depth profiling with low-energy nuclear resonances

19
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PI Ruhr-University of Bochum first some information about: Experimental background – the lab in Bochum Scientific background – Ion Beam Analysis and Nuclear Astrophysics

Upload: faye

Post on 12-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

first some information about: Experimental background – the lab in Bochum Scientific background – Ion Beam Analysis and Nuclear Astrophysics. Depth Profiling with Low-Energy Nuclear Resonances. Ruhr-University of Bochum. H.-W. Becker, IAEA May 2011 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Depth Profiling with Low-Energy Nuclear Resonances

Depth Profiling

with Low-Energy Nuclear Resonances

H.-W. Becker, IAEA May 2011CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE)

Ruhr-University of Bochum

first some information about:

Experimental background – the lab in Bochum

Scientific background – Ion Beam Analysis and Nuclear Astrophysics

Page 2: Depth Profiling with Low-Energy Nuclear Resonances

The Lab in Bochum

Ruhr-Uni-Bochum4 MV Dynamitron Tandem

500 keV – open air – single ended

100 kV – Implanter (not shown)

Page 3: Depth Profiling with Low-Energy Nuclear Resonances

The NRRA set-up in BochumP = 2x10-9 mbar

The 4 summing crystal12x12 inch NaI(TL) with borehole

high efficiency( 50% photopeak efficiency at 2 MeV)

integrating over angular distributions

summing cascades into one peak

Page 4: Depth Profiling with Low-Energy Nuclear Resonances
Page 5: Depth Profiling with Low-Energy Nuclear Resonances

Ion Beam Analysis and Nuclear Astrophysics

Page 6: Depth Profiling with Low-Energy Nuclear Resonances

Nuclear Resonance Reaction Analysis example 15p12C

6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 710-1

100

101

102

103

104

105

E = ER

0 2 4 6 8 10 12

0

100

200

300

400

500

600

700

Beam Energy = 6.446 MeV

Co

un

ts

Gamma Ray Energy (MeV)

E > ER

samplee

Detektor

E = ERE > ER

sample 100.28

0

1000

2000

3000

4000

5000

6000

6.300 6.350 6.400 6.450 6.500 6.550 6.600 6.650 6.700 6.750 6.800 6.850

energy [MeV]

co

un

ts

Strahlenergie [MeV]

Wirk

un

gsq

ue

rsch

nitt

[re

l.]

detector resolution for identifing the -ray only

Page 7: Depth Profiling with Low-Energy Nuclear Resonances

6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 710-1

100

101

102

103

104

105

What determines the depth resolution in NRRA ?

samplebeam

sample 100.28

0

1000

2000

3000

4000

5000

6000

6.300 6.350 6.400 6.450 6.500 6.550 6.600 6.650 6.700 6.750 6.800 6.850

energy [MeV]

co

un

ts

1.) resonance width Γ2.) beam energy resolution ΔEbeam

3.) Doppler broadening ΔED

stopping powerandtotal energy resolution:

Page 8: Depth Profiling with Low-Energy Nuclear Resonances

to get a feeling: 1nm requires 70 eV resolution at 400 keV

total energy resolution:

1.) resonance width Γ2.) beam energy resolution ΔEbeam

3.) Doppler broadening ΔED

by tilting the sample sub-nm resolution possible

t

ppD m

FTkEm2ln4E

e.g. for Si ~ 70 eV at room temperature

stopping power for protons

0

20

40

60

80

100

120

140

160

180

1 10 100 1000 10000 100000

proton energy [keV]

keV

/ µ

m Silicon

Carbon

stopping power:

Page 9: Depth Profiling with Low-Energy Nuclear Resonances

The 500 kV machine in Bochum:

0

500

1000

1500

2000

2500

3000

3500

4000

4500

415.8 416 416.2 416.4 416.6 416.8 417 417.2

proton energy

yiel

d

Lewis-peak

total resolution eV(mainly Doppler broadening)HV – ripple 30-40 eV

1 nm

Ep = 417 keVResonanz in 29Si

stability test

50

100

150

200

250

300

0 10 20 30 40 50 60 70

time [min]

gam

ma y

ield

at

50

% p

oin

t

20 eVstability:

Page 10: Depth Profiling with Low-Energy Nuclear Resonances

The ultimate resolution:

Phys. Rev. B 58 1103 (1998)

21Ne(p,)22Na, Ep = 272 keV Resonance

21Ne solid target (at 8 K !)

resonance width 1 eVbeam resolution 10 eVDopplerbroadening 17 eV

normal thick target yield

Lewis peak

Page 11: Depth Profiling with Low-Energy Nuclear Resonances

Nuclear Resonance Reaction Analysiswith Proton Induced Low Energy Resonances

0,0001 0,001 0,01 0,1 1 10 100

18O(p,a)11B(p,3a)24Mg(p,g)27Al(p,g)

21Ne(p,g)14N(p,g)

26Mg(p,g)27Al(p,g)

23Na(p,g)25Mg(p,g)29Si(p,g)27Al(p,g)

26Mg(p,g)19F(p,ag)28Si(p,g)

25Mg(p,g)27Al(p,g)29Si(p,g)

24Mg(p,g)15N(p,ag)25Mg(p,g)27Al(p,g)13C(p,g)

26Mg(p,g)

resonance strength ( *abundance)

some proton induced resonances between 150 keV and 500 keV:

Page 12: Depth Profiling with Low-Energy Nuclear Resonances

One example – Diffusion studies in Olivin(making use of the isotope sensitivity of NRRA)

There is a correlationbetween diffusionand plastic flow

mechanical properties

microscopic properties

Knowledge of the diffusion parameters necessary !

pinning down temperature, pressure and time-scales from observation

Motivation:

Page 13: Depth Profiling with Low-Energy Nuclear Resonances

100 m

100000 years

BA AB

ExperimentNatur

BA AB

e.g.: A + B -> AB

~ 8 days 10 nm

Measurement of diffusion processes in the laboratory:

kT

QDD exp0

time scale

temperature scale

Chemical potentialproduction of layerswith well defined stoichiometry

, Q = activation energy

Page 14: Depth Profiling with Low-Energy Nuclear Resonances

Investigation of Si diffusion in Olivin

nativesample

artificial Olivin layerenriched in 29Si(PLD)

Olivin(Fe,Mg)2SiO4

Testfall: Si Diffusion in Olivin

(Diffusionskonstanten aus SIMS Messungen bekannt)

R. Dohmen, S. Chakraborty, H.-W. Becker Geophys. Res. Lett. 29 (2002) 261-264

Page 15: Depth Profiling with Low-Energy Nuclear Resonances

results:

-50

50

150

250

350

450

550

650

750

850

950

410 415 420 425 430 435 440

proton energy [keV]

gam

ma

yiel

d

diffusion constant in good agreementwith our earlier data

reference layer, ~ 35 nm dick

first temperature process

second temperature process

40 20 0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

1.2

dis tanc e from the surface (nm )

norm

aliz

ed c

once

ntar

tion

1 .15442

0.05

B j

ampi 0 83

650 83

initialj 0 83

750 83

Dliter

150hr 20

0

xj ampi 1 hr 15 initialj 1 hr y liter

depth [nm]

conc

entr

atio

n

Page 16: Depth Profiling with Low-Energy Nuclear Resonances

Handbook of Modern Ion Beam Material Analysis (1995)

information appears to be poor ….

Page 17: Depth Profiling with Low-Energy Nuclear Resonances

but lot of data are available from Nuclear Astrophysicsand increasingly from Material sciencea first attempt to collect the data (~ 1995)

Page 18: Depth Profiling with Low-Energy Nuclear Resonances

… but a lot of data available and still coming

It would be nice to evaluate, extract and bring in a comprehensive form for material analysis:

• The reaction and the abundance of the isotope

• Resonance energy ER

• Q-value or excitation energy• Resonance strength or cross section • Resonance width • Non resonant cross section, next resonance - ray energies, plots of spectra would be useful• Meaning of the values for practical purposes

Page 19: Depth Profiling with Low-Energy Nuclear Resonances

summary:

• Nuclear Reaction Analysis with low energy resonances can be a powerfull tool for depth profiling in the nm range

• There are quite a few reonances between 150 kV und 500 kV offering various opportunities for applications

• Sensitivity for isotopes offers special applications

• Probably most if not all necessary data are available

• Data evaluation collection and translation into material science lenguage desirable …