Resistor Rfb digunakan sebagai resistor umpan-balik ke Op-amp (dari keluaran ke masukan terinversi Op-amp). Dalam hal ini, agar Op-amp mampu menghilangkan arus yang melalui masukan terinversi maka arus melalui resistor umpan-balik, Rfb, harus sama dengan arus yang melalui resistor masukan terinversi namun dengan polaritas terbalik, perhatikan gambar 5.7.

Gambar 5.7 Karena arusnya sama tetapi daya polaritas yang berbeda maka

hasilnya adalah tegangan 0 volt. Dengan demikian, masukan terinversi memiliki beda potensial yang sama dengan ground. Hal ini mengakibatkan terjadinya kesamaan pertanahan atau dinamakan pentanahan semu. Hal-hal yang bisa diketahui : Ifb = -lin • Tegangan dikiri Rfb adalah 0 berkaitan dengan pertanahan semu, sehingga tegangan disebelah kanen adalah tegangan Rfb -> Vout = Rfb x Ifb. Karena Ifb = -lin maka Vout = Rfb x -Iin ; Arus yang dihilangkan pada masukan terinversi adalah loutl maka Vout = Rfb x — loutl. (sebagaimana juga pada data sheet) Jika digunakan tegangan referensi -5 volt, maka satu-satunya resistor yang terhubungkan pada loutl adalah 2R yang ada di paling kiri diagram tangga R2R jika hanya bit MSB saja yang ON (gambar 5.5), maka (2R = 30KB dan Rfb = 15K serta Vref = -5V) diperoleh rangkaian gambar 5.8.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 194

Page 201: Dasar Mekatronika

Gambar 5.8

Ingat bahwa bit MSB memiliki bobot 128. Pada data sheet juga dikatakan

bahwa :

angka "10" artinya bilangan basis 10 (desimal). Dengan demikian untuk bit MSB yang aktif diperoleh :

sesuai dengan hasil perhitungan kita.Dengan menghilangkan tanda negatif ganda dan memasukan nilai sebagai teganganacuan maka persamaan yang kita peroleh :

Untuk nilai_digital = 1 kita peroleh tegangan tiap langkah (step) :

dan ini adalah basil yang ideal dan sempurna pada hal kenyatannya tidak demikian. Umumnya tidak linear, lebih lanjut dipersilahkan membaca data sheet untuk diskusi lebih lanjut tentang linearitas.

Kasus MSB yang baru saja dibahas merupakan hal yang relatif sederhana. Sekarang, misalnya, bit 6 saja yang aktif, sehingga rangkaian pada gambar 5.9 dapat disederhanakan menjadi rangkain pada gambar 5.10.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 195

Page 202: Dasar Mekatronika

Arus yang melalui R1 (gambar 5.9) tidak mempengaruhi arus

referensi pada masukan terinversi. Walaupun di satu ujung terhubungkan dengan tegangan referensi 5 volt, namun di ujung lainnya terhubungkan pada ground, sehingga arus yang melalui R1 tidak akan pernah sampai ke masukan tak-terinversi.

Resistor-resistor lainnya memberikan kontribusi terhadap arus pada masukan terinversi dan keluaran dari penguat. Arus yang melalui R2 terbagi menjadi 2, yang satu melalui R3 langsung menuju masukan terinversi sedangkan yang satunya lagi melalui R4 dan resistor-resistor lain menuju ground. Sekarang gambar 5.9 kita rubah sedikit, tanpa mengubah rangkaian itu sendiri seperti nampak pada gambar 5.10.

Pertama, perhatikan dua resistor 30K di bagian bawah, karena

menggunakan konfigurasi paralel maka diperoleh :

Hasil Rparalel = 15K ini diseri dengan resistor

15K menghasilkan RSen =15K + 15K = 30K

Nilai resistor 30K ini diparalel dengan resistor 30K disebelah kiri sehingga menghasilkan 15K lagi yang kemudian ditambahkan dengan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 196

Page 203: Dasar Mekatronika

15K diatasnya menghasilkan 30K, demikian seterusnya. Niali akhirnya adalah 30K Akan lebih baik jika anda mencoba membuktikan hal ini dengan corat-coret.

Hasil akhir ditunjukkan pada gambar 5.ll. Nilai Ri meng-gantikan R2 pada gambar 5.9 dan nilai R2 menggantikan nilai R4 beserta resistor lain pada gambar 5.9 (lihat hasil perhitungan se-belumnya).

Gambar 5.ll. Hasil akhir gambar 5.9

Karena masukan terinversi merupakan suatu ground semu, maka 2 resistor 30K seakan-akan dihubungkan secara paralel, sehingga menghasilkan 15K. Dan ini diseri dengan Ri sebesar 15K sehingga masukan inversi akan melihat resistansi totalnya 30K Ohm.

Arus yang mclalui Ri adalah setengah bagian menuju ground melalui R? dan setengahnya melalui Rs sehingga

Atau, karena bit 6 bobotnya 64 maka bisa juga dihitung :

6.6. ADC (ANALOG-TO-DIGITAL CONVERTER)

Kebalikan dari pengubah digital ke analog (DAC) adalah peng-ubah analog ke digital (ADC), yaitu suatu alat yang mampu untuk mengubah sinyal atau tegangan analog menjadi informasi digital yang nantinya akan diproses lebih lanjut dengan komputer.

Perlu dicatat bahwa data-data digital yang dihasilkan ADC hanyalah merupakan pendekatan proporsional terhadap masukan analog. Hal ini karena tidak mungkin melakukan konversi secara sempurna berkaitan dengan kenyataan bahwa informasi digital ber-ubah dalam step-step, sedangkan analog berubahnya secara kontinyu.

