deposition and characterization of molybdenum...

11
Research Article Deposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron and Atomic Force Microscopy Muhtade Mustafa Aqil, 1 Mohd Asyadi Azam, 2 Mohd Faizal Aziz, 3 and Rhonira Latif 3 1 Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 2 Carbon Research Technology Research Group, Advanced Manufacturing Centre, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3 Institutes of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Correspondence should be addressed to Mohd Asyadi Azam; [email protected] Received 9 June 2016; Accepted 29 December 2016; Published 31 January 2017 Academic Editor: Mar´ ıa J. L´ azaro Copyright © 2017 Muhtade Mustafa Aqil et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper, pure molybdenum (Mo) thin film has been deposited on blank Si substrate by DC magnetron sputtering technique. e deposition condition for all samples has not been changed except for the deposition time in order to study the influence of time on the thickness and surface morphology of molybdenum thin film. e surface profiler has been used to measure the surface thickness. Atomic force microscopy technique was employed to investigate the roughness and grain structure of Mo thin film. e thickness and grain of molybdenum thin film layer has been found to increase with respect to time, while the surface roughness decreases. e average roughness, root mean square roughness, surface skewness, and surface kurtosis parameters are used to analyze the surface morphology of Mo thin film. Smooth surface has been observed. From grain analysis, a uniform grain distribution along the surface has been found. e obtained results allowed us to decide the optimal time to deposit molybdenum thin film layer of 20–100nm thickness and subsequently patterned as electrodes (source/drain) in carbon nanotube-channel transistor. 1. Introduction In recent years, the researches in microelectromechanical systems (MEMS) have developed remarkably, following the advanced of nanotechnology. e development of litho- graphic processes enables the fabrication of a wide variety of material-based miniaturized devices [1–4]. ese systems have a rising importance in the automotive industry, mag- netic storage devices, and all of those applications where microsensors or microactuators are necessary. us, it is cru- cial to face the newly emerged problems related to the reduce dimensionality. MEMS are 10–100 times smaller than macro- machines; therefore surface forces oſten exceed the volume forces and problems associated with friction/adhesion; wear and surface contamination become relevant. In this context, tribological studies have a key role in the optimization of these components [5, 6]. in films and coatings play a critical role in everything from food containers to photovoltaic [7–9]. To meet such varied needs, they are made from every class of material and by numerous processes including physical and chemical vapor deposition techniques, atomic layer deposition, and sol gel processing [10]. A key step in developing any new film is characterizing its surface structure and physical properties, whether in engineering commercial products [11] or pursuing fundamental materials science studies [12]. Molybdenum (Mo) is a promising material to be used as electrodes (source/drain) in microelectronics. Mo thin film possesses interesting properties such as high electrical conductivity [13] and good chemical stability. Molybdenum is Hindawi Journal of Nanotechnology Volume 2017, Article ID 4862087, 10 pages https://doi.org/10.1155/2017/4862087

Upload: others

Post on 10-Jun-2020

38 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Research ArticleDeposition and Characterization ofMolybdenum Thin Film Using Direct CurrentMagnetron and Atomic Force Microscopy

Muhtade Mustafa Aqil1 Mohd Asyadi Azam2 Mohd Faizal Aziz3 and Rhonira Latif3

1Faculty of Electronics and Computer Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya76100 Durian Tunggal Melaka Malaysia2Carbon Research Technology Research Group Advanced Manufacturing Centre Faculty of Manufacturing EngineeringUniversiti Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal Melaka Malaysia3Institutes of Microengineering and Nanoelectronics (IMEN) Universiti Kebangsaan Malaysia 43600 Bangi Selangor Malaysia

Correspondence should be addressed to Mohd Asyadi Azam asyadiutemedumy

Received 9 June 2016 Accepted 29 December 2016 Published 31 January 2017

Academic Editor Marıa J Lazaro

Copyright copy 2017 Muhtade Mustafa Aqil et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

In this paper pure molybdenum (Mo) thin film has been deposited on blank Si substrate by DC magnetron sputtering techniqueThe deposition condition for all samples has not been changed except for the deposition time in order to study the influenceof time on the thickness and surface morphology of molybdenum thin film The surface profiler has been used to measure thesurface thickness Atomic force microscopy technique was employed to investigate the roughness and grain structure of Mo thinfilm The thickness and grain of molybdenum thin film layer has been found to increase with respect to time while the surfaceroughness decreases The average roughness root mean square roughness surface skewness and surface kurtosis parameters areused to analyze the surface morphology of Mo thin film Smooth surface has been observed From grain analysis a uniform graindistribution along the surface has been found The obtained results allowed us to decide the optimal time to deposit molybdenumthin film layer of 20ndash100 nm thickness and subsequently patterned as electrodes (sourcedrain) in carbon nanotube-channeltransistor

1 Introduction

In recent years the researches in microelectromechanicalsystems (MEMS) have developed remarkably following theadvanced of nanotechnology The development of litho-graphic processes enables the fabrication of a wide varietyof material-based miniaturized devices [1ndash4] These systemshave a rising importance in the automotive industry mag-netic storage devices and all of those applications wheremicrosensors or microactuators are necessaryThus it is cru-cial to face the newly emerged problems related to the reducedimensionality MEMS are 10ndash100 times smaller than macro-machines therefore surface forces often exceed the volumeforces and problems associated with frictionadhesion wearand surface contamination become relevant In this context

tribological studies have a key role in the optimization ofthese components [5 6]

Thin films and coatings play a critical role in everythingfrom food containers to photovoltaic [7ndash9] To meet suchvaried needs they are made from every class of materialand by numerous processes including physical and chemicalvapor deposition techniques atomic layer deposition and solgel processing [10] A key step in developing any new film ischaracterizing its surface structure and physical propertieswhether in engineering commercial products [11] or pursuingfundamental materials science studies [12]

Molybdenum (Mo) is a promising material to be usedas electrodes (sourcedrain) in microelectronics Mo thinfilm possesses interesting properties such as high electricalconductivity [13] and good chemical stabilityMolybdenum is

HindawiJournal of NanotechnologyVolume 2017 Article ID 4862087 10 pageshttpsdoiorg10115520174862087

2 Journal of Nanotechnology

Table 1 Input parameters for sputtering

Input parameter RangeDC power 200 WattWorking pressure 10mTorrArgon flow 20 sccmDeposition time 5ndash85 minutes

commonly used as electrodes because of its ohmic contact tosilicon [14] Therefore molybdenum thin film characteriza-tion towards microelectronic utilization is very important forsome applications such as in carbon nanotube transistor andresonant gate transistor [15 16] The sputtering depositiontechnique is widely used among the researchers to fabricatethin film due to its advantages such as creating thin filmswith smaller grain size many grain orientation and betteradhesion with the substrate [17] Smaller grains impede thedislocation motion and improve toughness as well

Recently many researches have been done on the deposi-tion of molybdenum thin films electrical and morphologicalstudies of Mo thin film for solar cell and mechanical andtribological studies of molybdenum nitride thin films [13 18ndash22] Nevertheless no study has been carried out on electrodes(sourcedrain) fabrication which needs specific thicknessand grain structure in nanodevices for example in thegrowth of carbon nanotube as channel between the electrodes(sourcedrain)

