developmentsin the control of fine particulate.pdf

38
Developments in the control of fine  particulate air emissions* K. DARCOVICH, K.A.JONASSON andC.E.CAPES** Institute for Chemical Process andEnvironmental Technology,  National Research Council of Canada, Ottawa, Ontario, KIA OR6 Canada Received 21October 1996; accepted 26  November 1996 Abstract-A comprehensive review of emerging technologies and recent developments inair  pollution control equipment and  processes specifically addressing  particulate removal is  provided here. Emphasis is  placed on approaches with a high degree of novelty and/or involving new modifications to conventional systems. Some emerging areas, such as waste incineration, have  produced new  particulate matter control needs which will  be discussed. The subject and key  problem areas are introduced, followed  by a  brief description of the various  particle capture mechanisms and the  principal technology groups which exploit these mechanisms to achieve  particle capture. More details are then given for specific innovative  projects, organized  principally  by technology, as well as  by industry sector. Finally, alternatives to end-of-pipe treatment strategies arediscussed. Anextensive list of references is included, representative ofa thorough literature survey. 1.INTRODUCTION Inthe 1970s, it became widely recognized thatfine  particles from industrial  pro- cesses andautomobiles hada significantly more negative environmental impact than the relatively large  particles of windblown dust regulated  by the US Enviromental Protection Agency (EPA) as'total suspended  particulate matter' (TSP). In terms of air  pollution control,  particles with aerodynamic diameters less than10 ¡Lm, referred toas PM10, have  been targetted forremoval. Studies inCanada andtheUS have typically identified sources suchas fugitive dust, construction, agriculture andfuel combustion asthemain contributors toPM10 loadings. At  present in the US, PM10 isa guideline used forair quality standards. Pressure has  been  building to tighten thestandard toPM2.5. With  particles inthisfiner size fraction, impacts onhuman health aremore  pronounced due to anincreased relative toxics concentration, as well as ready respirability. *NRCC  No. 37624. **To whom correspondence should  be addressed.

Upload: umanath-r-poojary

Post on 14-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 1/37

Developmentsin the control of fine particulateair emissions*

K.DARCOVICH,K.A.JONASSONandC.E.CAPES**Institutefor ChemicalProcessandEnvironmentalTechnology, NationalResearchCouncilof Canada,Ottawa,Ontario,KIAOR6CanadaReceived21October 1996;accepted26 November 1996

Abstract-Acomprehensivereviewof emergingtechnologiesandrecentdevelopmentsinair  pollutioncontrolequipmentand processesspecificallyaddressing particulateremovalis providedhere.Emphasisis

 placedonapproacheswithahighdegreeof noveltyand/or involvingnewmodificationstoconventionalsystems.Someemergingareas,suchaswasteincineration,have producednew particulatematter controlneedswhichwill bediscussed.Thesubjectandkey problemareasareintroduced,followed bya brief descriptionof thevarious particlecapturemechanismsandthe principaltechnologygroupswhichexploitthesemechanismstoachieve particlecapture.Moredetailsarethengivenfor specificinnovative projects,organized principally bytechnology,aswellas byindustrysector.Finally,alternativestoend-of-pipetreatmentstrategiesarediscussed.Anextensivelistof referencesisincluded,representativeof athoroughliteraturesurvey.

1.INTRODUCTIONIn the1970s,it becamewidelyrecognizedthatfine particlesfromindustrial pro-cessesandautomobileshadasignificantlymorenegativeenvironmentalimpactthantherelativelylarge particlesof windblowndustregulated bytheUSEnviromentalProtectionAgency(EPA)as 'totalsuspended particulatematter'(TSP).Intermsof air  pollutioncontrol, particleswithaerodynamicdiameterslessthan10¡Lm,referredto asPM10,have beentargettedfor removal.StudiesinCanadaandtheUShavetypicallyidentifiedsourcessuchasfugitivedust,construction,agricultureandfuelcombustionasthemaincontributorstoPM10loadings.At presentintheUS,PM10is aguidelineusedfor air qualitystandards.Pressurehas been buildingtotightenthestandardtoPM2.5.With particlesinthisfiner sizefraction,impactsonhumanhealtharemore pronouncedduetoanincreasedrelativetoxicsconcentration,aswellasreadyrespirability.