Misalnya ADC dengan resolusi 8 bit menghasilkan bilangan 0 sarapai dengan 255 (256 bilangan dan 255 step), dengan demikian tidak mungkin menyajikan semua kemungkinan nilai-nilai analog. Jika sekarang resolusinya menjadi 20 bit maka akan terdapat 1.048.575 step, semakin banyak kemungkinan nilai-nilai analog yang bisa disajikan. Penting untuk diingat, bagaimanapun juga pada sebuah step terdapat tak-terhingga kemungkinan nilai-nilai analog untuk sembarang ADC yang dapat diperoleh di dunia ini. Sehingga apa yang dibuat manusia (Human-made) tidak akan pernah bisa menyamai kondisi dunia-nyata.

Suatu elemen yang penting dalam ADC, sebagaimana dijumpai pada

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 197

Page 204: Dasar Mekatronika

ADC0809, adalah komparator analog yang ditunjukkan pada gambar 5.12.

Gambar Terlihat bahwa bentuknya mirip dengan Op-amp, hanya saja komparator analog ini menerima masukan analog dan menghasilkan suatu keluaran digital. Keluaran akan HIGH ("1") jika masukan analog arus + lebih besar dari arus -, selain itu keluarannya akan selalu LOW ("0").

Komponen lainnya yang penting yaitu adanya DAC persis seperti yang telah dibahas sebelumnya. Masukan tegangan analog yang akan di konversi pada masukan - komparator, sedangkan keluaran dari DAC dihubungkan pada masukan + komparator. Perhatikan gambar

Gambar 5.12

Pertama kali DAC diinisialisasi dengan cara mengaktifkan bit-7 (high order bit) saja terlebih dahulu (jika DAC-nya 8 bit). Jika keluaran komparator adalah LOW, maka tegangan yang dihasilkan oleh DAC masih di bawah dari tegangan yang akan dikonversi, maka bit-7 tersebut tetap dijaga dalam kondisi HIGH (ON). Namun jika keluaran komparatornya adalah HIGH, artinya tegangan dari DAC terlalu tinggi, sehingga bit-7 di-LOW-kan saja. Bit-bit lainnya (dalam DAC) diuji dengan cara yang sama dan akhirnya dibiarkan HIGH atau dijadikan LOW tergantung dari status dari komparator. Proses ini dinamakan sebagai pendekatan beruntun atau succesive a

pproximation seperti digambarkan pada diagram alir berikut:

Sebagai contoh akan dilakukan konversi tegangan 3,21 volt. Diasumsikan bahwa konverter analog ke digital menyediakan suatu tegangan dan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 198

Page 205: Dasar Mekatronika

komparator akan membandingkan tegangan. Konverter pendekatan beruntun yang sebenarnya menggunakan arus. Dari penjelasan tentang DAC diperoleh persamaan

dan kita ikuti tabel berikut

Bit Penguji Nilai Biner DA

Desimal Vout Hasil Pertandingan

10000000 10000000 128 2,5 Bit ditahan 01000000 11000000 192 3,75 Bit didrop 00100000 10100000 160 3,125 Bit ditahan 00010000 10110000 176 3,4375 Bit didrop 00001000 10101000 168 3,28125 Bit didrop 00000100 10100100 164 3,203125 Bit ditahan 00000010 10100110 166 3,21421875 Bit didrop 00000001 10100101 165 3,22265625 Bit didrop

Akhirnya tiga bit dipertahankan, menghasilkan 10100100 (=16410)

untuk menyajikan tegangan 3,21 volt. ADC membutuhkan clock untuk bekerja, hal ini dapat di-sediakan oleh sinyal clok yang terdapat pada bus ISA sebesar 14,31818 MHz yang keraudian dibagi dengan 16 (akan dijelaskan nanti, mengapa dibagi 16) menggunakan 74LS393 (dual, 4-bit ripple converter). 1C 74LS393 ini menggunakan flip-flop sebagai elemen dasarnya, pada gambar 5.14 ditunjukkan gambar dari satu jenis flip-flop yaitu D flip-flop.

Gambar 5.I4 Jika masukan D adalah HIGH, kemudian ada pulsa

clock, maka keluaran Q akan HIGH dan not-Q menjadi LOW. Sedangkan jika masukan D-nya LOW, maka setelah di clock keluaran Q akan LOW dan not-Q akan HIGH. Dengan kata lain, Q akan sama kondisinya dengan data masukan D dan not-Q akan kebalikannya setelah ada pulsa clock. Sekarang apa yang terjadi jika keluaran not-Q disambung langsung ke masukan D, perhatikan gambar 5.15.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 199

Page 206: Dasar Mekatronika

Flip-flop ini di clock pada saat sisi negatif (=falling edge = dari HIGH ke LOW), sebagaimana juga 74LS393. Ini artinya Q and not-Q hanya akan berubah saat ada transisi dari HIGH ke LOW pada masukan clock. Perhatikan runtunan kejadian sebagai berikut :

• Awalnya, misal, not-Q = HIGH, sehingga masukan D = HIGH', • Q selalu kebalikan dengan not-Q, sehingga Q = LOW ; • Terjadi clock pada flip-flop', • Q menjadi HIGH (karena masukan sebelumnya HIGH) dan not-Q=

LOW; • Masukan D sekarang menjadi LOW; • Terjadi clock pada flip-flop; • Q menjadi LOW, dan not-Q = HIGH; • demikian seterusnya.

Sehingga akan terlihat bahwa keluaran Q adalah setengah dari pulsa clock, dengan kata lain rangkaian pada gambar 5.15 merupakan pembagi dua atau pembagi biner. Dengan menghubungkan lebih dari 1 rangkaian seperti gambar 5.15 maka akan dihasilkan rangkaian pembagi sembarang bilangan biner (2, 4, 8, 16 dan seterusnya).

Pada gambar 5.16 ditunjukkan blok diagram dari 1C 74LS393. Masukan 1A dan 2A (masing-masing pin 1 dan 13) untuk clock. Masukan clear (pin 2 dan 12) untuk membuat agar semua keluarannya LOW. Jika pin 6 dan 13 (Qu untuk A dan masukan clock untuk Bj saling dihubungkan maka akan terbentuk pencacah riple 8-bit dan sekaligus akan menghasilkan 8 macam pembagi (2, 4, 8, 16, 32, 64, 128 dan 256).