In this work molybdenum thin film is deposited andcharacterized in order to be used as electrodes for carbonnanotube transistor Thin film molybdenum layer has beendeposited on a siliconwafer DCmagnetron sputtering whichis a method of physical vapor deposition technique forthin film is used it is considered to be one of the mostcommonly used techniques [23] In this study the influenceof deposition time on thickness grain and roughness of Mothin film layer has been carried out while argon flow rate DCpower andworking pressure have beenmade constant duringdeposition One of scanning probe microscopy (SPM) modewhich is atomic force microscopy (AFM) technique is usedto characterize the samples [24 25] Surface roughness andgrain analysis of the samples are analyzed by Image Analyses-P9 (IA-P9) while the thickness is measured with a surfaceprofiler

2 Material and Methods

21 Sputtering Process (Film Deposition) In DC magnetronsputtering process pure molybdenum round target (9995)with 5 inch diameter and 025 inch thickness has been used todeposit Mo on blank (1 times 1 inch2) Si substrate The substrateshave not been subjected to any heating treatment before thesputtering process Table 1 shows the input parameters for thesputtering process

There are 5 samples ofMo thin film layer deposited at dif-ferent sputtering time from 5 minutes to 85 minutes SpecificMo thickness for carbon nanotube transistorrsquos electrode canbe achieved by varying the sputtering time

22 Morphological Characteristic Using AFM For our sam-ples morphology and surface texture have been studiedusing AFM technique AFM as an excellent device is oneof the most common techniques which are widely used inthin film characterization Knowing the surface topographyat nanometric resolution allows researchers to investigatedynamic biological process [26] tribological properties [27]mechanical manufacturing [28] and mainly thin film sur-faces [29]

Researchers use AFM technique because it allows eval-uation and precise observation of thin film characteristicsFurthermore AFM can operate in ambient condition anddoes not need any special sample preparation [30] The mostcommonly used parameters to study surface texture includeroughness waviness flows and lay All of these parametersrepresent random deviation of the surface After we obtained2D and 3D images by AFM technique in noncontact modethe resulting images were analyzed in AP-9 software

23 Surface Roughness Analysis Themost common parame-ters measured for roughness were the roughness average (119877a)and the root mean square (119877q) sometime called RMS 119877ais the arithmetic average value of the deviation of the traceabove and below the mean value 120583 (center line) In otherwords 119877a is a vertical deviation which is the mean heightsvariation of the surface area according to the reference plan[31] RMS roughness (119877q) measures the root mean squaredeviation of a profile and is used in calculating the skewand kurtosis parameter 119877q values found for all sample werehigher than 119877a The mathematical explanation of 119877a and 119877qis given by the following equations

119877a = 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

1003816100381610038161003816119885119894119895 minus 1205831003816100381610038161003816 (1)

where 119873119909 lowast 119873119910 is data sample size in the array 119885119894119895 whichis the source discrete function in the 119883119884 plane and 120583 is themean value the first momentum of the distribution given by

120583 = 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

119885119894119895 (2)

119877q = radic 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)2 (3)

Surface skewness (119877sk) characterizes the symmetry of dis-tribution It is nonzero for symmetric distributions positivefor distributions with dominating right tail and negative fordistributions with dominating left tail If the value of 119877sk ispositive peaks become dominant in the distribution and if itis negative valleys become dominant in the distribution [32]Surface skewness is given by

119877sk = 1119873119909 lowast 1198731199101198773q119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)3 (4)

Coefficient of kurtosis (119877ka) is a measurement of spikinessdistribution profile above and below the reference plan The

Journal of Nanotechnology 3

Table 2 Thickness and the average thickness for Mo thin film with different deposition time

Unit nm nmsDeposition time (min) Test 1 Test 2 Test 3 Test 4 Average Deposition rate5 927 109 124 789 10115 0033720 26996 26675 26828 26744 2681075 0223435 49876 49167 47211 48906 48565 0231265 87618 87890 87244 87645 8759925 0224685 111440 111637 107944 113729 1111875 02180

0

200

400

600

800

1000

1200

Thic

knes

s (nm

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(a)

000002004006008010012014016018020022024

Dep

ositi

on ra

te (n

ms

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(b)

Figure 1 Trend between (a) thickness and (b) deposition rate with respect to time

surface is considered Gaussian if 119877ka = 3 spiky if 119877ka gt 3 orbumpy for 119877ka lt 3 [32] The following formula presents 119877ka

119877ka = 1119873119909 lowast 1198731199101198774q119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)4 minus 3 (5)

Skewness and kurtosis parameter are important in givingbetter understanding of the surface Skewness parameterindicates whether the peak distribution is symmetrical whilekurtosis parameter determines whether the distribution ofheight (histogram) is Gaussian

3 Results and Discussion

31 Thin Film Thickness The measurement accuracy of thinfilm thickness is very important for many applications likesemiconductor devices displays and thin film for opticalproduct coatings Average thickness can be determined byknowing the average step height (ASH) at any location inthe scan area using surface profiler dektak150 Four measure-ments have been done in every sample at different placesTable 2 shows the thickness measurement and depositionrate Figures 1(a) and 1(b) present the trends between timeand thickness and the trend between time and depositionrate respectively In Figure 1(a) the thickness of Mo thinfilm layer increases linearly with respect to time The result

in Figure 1(b) shows that the deposition rate at the beginningof deposition process is small and starts to increase with timeto the point that it became constant The deposition rate hasbeen measured to be constant for all samples deposited formore than 20 minutes

32 Surface Roughness Like thickness surface roughnessanalysis is important to thin film due to its contribution inboth mechanical and electrical transport properties Con-ducting thin film roughness has a tangible impact on deviceperformance [33] 2D and 3D AFM images for Mo film areshown in Figure 2 for time deposition at 5 minutes to 85minutes

In Figure 3 the histogram and peak distribution are pre-sented Histogram is the heights distribution and it possessesa bell shape Peak is the accumulated heights distributionIn order to clearly explain Figure 3 we should understandthe statistical value parameter and amplitude which helpto clarify the histogram shape and peak distribution It isnecessary to know the amplitudes for 119877a and 119877q calculatedby (1) and (2) respectively High 119877a means rough surfacesmall 119877a means smooth surface Smooth surface is usuallymore resistive than rough surface against friction and wearOur samples have low roughness as shown in Table 3According to [34] the height distribution of most surfacesmay approach a Gaussian distribution if 119877q119877a value is up

4 Journal of Nanotechnology

y-a

xis (

um)

50403020100

y-axis (um)

x-axis (um)

4020

0

49154920492549304935

z-a

xis (

nA)

0

10

20

30

40

50

0 20 30 40 5010x-axis (um)

4920

4930

z-a

xis (

nA)

(a)

20151005

0

y-a

xis (

um)

y-axis (um)

x-axis (um)0 02 04 06 08 10 12 14 16 18 20

5101520

z-a

xis (

nm)

0

5

10

15

20

z-a

xis (

nm)

0

05

10

15

20

05 10 15 200x-axis (um)

(b)

y-axis (um)

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10

5101520

z-a

xis (

nm)

002

0406

0810

0

5

10

15

20

z-a

xis (

nm)

02 04 06 08 100x-axis (um)

0

02

04

06

08

10

(c)

y-axis (um)

y-a

xis (

um)

004

0812

16

x-axis (um)0 02 04 06 08 10 12 14 16 18

01020

(nm

)x

-axi

s

0

05

10

15

20

02468101214161820

z-a

xis (

nm)

05 10 15 200x-axis (um)

(d)