*NRCC No.37624.**Towhomcorrespondenceshould beaddressed.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 2/37

180

Advancedfine particleremovaltechnologiesareconsideredto beendof  pipesys-temscapableof treatingPM10(or evenPM2.5)materialto producegasstreamemis-sionsincompliancewithair qualitystandards,andwithsomemarginto beeffectiveunder 

tighter anticipatedfuture

regulations.Emission

 preventionstrategiesarealso

included.In1990theUSEPA produceda listof 189HazardousAir Pollutants(HAPs)under theCleanAir ActAmendments.ThisActidentifiesspecificchemicalelementsandcompoundsas harmfulto healthandenvironment,and placesrestrictionsonthe permissibleemissionslevels.Thecontrolof HAPsimpacts particulateremoval

 practiceinthatsomeHAPsarereleasedin solidform(mostlymetals),or in thecaseof somevolatileorganiccompounds(VOCs),areadsorbedonto particulatesalso

 presentintheemissionstream.Theremovalof  particles(liquids,solidsor mixtures)fromagasstreamrequirestheir 

depositionandattachmenttoa surface.Thesurfacemay becontinuous,suchasthewallandconeof acycloneor thecollection platesof anelectrostatic precipitator,or thesurfacemay bediscontinuoussuchasspraywater dropletsinascrubbingtower.Oncedepositedona surface,a meansmust be providedto removethecollected

 particlescontinuouslyor atintervalswithoutappreciablereentrainmentintothegasstream.

Themagnitudeof theforcetomovea particletowardacollectingsurfaceisinflu-encedmarkedly bythesizeandshapeof the particle.Gravitysettlingwill beefficientonlyonlarge particles;40-50/-tmis thelower limitof effectiveness.Flowline

interceptionandinertialimpactionwill beeffectiveon particlesdownto2-3¡Lm.Diffusionaldepositionandthermal precipitation becomeincreasinglyefficientwithdecreasein particlesizeandarehighlyefficienton particlessmaller than0.2itm.Electrostaticforcesarethestrongestforcesthatcanactonfine particles(looselydefinedas particlessmaller than2-3um).

Controlequipmentfor  particulatesfallintofivegeneralclasses,i.e.gravity/inertialsettlers;centrifugalseparators(cyclones);electrostatic precipitators;fabric, packed

 bedor rigid barrier filters;andwetscrubbers.Suchequipmentmust bematchedtothe particlecharacteristicsaswellas variablessuchasflowrate,temperatureand

requiredremovalefficiency.It is wellrecognizedthatnouniversal particleremovalmethodexistswhichwillsatisfyall problemsandconditions.Thechoiceis often basedonacompromise betweentechnicalandeconomicfactors.

This presentreviewstemsfrom participationin a techno-economicassessmentof emergingair  pollutioncontroltechnologies[1].Other overviewsof thefieldof fine

 particleremovaltechnologyareavailableina number of monographshavingvarious perspectives[2-7].

Thisarticlefirst presentsa brief overviewof  particleremovalmechanisms,thenasummaryof thegenerictechnologygroupsthathave beendevelopedtoexploitthese

mechanisms.The bulk of thereviewwillthenfocusonspecificnoveltechnologies, processesandfundamentalmechanismsthathave beenidentifiedfromanextensiveliteraturesurveyonthesubject.Theemphasiswill betohighlightinnovative pre-commercialsystemsaswellasrecentresearchfindingswith potentialapplicationtoadvancedfine particleremovaltechnologies.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 3/37

181

1. I.Particleremovalmechanisms

1.1.1.Sieving.Whena gasstreamcontaining particulatematter  passesthrougha collectiondevice(typicallya screen)wherethegaps betweenthecollectorsaresmaller thanthe particledimension,thesolidis retainedonthe barrier.Generally,thismechanismis bestsuitedfor larger  particlesandisnotcommonfor industrialgascleaning.

1.1.2.Gravitysettling.All particlesaresubjecttogravityandwillattaina terminalsettlingvelocityunder quiescentconditions.Brownianmotion,thermal,turbulentandconvectiveforcesmayactonverysmall particlesto stabilizetheir suspension

inair.Generally,however,a netdownwardmotionwillarisefor  particleslarger than5ttm.Thecollector may befibrous,agranular  bedor simplythefloor of asettlingchamber.Gravitysettlingis nota commonfine particulatematter removalmechanism.