Pada gambar 5.17 ditunjukkan suatu rangkaian antarmuka ADC

0809 dengan bus ISA. Masukan clock ke ADC 0809 diambil dan pin 6 dan 13 1C 74LS393. Frekuensi clock 14,31818 MHz jika dibagi 16 akan menghasilkan clock 894886,25 Hz yang membolehkan melakukan 11.000 pencuplikan data dengan tiap detik, yang juga cukup untuk merekam data dengan frekuensi hingga sekitar 5 KHz.(Ingat teori Nyquist pada penjelas sebelumnya).

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 200

Page 207: Dasar Mekatronika

Dua gerbang NOR (yang berasal dari 1C 74LS02) pada rangkaian

gambar 5.17 digunakan untuk menerjemahkan jalur read select dan write select. Salah satu dari 8 kanal ADC dipilih menggunakan jalur alamat tersangga (buffered address line) BA0, BA1, BA2. Masukan ALE (Addres Latch Enable) pada ADC0809 harus HIGH agar konverter mengunci kanal terpilih untuk konversi, perhatikan gambar 5. 18.

Jalur START digunakan untuk memulai proses konversi. ALE dan

START dihubungkan bersama untuk secara simultan rnengunci kanal yang dipilih dan memulai proses konversi. Operasi tulis kanal (melalui bahasa pemrograman yang dipakai) digunakan untuk memilih kanal dan memulai konversi. ADC select akan bernilai LOW saat konverter dipilih, jika bernilai HIGH, artinya konverter tidak dipilih serta otomatis memaksa keluaran dari kedua gerbang NOR tersebut juga LOW.

Saat ADC select dan BIOW (Buffered I/O Write- Aktif LOW) bernilai LOW (aktif semua) maka keluaran dari gerbang yang bawah (lihat gambar 5.17) akan

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 201

Page 208: Dasar Mekatronika

HIGH sehingga masukan ALE pada ADC0809 akan HIGH juga sehingga mengunci kanal yang dipilih oleh BAD, BA1 dan BA2. Pada saat yang sama, masukan START ADC0809 akan HIGH yang menyebabkan proses konversi pada kanal yang telah dipilih segera dilakukan.

Setelah selesai melakukan konversi, ADC0809 akan mengaktif-kan (HIGH) sinyal EOC (End Of Conversi) yang kemudian dapat dibaca pada BD7 melalui 74LS244, perhatikan gambar 5.19. Selanjutnya jalur OE (Output Enable) pada ADC0809 dapat diberi nilai HIGH agar hasil konversi dapat dibaca oleh komputer.

Akhirnya OE dapat diaktifkan dengan cara mengaktifkan sinyal ADC

select dan BIOR (Buffered I/O Read). Data kemudian ditempatkan melalui EDO sampai dengan BD7 dan siap dibaca melalui program, perhatikan gambar 5.20.

Gambar 5.20

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 202

Page 209: Dasar Mekatronika

BAB VII SISTEM LOGIKA

7.1.Sistem Logika Gerbang logika merupakan dasar pembentukan sistem digital. Gerbang logika beroperasi dengan bilangan biner, sehingga disebut juga gerbang logika biner.

Tegangan yang digunakan dalam gerbang logika adalah TINGGI atau RENDAH. Tegangan tinggi berarti 1, sedangkan tegangan rendah berarti 0. 7.1.1 Gerbang AND Gerbang AND digunakan untuk menghasilkan logika 1 jika semua masukan mempunyai logika 1, jika tidak maka akan dihasilkan logika 0. A B Gambar Gerbang Logika AND

Masukan A B

Keluaran Y

0 0 0 1 1 0 1 1

0 0 0 1

Tabel Kebenaran AND Pernyataan Boolean untuk Gerbang AND A . B = Y (A and B sama dengan Y ) 7.1.2 Gerbang NAND (Not AND) Gerbang NAND akan mempunyai keluaran 0 bila semua masukan pada logika 1. sebaliknya jika ada sebuah logika 0 pada sembarang masukan pada gerbang NAND, maka keluaran akan bernilai 1. A Y B Gambar Gerbang Logika NAND

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 203

Page 210: Dasar Mekatronika

Masukan A B

Keluaran Y

0 0 0 1 1 0 1 1

1 1 1 0

Tabel Kebenaran NAND 7.1.3 Gerbang OR Gerbang OR akan memberikan keluaran 1 jika salah satu dari masukannya pada keadaan 1. jika diinginkan keluaran bernilai 0, maka semua masukan harus dalam keadaan 0.

Gambar Gerbang Logika OR

Masukan A B

Keluaran Y

0 0 0 1 1 0 1 1

0 1 1 1

Tabel Kebenaran OR 7.1.4 Gerbang NOR Gerbang NOR akan memberikan keluaran 0 jika salah satu dari masukannya pada keadaan 1. jika diinginkan keluaran bernilai 1, maka semua masukannya harus dalam keadaan 0.

A B

Y

A B

Y

Gambar Gerbang Logika NOR

Masukan A B

Keluaran Y

0 0 0 1 1 0 1 1

1 0 0 0

Tabel Kebenaran NOR

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 204

Page 211: Dasar Mekatronika

7.1.5 Gerbang XOR Gerbang XOR (dari kata exclusive OR) akan memberikan keluaran 1 jika masukan-masukannya mempunyai keadaan yang berbeda.

A B

Y

Gambar Gerbang Logika XOR

Masukan A B

Keluaran Y

0 0 0 1 1 0 1 1

0 1 1 0

Tabel Kebenaran XOR 7.1.6 Gerbang NOT Gerbang NOT merupakan gerbang satu masukan yangberfungsi sebagai pembalik (inverter).