Figure 2 Continued

Journal of Nanotechnology 5

y-axis (um)

20

15

10

05

0

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10 12 14 16 18

05 10 15 200x-axis (um)

26

10

z-a

xis (

nm)

012345678910

z-a

xis (

nm)

0

05

10

15

20

(e)

Figure 2 2D and 3D AFM image samples with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min

Table 3 Roughness parameter ofMo thin filmaccording to differentdeposition time

Unit nm 119877q119877a 119877sk 119877kaDeposition time (min) 119877a 119877q5 133 169 127 022 3720 258 323 125 035 29735 244 306 125 033 30465 157 199 126 021 4785 117 146 125 022 29

to 131 The calculated values for 119877q119877a in our experimentfor all samples are approximately equal to 125 which meansthat for all 5 samples the height distributions tend to beGaussian Referring to skewness and kurtosis definition inSection 32 these parameters describe the height symmetryIn our experiment the values for skewness for all sampleswhich has been calculated using (4) are positive in a rangeof 021ndash035 Thus the peak distribution in Figure 3 showsthat the right tail is longer than left tail In addition thehills are dominant over the valleys which indicate that thedistributions are not perfectly symmetric Values for Kurtosisas calculated in (5) are greater than 3 for samples withdeposition time of 5 minutes 35 minutes and 65 minuteswhich indicate that the surface is spiky and the distributionis leptokurtic [23] However the surface is bumpy and thedistribution is platykurtic [23] for samples with 20-minuteand 85-minute deposition time related to kurtosis value ofless than 3

The results clearly show that the roughness of molybde-num thin films decreases with respect to time Furthermorethe films surfaces have waviness surface texture For allsamples the histogram distributions are Gaussian and thepeak distributions are dominant over the valleys

33 Grain Analysis Grain analysis method visualizes thesection of the grain ensemble taken at a predefined relativelevel common for all grains It collects basic geometric

Table 4 Grain analysis of Mo thin film according to depositiontime

AverageUnit 120583m2 120583mDepositiontime (min) Area Size Perimeter Length

5 00035 0046 019 006820 0017 012 048 017535 00011 003 012 00465 00023 004 0175 005885 0003 0045 02 0065

characteristics of particles in the ensemble including sectionarea volume average size local height maximum heightmaximum size average height and perimeter A particulargeometric characteristic for a section of grain ensemblesare collected and presented in a histogram Grain analysismethod analyzes AFM images of granular ensembles on thesurface under few assumptions including that the particles ofthe ensemble are located on a base surface the shape of theparticles is sufficiently convex and the particles are separated

In previous images forMo samples IA-P9 image process-ing software analyzed and generated quantitative informationfor both individual and group of grains In a group ofparticles a statistical measurement can be gathered Fur-thermore counts of particles and distribution of all particlesizes surface area and volume are the most common statisticmeasurement For individual grain physical properties suchas surface texture morphology and 3D size information(height length and width) can be measured using the samesoftware In Figure 4 2D images show grain distribution forMo thin filmwith different deposition timeThe images showvery good distribution of grain on all over the sample areaFigure 5 illustrates histogram plots of quantitative analysisfor Mo thin films with different deposition time The imagesshow a very good grain distribution all over the area Table 4concludes the average of all measured parameters (grain

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 2: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

2 Journal of Nanotechnology

Table 1 Input parameters for sputtering

Input parameter RangeDC power 200 WattWorking pressure 10mTorrArgon flow 20 sccmDeposition time 5ndash85 minutes

commonly used as electrodes because of its ohmic contact tosilicon [14] Therefore molybdenum thin film characteriza-tion towards microelectronic utilization is very important forsome applications such as in carbon nanotube transistor andresonant gate transistor [15 16] The sputtering depositiontechnique is widely used among the researchers to fabricatethin film due to its advantages such as creating thin filmswith smaller grain size many grain orientation and betteradhesion with the substrate [17] Smaller grains impede thedislocation motion and improve toughness as well

Recently many researches have been done on the deposi-tion of molybdenum thin films electrical and morphologicalstudies of Mo thin film for solar cell and mechanical andtribological studies of molybdenum nitride thin films [13 18ndash22] Nevertheless no study has been carried out on electrodes(sourcedrain) fabrication which needs specific thicknessand grain structure in nanodevices for example in thegrowth of carbon nanotube as channel between the electrodes(sourcedrain)

In this work molybdenum thin film is deposited andcharacterized in order to be used as electrodes for carbonnanotube transistor Thin film molybdenum layer has beendeposited on a siliconwafer DCmagnetron sputtering whichis a method of physical vapor deposition technique forthin film is used it is considered to be one of the mostcommonly used techniques [23] In this study the influenceof deposition time on thickness grain and roughness of Mothin film layer has been carried out while argon flow rate DCpower andworking pressure have beenmade constant duringdeposition One of scanning probe microscopy (SPM) modewhich is atomic force microscopy (AFM) technique is usedto characterize the samples [24 25] Surface roughness andgrain analysis of the samples are analyzed by Image Analyses-P9 (IA-P9) while the thickness is measured with a surfaceprofiler

2 Material and Methods

21 Sputtering Process (Film Deposition) In DC magnetronsputtering process pure molybdenum round target (9995)with 5 inch diameter and 025 inch thickness has been used todeposit Mo on blank (1 times 1 inch2) Si substrate The substrateshave not been subjected to any heating treatment before thesputtering process Table 1 shows the input parameters for thesputtering process

There are 5 samples ofMo thin film layer deposited at dif-ferent sputtering time from 5 minutes to 85 minutes SpecificMo thickness for carbon nanotube transistorrsquos electrode canbe achieved by varying the sputtering time

22 Morphological Characteristic Using AFM For our sam-ples morphology and surface texture have been studiedusing AFM technique AFM as an excellent device is oneof the most common techniques which are widely used inthin film characterization Knowing the surface topographyat nanometric resolution allows researchers to investigatedynamic biological process [26] tribological properties [27]mechanical manufacturing [28] and mainly thin film sur-faces [29]

Researchers use AFM technique because it allows eval-uation and precise observation of thin film characteristicsFurthermore AFM can operate in ambient condition anddoes not need any special sample preparation [30] The mostcommonly used parameters to study surface texture includeroughness waviness flows and lay All of these parametersrepresent random deviation of the surface After we obtained2D and 3D images by AFM technique in noncontact modethe resulting images were analyzed in AP-9 software

23 Surface Roughness Analysis Themost common parame-ters measured for roughness were the roughness average (119877a)and the root mean square (119877q) sometime called RMS 119877ais the arithmetic average value of the deviation of the traceabove and below the mean value 120583 (center line) In otherwords 119877a is a vertical deviation which is the mean heightsvariation of the surface area according to the reference plan[31] RMS roughness (119877q) measures the root mean squaredeviation of a profile and is used in calculating the skewand kurtosis parameter 119877q values found for all sample werehigher than 119877a The mathematical explanation of 119877a and 119877qis given by the following equations

119877a = 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

1003816100381610038161003816119885119894119895 minus 1205831003816100381610038161003816 (1)

where 119873119909 lowast 119873119910 is data sample size in the array 119885119894119895 whichis the source discrete function in the 119883119884 plane and 120583 is themean value the first momentum of the distribution given by

120583 = 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

119885119894119895 (2)

119877q = radic 1119873119909 lowast 119873119910119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)2 (3)