1.1.3.Inertialimpaction.Larger  particlesina gasstreamwill possessenoughmomentumtodeviatefromthefluidstreamlinesandcollidewithacollectingobstacleintheir  path.These particlesareseparated byimpaction.Collectionefficiencyisenhanced bylarger  particlediameter or conversely,a smaller collector dimension

thatwillenhancecontact.Certaintypesof fibrefilters, packed beds,spraysystems,impingingstreamcollectorsandcyclonesemploythisremovalmechanism.

1.1.4.Interception.A particle beingcarried byafluidmayexperienceagrazingcollisionwithacollector,whichis knownasinterception.Thismechanismdiffersfromimpactioninthesensethatthe particledoesnotactuallyneedtodepartfromthefluidstreamlinetocontactthecollector.Thenatureof thefluidflowislessimportantfor thismechanism.Interceptionandimpactionmayoperatesimultaneously,althoughthelatter  becomesdominantat

higher gasvelocities.Internal

tortuosityina filter 

mediumwillcausenumerousgasstreamdirectionchangesandwillincreasethe probabilitythatinterceptionor impactionwouldoccur.

Collectionefficiencygenerallyincreaseswithincreasing particletocollector sizeratio.Examplesincludethecollectionof  particlesinfibrousor granular filter media.

1.1.5.Diffusion.Concentrationgradientsof  particlesin agaseousmediumwillinducemigrationof  particulatematter toregionsof lower localconcentration.Thegas phase particleconcentrationnexttocollector surfacesisnormallysmall,sothat

thereisusuallya diffusionalforceactingonthe particlestocausethemtoapproachthecollector.Smallgas phasevelocitiesand particlediametersenhancecollection bythismechanism.Alargecollector surfaceareaisnormallyrequiredfor separationsto beeffectedinthisway.Fibrousandgranular mediaandsmallliquiddropletscanremove particulatematter  bythismechanism.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 4/37

182

1.1.6.Electrostatics.Inherently, particulatematter will possesssomedegreeof surfaceelectricalcharge.Variouswaysof conditioningthefeedstreamcanenhancethischarging.Anexternallyimposedelectricalfieldwillapplya forceonchargedmatter andwillsetit in motiontowardsa collector of 

oppositeelectrical

charge.Electrostaticcollectionisimproved byincreasingthemagnitudeof theelectricalattraction,decreasing particlesizeanddecreasingtheflowrateof thegasstream.Electrostatic precipitatorsareatechnologyemployingthiscapturemechanism.The

 performanceof other typesof collectorssuchasfabricfiltersandsomescrubbersisenhancedwithelectrostaticcharging.

1.1.7.Other mechanisms.Other  phenomenaexistwhichcannot beusedaloneascapturemechanisms, butknowledgeof their effectsis constructiveindesigningadvancedfine

 particleremoval

equipment.Particlessuspendedinagasareknowntodescendthermalgradients,havingatendencytomovetowardscoldsurfacesor awayfromhotsurfaces.Thisis knownasthermophoresis.Basically,a coldcollectionsystemwillenhance particleremovalfroma hotgasstream.Ina parallelfashion,anyspeciesof gasdiffusingwithina carrier streamwillinduce

a flux.For example, particleswouldgenerally becarriedtowarda surfacewherecondensationisoccurringandawayfroma surfacewhereevaporationisoccurring.

1.1.8.Generalremovalmechanismconsiderations.Whileallof theabove particle

removalmechanismscanactatthesametime,theyhavemoremarkedeffectsfor specific particlesizes.Figure1showsschematicallytheeffectof  particlediameter ontheefficiencyof thevariouscapturemechanisms[8].It can beseenherethatif thecontributionsof thevariousmechanismsaresummed,thereexistsa particlediameter 

Figure1.Relativeextentof  particulateremovalmechanismsasafunctionof diameter.Adaptedfrom[8].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 5/37

183

for whichthe particulatematter removalis leastefficient.Ingeneral,allowingfor variationsinthematerialof whichthe particulatematter iscomposed,thediameter rangeof 0.2-2ttm presentsthemostdifficultyfor air  pollutioncontrolequipment.

InFig.1,theremovalefficiencyonthey-axisisdefinedastheratioof the particulatematter concentrationinthegasstreamenteringasystemtothatleavingit.