Masukan A

Keluaran Y

0 1

1 0

7.2.PLC 7.2.1 Sejarah PLC

Secara historis PLC (Programmable Logic Controllers) pertama kali dirancang oleh Perusahaan General Motor (GM) sekitar pada tahun tahun 1968. PLC awalnya merupakan sebuah kumpulan dari banyak relay yang pada proses sekuensial dirasakan tidak fleksibel dan berbiaya tinggi dalam proses otomatisai dalam suatu industri. Pada saat itu PLC penggunaannya masih terbatas pada fungsi-fungsi kontrol relay saja. Namun dalam perkembangannya PLC merupakan sistem yang dapat dikendalikan secara terprogram. Selanjutnya hasil rancangan PLC mulai berbasis pada bentuk komponen solid state yang memiliki fleksibelitas tinggi. Kerja tersebut dilakukan karena adanya prosesor pada PLC yang memproses program sistem yang dinginkan.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 205

Page 212: Dasar Mekatronika

Gbr. Relay tunggal (a) dan Sistem relay pada mesin CNC (b)

Saat ini PLC telah mengalami perkembangan yang luar biasa, baik

dari segi ukuran, kepadatan komponen serta dari segi fungsinnya seiring perkembangan teknologi solid state. Beberapa perkembangan perangkat keras maupun perangkat lunak PLC antara lain: (a) Ukuran semakin kecil dan kompak, (b) Jenis instruksi/fungsi semakin banyak dan lengkap, (c) Memiliki kemampuan komunikasi dan system dokumentasi yang semakin baik, (d) Jumlah input/output yang semakin banyak dan padat, (f) Waktu eksekusi program yang semakin cepat, (g) Pemrograman relatif semakin mudah. Hal ini terkait dengan perangkat lunak pemrograman yang semakin user friendly, (h) Beberapa jenis dan tipe PLC dilengkapi dengan modul-modul untuk tujuan kontrol kontinu, misalnya modul ADC/DAC, PID, modul Fuzzy dan lain-lain Perusahaan PLC saat ini sudah memulai memproduksi PLC dengan beberapa ukuran, seperti jumlah input/output, instruksi dan kemampuan lainya yang beragam. Perkembangan dewasa ini pada dasarnya dilakukan agar memenuhi dan memberikan solusi bagi kebutuhan pasar yang sangat luas. Sehingga mampu untuk menjawab permasalahan kebutuhan kontrol yang komplek dengan jumlah input/output mencapai ribuan. 7.2.2 Pengenalan dasar PLC

Pada dasarnya PLC (Programmable Logic Controllers) merupakan sistem relay yang dikendalikan secara terprogram. Kerja tersebut dilakukan karena adanya prosesor pada PLC yang memproses program yang dinginkan. PLC dilengkapi dengan port masukan (inputport) dan keluaran (outputport). Adanya masukan dan keluaran PLC secara modul akan lebih mempermudah proses pengawatan (wiring) sistem. Pada dasarnya PLC terdiri dari perangkat keras (hardware) dan perangkat lunak (software). Adapun jenis hardware dapat berupa unit PLC berbagai merek, seperti OMRON, Siemens, LG, dan lain lain, seperti contoh berikut berikut:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 206

Page 213: Dasar Mekatronika

Gbr. PLC Omron type ZEN (a) dan Siemens (b)

Agar lebih mengenal fungsi dan cara kerja PLC pada umumnya,

biasanya dibuat PLC Training Unit untuk keperluan pelatihan bagi siswa maupuin praktisi industri agar lebih mendalami dan memahaminya

Gbr.PLC Training Unit

7.2.3 Instruksi-Instruksi Dasar PLC

Instruksi (perintah program) merupakan perintah agar PLC dapat bekerja seperti yang diharapkan. Pada setiap akhir program harus di instruksikan kalimat END yang oleh PLC dianggap sebagai batas akhir dari program. Instruksi END tidak ditampilkan pada tombol operasional programming console, akan tetapi berupa sebuah fungsi yaitu FUN (01) 7.2.3.1 Load (LD) dan Load Not (LD Not)

LOAD adalah sambungan langsung dari line dengan logika pensakelarannya seperti sakelar NO, sedangkan LOAD NOT logika pensakelarannya seperti sakelar NC. Instruksi ini dibutuhkan jika urutan kerja pada sistem kendali hanya membutuhkan satu kondisi logic saja untuk satu output. Simbol ladder diagram dari LD dan LD NOT seperti Gambar 8 di bawah ini:

Gbr. Simbol Logika Load dan Load Not

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 207

Page 214: Dasar Mekatronika

7.2.3.2 AND dan NOT AND (NAND) Jika memasukkan logika AND maka harus ada rangkaian yang

berada di depannya, karena penyambungannya seri. Logika pensaklaran AND seperti sakelar NO dan NOT AND seperti saklar NC. Instruksi tersebut dibutuhkan jika urutan kerja sistem kendali lebih dari satu kondisi logic yang terpenuhi semuanya untuk memperoleh satu output. Simbol ladder diagram dari AND dan NOT AND seperti Gambar 9. di bawah ini:

Gbr. Simbol Logika AND dan Not AND

7.2.3.3 OR dan NOT OR

OR dan NOT OR (NOR) dimasukkan seperti saklar posisinya paralel dengan rangkaian sebelumnya. instruksi tersebut dibutuhkan jika urutan kerja sistem kendali membutuhkan salah satu saja dari beberapa kondisi logic terpasang paralel untuk mengeluarkan satu output. Logika pensaklaran OR seperti saklar NO dan logika pensaklaran NOT OR seperti saklar NC. Simbol ladder diagram dari OR dan OR NOT seperti gambar 11. di bawah ini:

Gbr.Simbol logika OR dan Not OR

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 208

Page 215: Dasar Mekatronika

7.2.3.4 OUT dan OUT NOT

Digunakan untuk mengeluarkan Output jika semua kondisi logika ladder diagram sudah terpenuhi. . Logika pensaklaran OUT seperti sakelar NO dan logika pensaklaran OUT NOT seperti sakelar NC. Simbol ladder diagram dari OUT dan OUT NOT seperti Gambar 11. di bawah ini

Gbr.Simbol logika OUT dan Out NOT

7.2.3.5 AND LOAD (AND LD)

Digunakan untuk kondisi logika ladder diagram yang khusus dimaksudkan untuk mengeluarkan satu keluaran tertentu. Simbol ladder diagram dari AND LD seperti gambar 12. di bawah ini:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 209

Page 216: Dasar Mekatronika

Gbr .simbol logika AND LOAD

7.2.3.6 TIMER (TIM) dan COUNTER (CNT)

- Jumlahnya bergantung dari masing-masing tipe PLC. Jika suatu nomor sudah dipergunakan sebagai TIMER/COUNTER, maka nomor tersebut tidak boleh lagi dipakai lagi sebagai TIMER/COUNTER yang lain.