Surface skewness (119877sk) characterizes the symmetry of dis-tribution It is nonzero for symmetric distributions positivefor distributions with dominating right tail and negative fordistributions with dominating left tail If the value of 119877sk ispositive peaks become dominant in the distribution and if itis negative valleys become dominant in the distribution [32]Surface skewness is given by

119877sk = 1119873119909 lowast 1198731199101198773q119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)3 (4)

Coefficient of kurtosis (119877ka) is a measurement of spikinessdistribution profile above and below the reference plan The

Journal of Nanotechnology 3

Table 2 Thickness and the average thickness for Mo thin film with different deposition time

Unit nm nmsDeposition time (min) Test 1 Test 2 Test 3 Test 4 Average Deposition rate5 927 109 124 789 10115 0033720 26996 26675 26828 26744 2681075 0223435 49876 49167 47211 48906 48565 0231265 87618 87890 87244 87645 8759925 0224685 111440 111637 107944 113729 1111875 02180

0

200

400

600

800

1000

1200

Thic

knes

s (nm

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(a)

000002004006008010012014016018020022024

Dep

ositi

on ra

te (n

ms

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(b)

Figure 1 Trend between (a) thickness and (b) deposition rate with respect to time

surface is considered Gaussian if 119877ka = 3 spiky if 119877ka gt 3 orbumpy for 119877ka lt 3 [32] The following formula presents 119877ka

119877ka = 1119873119909 lowast 1198731199101198774q119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)4 minus 3 (5)

Skewness and kurtosis parameter are important in givingbetter understanding of the surface Skewness parameterindicates whether the peak distribution is symmetrical whilekurtosis parameter determines whether the distribution ofheight (histogram) is Gaussian

3 Results and Discussion

31 Thin Film Thickness The measurement accuracy of thinfilm thickness is very important for many applications likesemiconductor devices displays and thin film for opticalproduct coatings Average thickness can be determined byknowing the average step height (ASH) at any location inthe scan area using surface profiler dektak150 Four measure-ments have been done in every sample at different placesTable 2 shows the thickness measurement and depositionrate Figures 1(a) and 1(b) present the trends between timeand thickness and the trend between time and depositionrate respectively In Figure 1(a) the thickness of Mo thinfilm layer increases linearly with respect to time The result

in Figure 1(b) shows that the deposition rate at the beginningof deposition process is small and starts to increase with timeto the point that it became constant The deposition rate hasbeen measured to be constant for all samples deposited formore than 20 minutes

32 Surface Roughness Like thickness surface roughnessanalysis is important to thin film due to its contribution inboth mechanical and electrical transport properties Con-ducting thin film roughness has a tangible impact on deviceperformance [33] 2D and 3D AFM images for Mo film areshown in Figure 2 for time deposition at 5 minutes to 85minutes

In Figure 3 the histogram and peak distribution are pre-sented Histogram is the heights distribution and it possessesa bell shape Peak is the accumulated heights distributionIn order to clearly explain Figure 3 we should understandthe statistical value parameter and amplitude which helpto clarify the histogram shape and peak distribution It isnecessary to know the amplitudes for 119877a and 119877q calculatedby (1) and (2) respectively High 119877a means rough surfacesmall 119877a means smooth surface Smooth surface is usuallymore resistive than rough surface against friction and wearOur samples have low roughness as shown in Table 3According to [34] the height distribution of most surfacesmay approach a Gaussian distribution if 119877q119877a value is up

4 Journal of Nanotechnology

y-a

xis (

um)

50403020100

y-axis (um)

x-axis (um)

4020

0

49154920492549304935

z-a

xis (

nA)

0

10

20

30

40

50

0 20 30 40 5010x-axis (um)

4920

4930

z-a

xis (

nA)

(a)

20151005

0

y-a

xis (

um)

y-axis (um)

x-axis (um)0 02 04 06 08 10 12 14 16 18 20

5101520

z-a

xis (

nm)

0

5

10

15

20

z-a

xis (

nm)

0

05

10

15

20

05 10 15 200x-axis (um)

(b)

y-axis (um)

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10

5101520

z-a

xis (

nm)

002

0406

0810

0

5

10

15

20

z-a

xis (

nm)

02 04 06 08 100x-axis (um)

0

02

04

06

08

10

(c)

y-axis (um)

y-a

xis (

um)

004

0812

16

x-axis (um)0 02 04 06 08 10 12 14 16 18

01020

(nm

)x

-axi

s

0

05

10

15

20

02468101214161820

z-a

xis (

nm)

05 10 15 200x-axis (um)

(d)

Figure 2 Continued

Journal of Nanotechnology 5

y-axis (um)

20

15

10

05

0

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10 12 14 16 18

05 10 15 200x-axis (um)

26

10

z-a

xis (

nm)

012345678910

z-a

xis (

nm)

0

05

10

15

20

(e)

Figure 2 2D and 3D AFM image samples with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min

Table 3 Roughness parameter ofMo thin filmaccording to differentdeposition time

Unit nm 119877q119877a 119877sk 119877kaDeposition time (min) 119877a 119877q5 133 169 127 022 3720 258 323 125 035 29735 244 306 125 033 30465 157 199 126 021 4785 117 146 125 022 29

to 131 The calculated values for 119877q119877a in our experimentfor all samples are approximately equal to 125 which meansthat for all 5 samples the height distributions tend to beGaussian Referring to skewness and kurtosis definition inSection 32 these parameters describe the height symmetryIn our experiment the values for skewness for all sampleswhich has been calculated using (4) are positive in a rangeof 021ndash035 Thus the peak distribution in Figure 3 showsthat the right tail is longer than left tail In addition thehills are dominant over the valleys which indicate that thedistributions are not perfectly symmetric Values for Kurtosisas calculated in (5) are greater than 3 for samples withdeposition time of 5 minutes 35 minutes and 65 minuteswhich indicate that the surface is spiky and the distributionis leptokurtic [23] However the surface is bumpy and thedistribution is platykurtic [23] for samples with 20-minuteand 85-minute deposition time related to kurtosis value ofless than 3

The results clearly show that the roughness of molybde-num thin films decreases with respect to time Furthermorethe films surfaces have waviness surface texture For allsamples the histogram distributions are Gaussian and thepeak distributions are dominant over the valleys

33 Grain Analysis Grain analysis method visualizes thesection of the grain ensemble taken at a predefined relativelevel common for all grains It collects basic geometric

Table 4 Grain analysis of Mo thin film according to depositiontime

AverageUnit 120583m2 120583mDepositiontime (min) Area Size Perimeter Length

5 00035 0046 019 006820 0017 012 048 017535 00011 003 012 00465 00023 004 0175 005885 0003 0045 02 0065

characteristics of particles in the ensemble including sectionarea volume average size local height maximum heightmaximum size average height and perimeter A particulargeometric characteristic for a section of grain ensemblesare collected and presented in a histogram Grain analysismethod analyzes AFM images of granular ensembles on thesurface under few assumptions including that the particles ofthe ensemble are located on a base surface the shape of theparticles is sufficiently convex and the particles are separated

In previous images forMo samples IA-P9 image process-ing software analyzed and generated quantitative informationfor both individual and group of grains In a group ofparticles a statistical measurement can be gathered Fur-thermore counts of particles and distribution of all particlesizes surface area and volume are the most common statisticmeasurement For individual grain physical properties suchas surface texture morphology and 3D size information(height length and width) can be measured using the samesoftware In Figure 4 2D images show grain distribution forMo thin filmwith different deposition timeThe images showvery good distribution of grain on all over the sample areaFigure 5 illustrates histogram plots of quantitative analysisfor Mo thin films with different deposition time The imagesshow a very good grain distribution all over the area Table 4concludes the average of all measured parameters (grain