- Nilai TIMER/COUNTER bersifat menghitung mundur dari nilai awal yang ditetapkan oleh program. Setelah hitungan tersebut mencapai angka nol, maka kontak NO TIMER/COUNTER akan bekerja.

- TIMER mempunyai batas hitungan antara 0000 sampai 9999 dalam bentuk BCD (binary Code Decimal) dan dalam orde sampai 100 ms. Sedangkan COUNTER mempunyai orde angka BCD dan mempunyai batas antara 0000 sampai dengan 9999.

Gbr. Simbol logika TIMER dan CoUNTER

7.2.3.7 OR LOAD (OR LD)

Digunakan untuk kondisi logika ladder diagram yang khusus dimaksudkan untuk mengeluarkan satu keluaran tertentu. Simbol ladder diagram dari OR LD seperti gambar 13 di bawah ini:

Gbr. Symbol logika OR LOAD

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 210

Page 217: Dasar Mekatronika

7.2.4 Device Masukan Device masukan merupakan perangkat keras yang digunakan

untuk memberikan sinyal kepada modul masukan. Sistem PLC memiliki jumlah device masukan sesuai dengan sistem yang diinginkan. Fungsi dari device masukan untuk memberikan perintah khusus sesuai dengan kinerja device masukan yang digunakan, misalnya untuk menjalankan atau menghentikan motor. Dalam hal tersebut seperti misalnya device masukan yang digunakan adalah push button yang bekerja secara Normally Open (NO) ataupun Normally Close (NC). Ada bermacam-macam device masukan yang dapat digunakan dalam pembentukan suatu sistem kendali seperti misalnya: selector switch, foot switch, flow switch, level switch, proximity sensors dan lain-lain. Gambar15. memperlihatkan macammacam simbol masukan.

Gbr.Contoh symbol device masukan

7.2.5 Modul Masukan

Modul masukan adalah bagian dari sistem PLC yang berfungsi memproses sinyal dari device masukan kemudian memberikan sinyal tersebut ke prosesor. Sistem PLC dapat memiliki beberapa modul masukan. Masing-masing modul mempunyai jumlah terminal tertentu, yang berarti modul tersebut dapat melayani beberapa device masukan. Pada umumnya modul masukan ditempatkan pada sebuah rak. Pada jenis

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 211

Page 218: Dasar Mekatronika

PLC tertentu terdapat modul masukan yang ditempatkan langsung satu unit dengan prosesor ataupun catu daya dan tidak ditempatkan dengan sistem rak. Gambar 16 memperlihatkan modul masukan atau keluaran yang penempatannya menggunakan rak.

Gbr.Slot Modul masukan atau keluaran PLC

7.2.6 Device Masukan Program

Device masukan program berfungsi sebagai sarana untuk memasukkan atau mengisikan program ke dalam prosesor PLC yang disebut dengan pengisi program (program loader). Program Loader sering disebut sebagai device programmer yaitu alat yang digunakan untuk melakukan pengisian program ke CPU. Device programmer membuat program PLC menjadi lebih fleksibel.

Gbr.Desktop

Gbr.handled programmer (OMRON)

Device programmer memperbolehkan pemakai untuk melakukan

pengubahan program kendali baru (modifikasi) atau memeriksa benar atau tidaknya program yang telah diisikan ke dalam memori. Hal ini sangat

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 212

Page 219: Dasar Mekatronika

membantu untuk keperluan perawatan ketika timbul masalah terhadap sistem. Jenisjenis device programmeran yang sering digunakan adalah desktop, handled programmer dan device programmer yang memang khusus dibuat oleh pembuat PLC. Gambar diatas memperlihatkan contoh gambar device programmer. 7.2.7 Device Keluaran

Device keluaran adalah komponen-komponen yang memerlukan sinyal untuk mengaktifkan komponen tersebut. Sistem PLC mempunyai beberapa device keluaran seperti motor listrik, lampu indikator, sirine. Gambar dibawah. memperlihatkan contoh simbol dari device keluaran yang sering digunakan.

Gbr.Contoh device keluaran dan simbolnya

7.2.8. Modul Keluaran

PLC dapat mempunyai beberapa modul keluaran tergantung dari ukuran dan aplikasi sistem kendali. Device keluaran disambungkan ke modul keluaran dan akan aktif pada saat sinyal diterima oleh modul keluaran dari prosesor sesuai dengan program sistem kendali yang telah diisikan ke memorinya. Catu daya yang digunakan untuk mengaktifkan device keluaran tidak langsung dari modul keluaran tetapi berasal dari catu daya dari luar, sehingga modul keluaran sebagai sakelar yang menyalurkan catu daya dari catu daya luar ke device keluaran.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 213

Page 220: Dasar Mekatronika

7.2.9 Perangkat Lunak PLC Pemrogramman PLC terdiri dari instruksi-instruksi dasar PLC yang

berbentuk logika pengendalian sistem kendali yang diinginkan. Bahasa programmeran biasanya telah disesuaikan dengan ketentuan dari pembuat PLC itu sendiri. Dalam hal ini setiap pembuat PLC memberikan aturan-aturan tertentu yang sudah disesuaikan dengan programmeran CPU yang digunakan PLC. 7.2.10 Ladder Logic

Ladder logic adalah bahasa programmeran dengan bahasa grafik atau bahasa yang digambar secara grafik. Diagram ini menyerupai diagram dasar yang digunakan logika kendali system kontrol panel dimana ketentuan instruksi terdiri dari koil-koil, NO, NC dan dalam bentuk penyimbolan. Programmeran tersebut akan memudahkan programmer dalam mentransisikan logika pengendalian khususnya bagi programmer yang memahami logika pengendalian sistem kontrol panel. Simbol-simbol tersebut tidak dapat dipresentasikan sebagai komponen, tetapi dalam programmerannya simbol-simbol tersebut dipresentasikan sebagai fungsi komponen sebenarnya 7.2.11 Perangkat Keras PLC

Sistem PLC menggunakan prinsip pemodulan yang memiliki beberapa keuntungan, seperti komponen-komponennya dapat ditambah, dikurangi ataupun dirancang ulang untuk mendapatkan sistem yang lebih fleksibel.

Sistem PLC memiliki tiga komponen utama yaitu unit prosesor, bagian masukan/keluaran, dan device pemrograman. Diagram kerja tiga komponen utama di atas, akan dijelaskan lebih rinci dengan gambar diagram blok sistem PLC seperti terdapat pada Gambar dibawah. Urutan kerja dari gambar diagram blok di atas dimulai dari device masukan yang akan memberikan sinyal pada modul masukan. Sinyal tersebut diteruskan ke prosesor dan akan diolah sesuai dengan program yang dibuat. Sinyal dari prosesor kemudian diberikan ke modul keluaran untuk mengaktifkan device keluaran.

Gbr.Diagram Blok PLC

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 214

Page 221: Dasar Mekatronika

7.2.12 Hubungan Input/output (I/O) dengan perangkat lunak Pada saat pemrogram (programmer) bekerja dengan bahasa

ladder logic, programmer harus mengerti hubungan I/O dengan perangkat lunak. Untuk memudahkan pemahamannya, titik masukan modul masukan dapat dianggap sebagai koil relay yang masing-masing memiliki alamat tertentu. koil relay masukan berada di luar perangkat sehingga tidak dapat tergambar di perangkat lunak dan hanya memiliki kontak-kontak pada perangkat lunak. Banyaknya titiktitik keluaran terletak di modul keluaran. Untuk lebih mempermudah pemahaman mengenai hubungan I/O dengan perangkat lunak Gambar dibawah memperlihatkan gambar hubungan antara I/O dengan perangkat lunak.

Gbr Hubungan antar I/O dengan perangkat lunak

Gambar diatas memperlihatkan bahwa apabila push button 1

ditekan maka unit input X1 menjadi ON. Sesuai dengan prinsip pemahaman bahwa titik masukan sebagai koil relay yang mempunyai kontak di perangkat lunak, sehingga jika keadaan ON maka sinyal mengalir menuju modul masukan (dengan anggapan pemahaman bahwa terdapat koil) hal tersebut mengakibatkan kontak dari unit input di dalam perangkat lunak akan bekerja. Peristiwa itu tersebut mengakibatkan koil keluaran perangkat lunak menerima sinyal tersebut sehingga unit output sebagai kontak koil akan bekerja. Apabila lampu indikator sebagai device keluaran, kejadian tersebut mengakibatkan lampu menyala. Karena sebagai device masukan berupa push button 1 ON saat ditekan saja (NO) maka untuk membuat lampu itu menyala terus, koil keluaran perangkat lunak memiliki internal relay yang dapat digunakan sebagai pengunci (holding). Sinyal selanjutnya mengalir melalui holding relay tersebut dan lampu akan menyala terus dan akan mati apabila pushbutton 2 ditekan karena terputusnya tegangan dalam hal ini karena pushbutton 2 sebagai NC. 7.2.13 Processor

Prosesor adalah bagian pemroses sistem PLC yang membuat keputusan logika. Keputusan yang telah dibuat berdasarkan program tersimpan dalam memori. Prosesor adalah bagian dari Central Processing Unit (CPU) dari PLC yang menerima, menganalisa, memproses dan memberikan informasi ke modul keluaran. Di dalam CPU PLC dapat dibayangkan seperti sekumpulan ribuan relay. Hal tersebut bukan berarti

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 215

Page 222: Dasar Mekatronika

di dalamnya terdapat banyak relay dalam ukuran yang sangat kecil tetapi berisi rangkaian elektronika digital yang dapat sebagai kontak NO dan NC relay.

Memori berfungsi sebagai tempat dimana informasi tersebut disimpan. Ada bermacam-macam jenis serpih memori dalam bentuk Integrated Circuit (IC). Masing-masing jenis memori memiliki keuntungan dan kerugian dan dipilih untuk spesifikasi yang terbaik untuk aplikasinya.

Salah satu jenis memori yang digunakan dalam CPU PLC adalah Random Access Memory (RAM). Kerugian jenis memori tersebut adalah diperlukannya catu daya untuk menjaga agar memory tetap bekerja. Pada aplikasi PLC diperlukan catu daya cadangan yang digunakan untuk menjaga agar isi dari memori tidak hilang apabila tiba-tiba catu daya hilang. RAM digunakan untuk keperluan memori karena RAM mudah diubah dengan cepat ketika dibandingkan dengan jenis memori yang lain. RAM disebut juga sebagai memori baca/tulis, karena RAM dapat dibaca dan ditulis data untuk disimpan di RAM. Read Only Memory (ROM) adalah jenis memori yang semi permanen dan tidak dapat diubah dengan pengubah program. Memori tersebut hanya digunakan untuk membaca saja dan jenis memori tersebut tidak memerlukan catu daya cadangan karena isi memori tidak akan hilang meskipun catu daya terputus Programmable Read Only Memory (PROM) adalah jenis lain dari memori yang bekerja hampir menyerupai ROM, dengan satu pengecualian yaitu bisa di program. PROM di rancang untuk diisi dengan program yang terprogram. Apabila data dapat diubah, maka dapat diadakan programmeran. Programmeran ulang dari PROM membutuhkan perlengkapan khusus yaitu PROM Programmer dimana PLC sendiri tidak dapat melakukannya. Gambar dibawah. memperlihatkan contoh CPU PLC yang menggunakan sistem RAM.