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 3: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Journal of Nanotechnology 3

Table 2 Thickness and the average thickness for Mo thin film with different deposition time

Unit nm nmsDeposition time (min) Test 1 Test 2 Test 3 Test 4 Average Deposition rate5 927 109 124 789 10115 0033720 26996 26675 26828 26744 2681075 0223435 49876 49167 47211 48906 48565 0231265 87618 87890 87244 87645 8759925 0224685 111440 111637 107944 113729 1111875 02180

0

200

400

600

800

1000

1200

Thic

knes

s (nm

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(a)

000002004006008010012014016018020022024

Dep

ositi

on ra

te (n

ms

)

10010 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 9550

Time (min)

(b)

Figure 1 Trend between (a) thickness and (b) deposition rate with respect to time

surface is considered Gaussian if 119877ka = 3 spiky if 119877ka gt 3 orbumpy for 119877ka lt 3 [32] The following formula presents 119877ka

119877ka = 1119873119909 lowast 1198731199101198774q119873119910sum119895=1

119873119909sum119894=1

(119885119894119895 minus 120583)4 minus 3 (5)

Skewness and kurtosis parameter are important in givingbetter understanding of the surface Skewness parameterindicates whether the peak distribution is symmetrical whilekurtosis parameter determines whether the distribution ofheight (histogram) is Gaussian

3 Results and Discussion

31 Thin Film Thickness The measurement accuracy of thinfilm thickness is very important for many applications likesemiconductor devices displays and thin film for opticalproduct coatings Average thickness can be determined byknowing the average step height (ASH) at any location inthe scan area using surface profiler dektak150 Four measure-ments have been done in every sample at different placesTable 2 shows the thickness measurement and depositionrate Figures 1(a) and 1(b) present the trends between timeand thickness and the trend between time and depositionrate respectively In Figure 1(a) the thickness of Mo thinfilm layer increases linearly with respect to time The result

in Figure 1(b) shows that the deposition rate at the beginningof deposition process is small and starts to increase with timeto the point that it became constant The deposition rate hasbeen measured to be constant for all samples deposited formore than 20 minutes

32 Surface Roughness Like thickness surface roughnessanalysis is important to thin film due to its contribution inboth mechanical and electrical transport properties Con-ducting thin film roughness has a tangible impact on deviceperformance [33] 2D and 3D AFM images for Mo film areshown in Figure 2 for time deposition at 5 minutes to 85minutes

In Figure 3 the histogram and peak distribution are pre-sented Histogram is the heights distribution and it possessesa bell shape Peak is the accumulated heights distributionIn order to clearly explain Figure 3 we should understandthe statistical value parameter and amplitude which helpto clarify the histogram shape and peak distribution It isnecessary to know the amplitudes for 119877a and 119877q calculatedby (1) and (2) respectively High 119877a means rough surfacesmall 119877a means smooth surface Smooth surface is usuallymore resistive than rough surface against friction and wearOur samples have low roughness as shown in Table 3According to [34] the height distribution of most surfacesmay approach a Gaussian distribution if 119877q119877a value is up

4 Journal of Nanotechnology

y-a

xis (

um)

50403020100

y-axis (um)

x-axis (um)

4020

0

49154920492549304935

z-a

xis (

nA)

0

10

20

30

40

50

0 20 30 40 5010x-axis (um)

4920

4930

z-a

xis (

nA)

(a)

20151005

0

y-a

xis (

um)

y-axis (um)

x-axis (um)0 02 04 06 08 10 12 14 16 18 20

5101520

z-a

xis (

nm)

0

5

10

15

20

z-a

xis (

nm)

0

05

10

15

20

05 10 15 200x-axis (um)

(b)

y-axis (um)

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10

5101520

z-a

xis (

nm)

002

0406

0810

0

5

10

15

20

z-a

xis (

nm)

02 04 06 08 100x-axis (um)

0

02

04

06

08

10

(c)

y-axis (um)

y-a

xis (

um)

004

0812

16

x-axis (um)0 02 04 06 08 10 12 14 16 18

01020

(nm

)x

-axi

s

0

05

10

15

20

02468101214161820

z-a

xis (

nm)

05 10 15 200x-axis (um)

(d)

Figure 2 Continued

Journal of Nanotechnology 5

y-axis (um)

20

15

10

05

0

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10 12 14 16 18

05 10 15 200x-axis (um)

26

10

z-a

xis (

nm)

012345678910

z-a

xis (

nm)

0

05

10

15

20

(e)

Figure 2 2D and 3D AFM image samples with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min

Table 3 Roughness parameter ofMo thin filmaccording to differentdeposition time

Unit nm 119877q119877a 119877sk 119877kaDeposition time (min) 119877a 119877q5 133 169 127 022 3720 258 323 125 035 29735 244 306 125 033 30465 157 199 126 021 4785 117 146 125 022 29

to 131 The calculated values for 119877q119877a in our experimentfor all samples are approximately equal to 125 which meansthat for all 5 samples the height distributions tend to beGaussian Referring to skewness and kurtosis definition inSection 32 these parameters describe the height symmetryIn our experiment the values for skewness for all sampleswhich has been calculated using (4) are positive in a rangeof 021ndash035 Thus the peak distribution in Figure 3 showsthat the right tail is longer than left tail In addition thehills are dominant over the valleys which indicate that thedistributions are not perfectly symmetric Values for Kurtosisas calculated in (5) are greater than 3 for samples withdeposition time of 5 minutes 35 minutes and 65 minuteswhich indicate that the surface is spiky and the distributionis leptokurtic [23] However the surface is bumpy and thedistribution is platykurtic [23] for samples with 20-minuteand 85-minute deposition time related to kurtosis value ofless than 3

The results clearly show that the roughness of molybde-num thin films decreases with respect to time Furthermorethe films surfaces have waviness surface texture For allsamples the histogram distributions are Gaussian and thepeak distributions are dominant over the valleys

33 Grain Analysis Grain analysis method visualizes thesection of the grain ensemble taken at a predefined relativelevel common for all grains It collects basic geometric

Table 4 Grain analysis of Mo thin film according to depositiontime

AverageUnit 120583m2 120583mDepositiontime (min) Area Size Perimeter Length

5 00035 0046 019 006820 0017 012 048 017535 00011 003 012 00465 00023 004 0175 005885 0003 0045 02 0065

characteristics of particles in the ensemble including sectionarea volume average size local height maximum heightmaximum size average height and perimeter A particulargeometric characteristic for a section of grain ensemblesare collected and presented in a histogram Grain analysismethod analyzes AFM images of granular ensembles on thesurface under few assumptions including that the particles ofthe ensemble are located on a base surface the shape of theparticles is sufficiently convex and the particles are separated

In previous images forMo samples IA-P9 image process-ing software analyzed and generated quantitative informationfor both individual and group of grains In a group ofparticles a statistical measurement can be gathered Fur-thermore counts of particles and distribution of all particlesizes surface area and volume are the most common statisticmeasurement For individual grain physical properties suchas surface texture morphology and 3D size information(height length and width) can be measured using the samesoftware In Figure 4 2D images show grain distribution forMo thin filmwith different deposition timeThe images showvery good distribution of grain on all over the sample areaFigure 5 illustrates histogram plots of quantitative analysisfor Mo thin films with different deposition time The imagesshow a very good grain distribution all over the area Table 4concludes the average of all measured parameters (grain

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 4: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

4 Journal of Nanotechnology

y-a

xis (

um)

50403020100

y-axis (um)

x-axis (um)

4020

0

49154920492549304935

z-a

xis (

nA)

0

10

20

30

40

50

0 20 30 40 5010x-axis (um)

4920

4930

z-a

xis (

nA)

(a)

20151005

0

y-a

xis (

um)

y-axis (um)

x-axis (um)0 02 04 06 08 10 12 14 16 18 20

5101520

z-a

xis (

nm)

0

5

10

15

20

z-a

xis (

nm)

0

05

10

15

20

05 10 15 200x-axis (um)

(b)

y-axis (um)

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10

5101520

z-a

xis (

nm)

002

0406

0810

0

5

10

15

20

z-a

xis (

nm)

02 04 06 08 100x-axis (um)

0

02

04

06

08

10

(c)

y-axis (um)

y-a

xis (

um)

004

0812

16

x-axis (um)0 02 04 06 08 10 12 14 16 18

01020

(nm

)x

-axi

s

0

05

10

15

20

02468101214161820

z-a

xis (

nm)

05 10 15 200x-axis (um)

(d)

Figure 2 Continued

Journal of Nanotechnology 5

y-axis (um)

20

15

10

05

0

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10 12 14 16 18

05 10 15 200x-axis (um)

26

10

z-a

xis (

nm)

012345678910

z-a

xis (

nm)

0

05

10

15

20

(e)

Figure 2 2D and 3D AFM image samples with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min

Table 3 Roughness parameter ofMo thin filmaccording to differentdeposition time

Unit nm 119877q119877a 119877sk 119877kaDeposition time (min) 119877a 119877q5 133 169 127 022 3720 258 323 125 035 29735 244 306 125 033 30465 157 199 126 021 4785 117 146 125 022 29

to 131 The calculated values for 119877q119877a in our experimentfor all samples are approximately equal to 125 which meansthat for all 5 samples the height distributions tend to beGaussian Referring to skewness and kurtosis definition inSection 32 these parameters describe the height symmetryIn our experiment the values for skewness for all sampleswhich has been calculated using (4) are positive in a rangeof 021ndash035 Thus the peak distribution in Figure 3 showsthat the right tail is longer than left tail In addition thehills are dominant over the valleys which indicate that thedistributions are not perfectly symmetric Values for Kurtosisas calculated in (5) are greater than 3 for samples withdeposition time of 5 minutes 35 minutes and 65 minuteswhich indicate that the surface is spiky and the distributionis leptokurtic [23] However the surface is bumpy and thedistribution is platykurtic [23] for samples with 20-minuteand 85-minute deposition time related to kurtosis value ofless than 3

The results clearly show that the roughness of molybde-num thin films decreases with respect to time Furthermorethe films surfaces have waviness surface texture For allsamples the histogram distributions are Gaussian and thepeak distributions are dominant over the valleys

33 Grain Analysis Grain analysis method visualizes thesection of the grain ensemble taken at a predefined relativelevel common for all grains It collects basic geometric

Table 4 Grain analysis of Mo thin film according to depositiontime

AverageUnit 120583m2 120583mDepositiontime (min) Area Size Perimeter Length

5 00035 0046 019 006820 0017 012 048 017535 00011 003 012 00465 00023 004 0175 005885 0003 0045 02 0065

characteristics of particles in the ensemble including sectionarea volume average size local height maximum heightmaximum size average height and perimeter A particulargeometric characteristic for a section of grain ensemblesare collected and presented in a histogram Grain analysismethod analyzes AFM images of granular ensembles on thesurface under few assumptions including that the particles ofthe ensemble are located on a base surface the shape of theparticles is sufficiently convex and the particles are separated

In previous images forMo samples IA-P9 image process-ing software analyzed and generated quantitative informationfor both individual and group of grains In a group ofparticles a statistical measurement can be gathered Fur-thermore counts of particles and distribution of all particlesizes surface area and volume are the most common statisticmeasurement For individual grain physical properties suchas surface texture morphology and 3D size information(height length and width) can be measured using the samesoftware In Figure 4 2D images show grain distribution forMo thin filmwith different deposition timeThe images showvery good distribution of grain on all over the sample areaFigure 5 illustrates histogram plots of quantitative analysisfor Mo thin films with different deposition time The imagesshow a very good grain distribution all over the area Table 4concludes the average of all measured parameters (grain

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 5: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Journal of Nanotechnology 5

y-axis (um)

20

15

10

05

0

y-a

xis (

um)

x-axis (um)0 02 04 06 08 10 12 14 16 18

05 10 15 200x-axis (um)

26

10

z-a

xis (

nm)

012345678910

z-a

xis (

nm)

0

05

10

15

20

(e)

Figure 2 2D and 3D AFM image samples with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min

Table 3 Roughness parameter ofMo thin filmaccording to differentdeposition time

Unit nm 119877q119877a 119877sk 119877kaDeposition time (min) 119877a 119877q5 133 169 127 022 3720 258 323 125 035 29735 244 306 125 033 30465 157 199 126 021 4785 117 146 125 022 29

to 131 The calculated values for 119877q119877a in our experimentfor all samples are approximately equal to 125 which meansthat for all 5 samples the height distributions tend to beGaussian Referring to skewness and kurtosis definition inSection 32 these parameters describe the height symmetryIn our experiment the values for skewness for all sampleswhich has been calculated using (4) are positive in a rangeof 021ndash035 Thus the peak distribution in Figure 3 showsthat the right tail is longer than left tail In addition thehills are dominant over the valleys which indicate that thedistributions are not perfectly symmetric Values for Kurtosisas calculated in (5) are greater than 3 for samples withdeposition time of 5 minutes 35 minutes and 65 minuteswhich indicate that the surface is spiky and the distributionis leptokurtic [23] However the surface is bumpy and thedistribution is platykurtic [23] for samples with 20-minuteand 85-minute deposition time related to kurtosis value ofless than 3

The results clearly show that the roughness of molybde-num thin films decreases with respect to time Furthermorethe films surfaces have waviness surface texture For allsamples the histogram distributions are Gaussian and thepeak distributions are dominant over the valleys

33 Grain Analysis Grain analysis method visualizes thesection of the grain ensemble taken at a predefined relativelevel common for all grains It collects basic geometric

Table 4 Grain analysis of Mo thin film according to depositiontime

AverageUnit 120583m2 120583mDepositiontime (min) Area Size Perimeter Length

5 00035 0046 019 006820 0017 012 048 017535 00011 003 012 00465 00023 004 0175 005885 0003 0045 02 0065

characteristics of particles in the ensemble including sectionarea volume average size local height maximum heightmaximum size average height and perimeter A particulargeometric characteristic for a section of grain ensemblesare collected and presented in a histogram Grain analysismethod analyzes AFM images of granular ensembles on thesurface under few assumptions including that the particles ofthe ensemble are located on a base surface the shape of theparticles is sufficiently convex and the particles are separated