Gbr.CPU PLC (OMRON)

7.2.14 Data dan Memory PLC 7.2.14.1 Aturan Dsar penulisan memori PLC adalah: - Word atau channel yang terdiri dari 16 bit, ditulis XXX - Bit atau contact yang terdiri dari 1 bit, ditulis XXXXXX, dua angka yang

paling belakang menunjukan nomor contact dan sisa angka yang depan menunjukan nomer channel.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 216

Page 223: Dasar Mekatronika

7.2.14.2 Memori PLC - Internal Relay

Internal relay (IR) mempunyai pembagian fungsi seperti IR input, IR output dan juga IR work area (untuk pengolahan data pada program). IR input dan IR output adalah IR yang berhubungan dengan terminal input dan output pada PLC. Sedangkan IR work area tidakdihubungkan ke terminal PLC, akan tetapi berada dalam internal memory PLC dan fungsinya untuk pengolahan logika program. Terdapat juga IR yang fungsinya untuk SYSMAC BUS area, Special I/O Unit area, Optical I/O unit area, dan Group 2 High density I/O unit area.

-Spesial Relay

Special relay (SR) merupakan relay yang menghubungkan fungsi-fungsi khusus seperti flag (misalnya: instruksi penjumlahan terdapat kelebihan digit pada hasilnya [carry flag], kontrol bit PLC, informasi kondisi PLC, dan system clock (pulsa).

- Auxiliary Relay (AR)

Auxiliary relay terdiri dari flags dan bit untuk tujuan khusus. Dapat menunjukkan kondisi PLC yang disebabkan oleh kegagalan sumber tegangan, kondisi special I/O, kondisi input/output unit, kondisi CPU PLC, memori PLC dan lain-lain. - Holding Relay

Holding relay (HR) dapat difungsikan untuk menyimpan data (bit-bit penting) karena tidak hilang walaupun sumber tegangan PLC mati. - Link Relay

Link relay (LR) digunakan untuk data link pada PLC link system. Link system digunakan untuk tukar-menukar informas antar dua PLC atau lebih dalam satu sistem kendali yang saling berhubungan satu dengan yang lainnya dengan menggunakan PLC minimum dua unit. -Temporary Relay

Temporary relay (TR) berfungsi untuk menyimpan sementara kondisi logika program pada ladder diagram yang mempunyai titik percabangan khusus. -Timer/Counter

Timer/counter (T/C) untuk mendefinisikan suatu waktu tunda /time delay (timer) ataupun untuk menghitung (counter). Untuk timer mempunyai orde 100 ms, ada yang mempunyai orde 10 ms yaitu TIMH(15). Untuk TIM 000 sampai dengan TIM 015 dapa dioperasikan secara interrupt untuk mendapatkan waktu yang lebih presisi.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 217

Page 224: Dasar Mekatronika

-Data Memory Data memory (DM) berfungsi untuk menyimpan data-data

program karena isi DM tidak akan hilang (reset) walaupun sumber tegangan PLC mati. Macam-macam DM adalah sebagai berikut: > DM read/write Pada DM read/write data-data program dapat dihapus dan ditulis oleh program yang dibuat, sehingga sangat berguna untuk manipulasi data program. > DM special I/O unit DM special I/O berfungsi untuk menyimpan dan mengolah hasil dari special I/O unit, mengatur dan mendefinisikan sistem kerja special I/O unit. > DM history Log Pada DM history log disimpan informasi-informasi penting pada saat PLC terjadi kegagalan system operasionalnya. Pesan-pesan kesalahan system PLC yang di simpan berupa kode-kode angka tertentu. > DM link test area DM link test area berfungsi untuk menyimpan informasiinformasi yang menunjukan status dari system link PLC. > DM setup DM setup berfungsi untuk kondisi default (kondisi kerja saat PLC aktif). Pada DM inilah kemampuan kerja suatu PLC didefinisikan untuk pertama kalinya sebelum PLC tersebut diprogram dan dioperasikan pada suatu system kontrol. Tentu saja setup PLC tersebut disesuaikan dengan sistem kontrol yang bersangkutan. - Upper Memory

Upper memory (UM) berfungsi untuk menyimpan dan menjalankan program. Kapasitas tergantung dari pada masingmasing tipe PLC yang dipakai. 595

⇒ Semua memori (selain DM dan UM) dapat dibayangkan sebagai relay yang mempunyai koil, kontak NO dan NC. Timer dan Counter juga dapat dibayangkan seperti pada umumnya dan mempunyai kontak NO dan NC. ⇒ DM tidak mempunyai kontak, hanya ada channel/word saja. DM dapat difungsikan untuk menyimpan data-data penting yang tidak boleh hilang waktu sumber tegangan mati atau memanipulasi program. ⇒ Memori yang sifatnya dapat menyimpan data program jika listrik mati adalah DM dan HR, sedangkan memori yang lainnya akan hilang. ⇒ Programmeran PLC ada dua macam yaitu dengan diagram ladder dan bahasa mnemonic. Programmeran biasanya membuat diagram ladder terlebih dahulu dan kemudian baru menterjemahkannya dalam bahasa mnemonic, atau bisa juga langsung digambar ladder diagram pada layar monitor.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 218

Page 225: Dasar Mekatronika

-Catu Daya (Power Supply) Sistem PLC memiliki dua macam catu daya dibedakan

berdasarkan fungsi dan operasinya yaitu catu daya dalam dan catu daya luar. Catu daya dalam merupakan bagian dari unit PLC itu sendiri sedangkan catu daya luar yang memberikan catu daya kepada seluruh bagian dari sistem termasuk didalamnya untuk memberikan catu daya pada catu daya dalam dari PLC. Catu daya dalam mengaktifkan proses kerja PLC. Besarnya tegangan catu daya yang dipakai disesuaikan dengan karakteristik PLC. Bagian catu daya dalam PLC sama dengan bagian-bagian yang lain di mana terdapat langsung pada satu unit PLC atau terpisah dengan bagian yang lain dari atau sistem rak. Gambar catu daya yang sering digunakan dengan system rak diperlihatkan pada gambar dibawah ini.