In previous images forMo samples IA-P9 image process-ing software analyzed and generated quantitative informationfor both individual and group of grains In a group ofparticles a statistical measurement can be gathered Fur-thermore counts of particles and distribution of all particlesizes surface area and volume are the most common statisticmeasurement For individual grain physical properties suchas surface texture morphology and 3D size information(height length and width) can be measured using the samesoftware In Figure 4 2D images show grain distribution forMo thin filmwith different deposition timeThe images showvery good distribution of grain on all over the sample areaFigure 5 illustrates histogram plots of quantitative analysisfor Mo thin films with different deposition time The imagesshow a very good grain distribution all over the area Table 4concludes the average of all measured parameters (grain

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 6: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

6 Journal of Nanotechnology

minus1minus2 10 20

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus1minus2 1 200123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(a)

minus5minus10 5 1000

01020304050607080910

Freq

uenc

y (c

ount

s)

0123456789

10

Freq

uenc

y(103

coun

ts)

minus5 0 5minus10 10z-axis (nm) z-axis (nm)

(b)

minus5minus10 5 1000

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus5minus10 5 1000123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(c)

minus8 minus6 minus2minus4minus10 2 86 100 4z-axis (nm)

001020304050607080910

Freq

uenc

y (c

ount

s)

minus8 minus6 minus4 minus2minus10 6 100 82 4z-axis (nm)

02468

101214

Freq

uenc

y(103

coun

ts)

(d)

minus4 minus3 minus2 minus1minus5 1 2 3 400

02

04

06

08

10

Freq

uenc

y (c

ount

s)

minus4 minus3 minus2 minus1minus5 1 2 3 400123456789

Freq

uenc

y(103

coun

ts)

z-axis (nm) z-axis (nm)

(e)

Figure 3 AFM roughness analysis with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and (e) 85min First columnfor histogram and the second for peak distribution

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 7: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Journal of Nanotechnology 7

350366

0

50

100

150

200

250

300

z-a

xis (

nm)

y-a

xis (

um)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(a)

0

20

40

60

80

100

120

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(b)

0

10

20

30

40

50

60

70

80

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(c)

0

100

200

300

400

500

600

700

z-a

xis (

nm)

0

10

20

30

40

50

60

70

80

90

100y

-axi

s (um

)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

(d)

0

50

100

150

200

250

300

350

z-a

xis (

nm)

10 20 30 40 50 60 70 80 90 1000x-axis (um)

0

10

20

30

40

50

60

70

80

90

100

y-a

xis (

um)

(e)

Figure 4 2D image shows the grain distribution of Mo films with different deposition time (a) 5min (b) 20min (c) 35min (d) 65min and(e) 85min

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 8: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

8 Journal of Nanotechnology

Area histogram Average size histogram Perimeter histogram Length histogram

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0

1

2

3

4

Cou

nt (1

03

coun

ts)

0

1

2

3

4

5

Cou

nt (1

03

coun

ts)

0 50 150

300

250

200

350

400

450

500

100

Average size range (nm)

0 50 150

200

100

250

Area range (nm)

20

30

15

05

25

10

350

Perimeter range (nm)

1000

300

400

500

600

700

800

900

200

Length range (nm)

(a)

Area histogram Average size histogram Perimeter histogram Length histogram

10 20 30 40 50 600

Area range (nm)

15

10

05

0

Cou

nt (1

03

coun

ts)

0

200

400

600

800

Cou

nt (c

ount

s)

0

200

400

600

800

Cou

nt (c

ount

s)

20 40 60 80 100

120

140

180

1600

Average size range (nm)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

250

100

150

3500

30050 200

Length range (nm)

0

02

04

06

08

10

Cou

nt (1

03

coun

ts)

(b)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

20

30

40

10

25

05

35

15

450

Area range (nm)

0

100

200

300

Cou

nt (c

ount

s)

10 20 30 40 50 600

Average size range (nm)

0

100

200

300

Cou

nt (c

ount

s)

150

100

2500 50 200

Perimeter range (nm)

10 20 30 40 50 60 70 80 900

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

(c)

Area histogram Average size histogram Perimeter histogram Length histogram

0

100

200

300

400

Cou

nt (c

ount

s)

252050 10 15

Area range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

0 40 60 80 100

120

14020

Average size range (nm)

0

100

200

Cou

nt (c

ount

s)

1000

300

400

500

600

700

800

900

200

Perimeter range (nm)

150

100

2500 50 200

Length range (nm)

0

50

100

150

200

Cou

nt (c

ount

s)

(d)

Area histogram Average size histogram Perimeter histogram Length histogram

0

200

300

600

500

700

100

800

400

Perimeter range (nm)

0 50 150

250

100

200

Length range (nm)

0

100

200

300

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

0

50

100

150

200

250

Cou

nt (c

ount

s)

0

50

100

150

200

Cou

nt (c

ount

s)

20 40 60 80 100

120

1400

Average size range (nm)

252050 10 15

Area range (nm)

(e)

Figure 5 Quantitative analysis of nanostructured forMo thin filmwith different deposition time (a) 5min (b) 20min (c) 35min (d) 65minand (e) 85min

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 9: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Journal of Nanotechnology 9

area grain size length and perimeter) of Mo thin filmsnanostructurewith different deposition time Small grain sizeis preferable as it increases the films toughness

4 Conclusions

In this work surface profiler and AFM have been used tocharacterize surface thickness roughness and grain analysisof Mo thin film deposited on Si substrate with differentdeposition time (5ndash85 minutes) Image analysis P9 has beenused to process the data fromAFMand produce the statisticalinformation such as 2D 3D and histogram Deposition ratefor all samples has been calculated and it has been found to be00337 nms for sample with 5-minute deposition time Thedeposition rate increases for other samples to the point that itremains constant after 20min at 022 nmsThe result showedthat the films surfaces have smooth surface texture For allsamples the distributions are Gaussian and the peaks aredominant over the valleys The surface roughness decreaseswith time The grain analysis for all samples showed thatthe grain parameter values increase with respect to timeand very good distribution of grain along the surface Thistype of study provides more extensive understanding of theinfluence of time on thickness and surface morphology ofthe films Other than the deposition time similar analysiscould also be made with variation of DC sputtering powersputtering pressure and sputtering argonflow rateThis couldhelp in choosing suitable deposition parameters accordingto thickness and surface morphology requirements for anyapplication such as fabrication of the electrode for the carbonnanotube transistor

Competing Interests

The authors declare that they have no competing interests

Acknowledgments

This work has been supported by Ministry of ScienceTechnology amp Innovation (MOSTI) under Grant (03-01-14-SF0095 L00023) The authors would like to acknowl-edge the Center of Research and Innovation Management(CRIM) in Universiti Teknikal Malaysia Melaka and Univer-siti Kebangsaan Malaysia

References

[1] R Ghodssi and P Lin Eds MEMS Materials and ProcessesHandbook Springer Berlin Germany 1st edition 2011

[2] S Beeby G Ensell M Kraft and N WhiteMEMS MechanicalSensors Artech House Boston Mass USA 2004

[3] B Bhushan Tribology Issues and Opportunities in MEMSProceedings of the NSFAFOSRASME Workshop on TribologyIssues andOpportunities inMEMSheld inColumbus Ohio USA9ndash11 November 1997 Springer 2012

[4] ldquoSandia National laboratoriesrdquo 2015 httpwwwsandiagovmstcmems

[5] B Bhushan Springer Handbook of Nanotechnology SpringerScience amp Business Media Berlin Germany 2010