Gbr.Catu daya

7.2.15 Programan PLC dasar OMRON dengan computer

Programman PLC dasar merk OMRON menggunakan bahas program dari OMRON juga yaitu SYSWIN. Tampilan menu utam dari program SYSWIN dapat dilihat pada gambar berikut.

Gbr.Tampilan menu utama program SYSWIN(OMRON)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 219

Page 226: Dasar Mekatronika

Beberapa perintah program yang penting dan perlu dipahami adalah sebagai berikut:

> Connect ;Connect merupankan perintah program untuk penyambungan antara komputer dengan PLC. > Upload Program ;Merupakan perintah untuk melihat isi program dalam PLC > Down Load Program ;Merupakan perintah untuk mentransfer program yang telah dibuat ke dalam PLC > Run; Perintah untuk menjalankan program yang telah di tranfer ke PLC > Stop;Perintah untuk menghentikan program yang sedang dijalankan di PLC > Monitoring; Perintah untuk melihat kondisi pada saat PLC bekerja

7.2.16 Cara pengoperasian SYSWIN 7.2.16.1 Pembuatan diagram Ladder (diagram tangga)

Pembuatan diagram ladder dapat dilakukan dengan cara klik kiri mouse pada menu perintah sesuai dengan yang dikehendaki kemudian memindahkan mouse ke layar tampilan yang dituju. Langkah selanjutnya memberikan alamat yang dikehendaki pada perintah tersebut. Sebagai contoh membuat diagram ladder berikut

gbr.Tampilan ladder diagram

Langkah sebagai berikut:

Gbr.Pembuatan diagram ladder

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 220

Page 227: Dasar Mekatronika

1. Untuk membuat ladder baru lagi di bawahnya maka posisikan mouse pad End of blok kemudian klik dua kali maka posisi End of blok akan turun dan kita dapat menggunakannya baris kosong tersebut untuk membuat diagram ladder baru.

2. Untuk mengakhiri prongram maka harus diakhiri dengan perintah END sebelum program tersebut dijalankan caranya sebagai berikut:

Gbr.Akhir dari diagram tangga menggunakan END

Setelah sebuah program diagram ladder dibuat kemudian untuk

menjalankannya atau memasukkannya ke dalam PLC harus melewati langkah sebagai berikut: 1. Pastikan PLC sudah tersambung dan ter-conect dengan PLC 2. Sorot menu Online 3. Pilih perintah Download Program lalu enter

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 221

Page 228: Dasar Mekatronika

Gbr.akhir dari diagram tangga menggunakan END 4. Pada menu Online pilih Mode 5. RUN untuk menjalankan program dalam PLC 6. STOP untuk menghentikan program 7. Untuk keperluan monitoring jalannya program dapat dipilih pada menu Online yaitu Monitoring 7.2.16.2 Cara penyambungan dan Logika Laddernya

Gbr.Penyambungan perangkat input, output, PLC, catudaya Pada gambar di atas apabila dibuat program dengan menggunakan

diagram ladder sebagai berikut

Gbr.Ladder diagram

Maka kerja dari rangkaian tersebut adalah:

1. Jika input saklar ditekan maka output berupa lampu akan menyala 2. Tetapi jika sakelar dilepas maka lampu juga akan mati

Apabila dikehendaki lampu tetap menyala meskipun sakelar hanya

sekali tekan maka perlu ditambahi dengan pengunci sebagai berikut:

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 222

Page 229: Dasar Mekatronika

Gbr.Ladder diagram dengan pengunci Kebalikan dari kerja rangkaian di atas (Gambar 31) apabila dibuat

program dengan menggunakan diagram ladder sebagai berikut :

Gbr.Ladder diagram kebalikan dari kerja rangkaian diatas

Maka kerja dari rangkaian tersebut adalah: 1. Jika input saklar tidak ditekan maka output berupa lampu akan

menyala 2. Jika input saklar ditekan maka output berupa lampu akan mati

Untuk penyambungan yang lebih dari satu channel maka cara

penyambungan adalah sebagai berikut:

Gbr.cara penytambungan perangkat input dan output lebih dari satu

channel

Oleh karena keterbatasan PLC dimana spesifikasi dari masukannya dan keluarannya adalah dengan tegangan dan arus yang kecil maka cara penyambungan dari pelaratan keluarannya jika menggunakan lampu untuk tegangan dan arus tinggi adalah menggunakan peralatan relay seperti gambar di bawah ini. Untuk arus dan tegangan yang lebih besar dapat mengguankan Magnetic Contactor. Tegangan yang disambungkan ke relay ataupun Magnetic Contactor disesuaikan dengan tegangan dari relay atau Magnetic Contactor tersebut.

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 223

Page 230: Dasar Mekatronika

Gbr.penambah relay untuk memperbesar kemampuan arus

Rangkaian Input dan Output di dalam Unit CPU PLC OMRON

CPM1A-XXCDR dapat dilihat pada Gambar 35 dan Gambar 36 di bawah ini.

Gbr.rangkaian input unit CPU PLC OMRON CPMA1A-XXCDR

Gbr.rangkaian input unit CPU PLC OMRON CPMA1A-XXCDR (351352

modul pelatihan PLC OMRON)

Dasar Mekatronika dan penerapnya By AMIRIN-FTUIA 224