[6] B Bhushan Handbook of MicroNano Tribology CRC Press2nd edition 1998

[7] A S M Jaya N A Abdul Kadir and M I Jarrah ldquoModelingof TiN coating roughness using fuzzy logic approachrdquo ScienceInternational vol 26 no 4 pp 1563ndash1567 2014

[8] A S Mohamad Jaya M I Mohammad Jarrah and M RMuhamad ldquoModeling of TiN coating grain size using RSMapproachrdquo Applied Mechanics and Materials vol 754-755 pp738ndash742 2015

[9] M I Jarrah A SM JayaM RMuhamadMN Abd Rahmanand A S H Basari ldquoModeling and optimization of physicalvapour deposition coating process parameters for TiN grainsize using combined genetic algorithms with response surfacemethodologyrdquo Journal of Theoretical and Applied InformationTechnology vol 77 no 2 pp 235ndash253 2015

[10] D A H Hanaor G Triani and C C Sorrell ldquoMorphology andphotocatalytic activity of highly oriented mixed phase titaniumdioxide thin filmsrdquo Surface and Coatings Technology vol 205no 12 pp 3658ndash3664 2011

[11] T Mehmood A Kaynak X J Dai et al ldquoStudy of oxygenplasma pre-treatment of polyester fabric for improved polypyr-role adhesionrdquoMaterials Chemistry and Physics vol 143 no 2pp 668ndash675 2014

[12] ADukM Schmidbauer and J Schwarzkopf ldquoAnisotropic one-dimensional domain pattern in NaNbO3 epitaxial thin filmsgrown on (110) TbScO3rdquo Applied Physics Letters vol 102 no 9Article ID 091903 2013

[13] K Khojier M R Mehr and H Savaloni ldquoAnnealing temper-ature effect on the mechanical and tribological properties ofmolybdenum nitride thin filmsrdquo Journal of Nanostructure inChemistry vol 3 no 1 article no 5 2013

[14] R F Kwasnick G E Possin D E T L Holden and R JSaia ldquoThin film transistor stucture with improved sourcedraincontactsrdquo 1996

[15] M A Mohamed M A Azam E Shikoh and A FujiwaraldquoFabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with differentcoercivitiesrdquo Japanese Journal of Applied Physics vol 49 no 2Article ID 02BD08 2010

[16] R Latif E Mastropaolo A Bunting et al ldquoMicroelectrome-chanical systems for biomimetical applicationsrdquo Journal ofVacuum Science and Technology BNanotechnology and Micro-electronics vol 28 no 6 2010

[17] S Lee J Y Kim T-W Lee et al ldquoFabrication of high-qualitysingle-crystal cu thin films using radio-frequency sputteringrdquoScientific Reports vol 4 article 6230 2014

[18] J H Scofield A Duda D Albin B L Ballard and P KPredecki ldquoSputtered molybdenum bilayer back contact forcopper indium diselenide-based polycrystalline thin-film solarcellsrdquoThin Solid Films vol 260 no 1 pp 26ndash31 1995

[19] G Gordillo M Grizalez and L C Hernandez ldquoStructural andelectrical properties of DC sputtered molybdenum filmsrdquo SolarEnergy Materials and Solar Cells vol 51 no 3-4 pp 327ndash3371998

[20] F Martin P Muralt and M-A Dubois ldquoProcess optimiza-tion for the sputter deposition of molybdenum thin films aselectrode for AlN thin filmsrdquo Journal of Vacuum Science andTechnology A Vacuum Surfaces and Films vol 24 no 4 pp946ndash952 2006

[21] Z-H Li E-S Cho and S J Kwon ldquoMolybdenum thin filmdeposited by in-line DCmagnetron sputtering as a back contact

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 10: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

10 Journal of Nanotechnology

for Cu(InGa)Se2 solar cellsrdquo Applied Surface Science vol 257no 22 pp 9682ndash9688 2011

[22] T Lyubenova D Fraga A Rey R Marti S Kozhukarov and JCarda ldquoElectrical andMorphological study ofMo thin films forsolar cell applicationsrdquo Rousse University ldquoAngel Kanchevrdquo vol52 pp 11ndash15 2013

[23] N Kumari A K Singh and P K Barhai ldquoStudy of propertiesof AlN thin films deposited by reactive magnetron sputteringrdquoInternational Journal of Thin Films Science and Technology vol3 no 2 pp 43ndash49 2014

[24] K R Nagabhushana B N Lakshminarasappa K NarasimhaRao F Singh and I Sulania ldquoAFM and photoluminescencestudies of swift heavy ion induced nanostructured aluminumoxide thin filmsrdquo Nuclear Instruments and Methods in PhysicsResearch Section B Beam Interactions with Materials andAtoms vol 266 no 7 pp 1049ndash1054 2008

[25] D Nesheva A Petrova S Stavrev Z Levi and Z AnevaldquoThin film semiconductor nanomaterials and nanostructuresprepared by physical vapour deposition an atomic forcemicroscopy studyrdquo Journal of Physics and Chemistry of Solidsvol 68 no 5-6 pp 675ndash680 2007

[26] A Heredia C C Bui U Suter P Young and T E SchafferldquoAFM combines functional and morphological analysis ofperipheral myelinated and demyelinated nerve fibersrdquo Neu-roImage vol 37 no 4 pp 1218ndash1226 2007

[27] D Marchetto A Rota L Calabri G C Gazzadi C Menozziand S Valeri ldquoAFM investigation of tribological properties ofnano-patterned silicon surfacerdquoWear vol 265 no 5-6 pp 577ndash582 2008

[28] N Jalili and K Laxminarayana ldquoA review of atomic forcemicroscopy imaging systems application to molecular metrol-ogy and biological sciencesrdquo Mechatronics vol 14 no 8 pp907ndash945 2004

[29] M Kwoka L Ottaviano and J Szuber ldquoAFM study of thesurface morphology of L-CVD SnO2 thin filmsrdquo Thin SolidFilms vol 515 no 23 pp 8328ndash8331 2007

[30] Y Strausser Characterization in Silicon Processing Elsevier2013

[31] B Bhushan ldquoSurface Roughness Analysis and MeasurementTechniquesrdquo inModern Tribology Handbook CRC Press 2000

[32] B Rajesh Kumar and T Subba Rao ldquoAFM studies on surfacemorphology topography and texture of nanostructured zincaluminum oxide thin filmsrdquo Digest Journal of Nanomaterialsand Biostructures vol 7 no 4 pp 1881ndash1889 2012

[33] D Raoufi A Kiasatpour H R Fallah and A S H RozatianldquoSurface characterization and microstructure of ITO thin filmsat different annealing temperaturesrdquo Applied Surface Sciencevol 253 no 23 pp 9085ndash9090 2007

[34] H Ward Profile Characterization Rough Surfaces Edited by TR Thomas Longman London UK 1982

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials

Page 11: Deposition and Characterization of Molybdenum …downloads.hindawi.com/journals/jnt/2017/4862087.pdfDeposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron

Submit your manuscripts athttpswwwhindawicom

ScientificaHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CorrosionInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Polymer ScienceInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CeramicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CompositesJournal of

NanoparticlesJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Biomaterials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

NanoscienceJournal of

TextilesHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Journal of

NanotechnologyHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

CrystallographyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CoatingsJournal of

Advances in

Materials Science and EngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Smart Materials Research

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MetallurgyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

MaterialsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Nano

materials

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal ofNanomaterials