1.1.9.Additionalconsiderations.Inadditiontothetechnologiessummarizedabove,therearea fewmoretechnicaloptionstoconsider for theremovalof airborne partic-ulatematter.Processcontrolequipmentcan beusedtooptimizethe performanceof almostalltypesof existingequipment.

Changescan bemadeto processeswhichgenerate particulateemissions.For exam- ple,cleaner  burningfuelsor combustor temperaturecontrolscansignificantlyreduce

theamountof  particulatematter createdandcarried byfluegases,therebymakingitsremovallessdifficult.Modellingof unit performancecanalso be beneficial.Anunderstandingof how

alltherelevantvariablesinteractcan pointtosystemmodificationswhichenhance particulatematter removalfromgasstreams.Areviewandanalysisof various perfor-mancemodelsfor filtersandelectronicair cleanerswasdone byLawlessetal.[10].Computationalfluiddynamic(CFD)simulationshaverecently beenmadetoevaluatedustladengasstreamtwo-phaseflow patternsinsideair  pollutioncontrolequipment[11, 12].

2.RECENTADVANCESINUNITOPERATIONSFOR AIRBORNEPARTICULATECONTROL

Described belowarethevariousconventionaltechnologiesthathave beendevelopedtoremove particulatematter fromgasstreams.Thecapturemechanismsdescribed

 previouslyareexploitedintheseunitsor  processes.Eachunitoperationwill betreatedin itsownsection.Theywill beintroduced

withagenericdescription

of the process

andequipment.

Thisisthenfollowed by

adiscussionof specificrecentinnovationsandtechnologydevelopments.Theemphasisinthissectionis onthedesignandoperationof the physicalequipment.Section3discusses particulateemissioncontrolfroma process perspective.

Figure2 is agraphicalguideline,mappinga suggestedtreatmentmethodfor a particle-ladengasstreamdefined byadesired particulateremovallevelandoperat-ingfiltrationvelocity[3].Thereis aroughmonotoniccorrespondence betweenthefiltrationefficiencyandthe pressuredropacrossthefilter for agivenflux.

2.1.CyclonesThegeneral principleof inertialseparationisthatthe particulateladengasisforcedto

changedirection.Asthegaschangesdirection,theinertiaof the particlescausesthemtocontinueintheoriginaldirectionand beseparatedfromthegasstream,exploitingtheinertialseparationmechanism.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 6/37

184

Figure2.Unitoperationmapfor airborne particulatetreatment,with parametersof filtrationefficiencyandfiltrationvelocity.Adaptedfrom[3].

Cyclones,wherethegasisforcedtospinina vortexthroughatube,arethemostcommontypesof inertialseparators.Atypicalcycloneconfigurationis showninFig.3.

Inertialseparatorsarewidelyusedfor thecollectionof medium-sizedandcoarse particles.Their relativelysimpleconstruction,low pressuredropsandabsenceof moving partsmeanthat boththecapitalandthemaintenancecostsarelower than

for alternativemethods.Ingeneral,however,cycloneefficiencydropsif thefinescontentof the particulatematter issignificant.Theyaretypicallyusedas precleanersupstreamof other devicestoreduce particulateloadingsandtoremovelarger,abrasive

 particles.Conventionalcycloneseparatorsareseldomcapableof thenecessaryremovaleffi-

cienciesfor anentire particlesizerangeof anindustrialgascleaningapplicationunder  presentPM10guidelines,if designedaccordingtostandardelementarycyclonetheo-ry[13].Thedeviation between predictionand performancearisesfromthe presenceof secondarycurrentswithinthecyclone body,whichdisturbthe predicted process

of separation.Primaryflowcharacter can berestored byattentionto thedetaileddesignof thecyclone,includingthegeometryof theseparationchamber,the positionof openings,useof flowguideswithinthecyclone,thedimensionsandthegeometryof thehopper, bleedingand bypassingof thegas,useof multicyclones,andmeansfor dustagglomeration.Alternatively,a 'duststrand'cyclonecan bedesigned,exploiting

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 7/37

185

Figure3.Simplifiedschematicof acyclone.

thesecondaryflows(Deanvortices)whichattainhigher localsolidsconcentration,enhancing particleremoval[14].Someinnovativemodificationshave beenmadetoconventionalcycloneunits.The

applicationof anexternalelectricfieldtoacycloneunitfilteringlowresistivitysilicaroughlydoubledthecollectionefficiencyof  particleslessthan5Amindiameter atlowflowrates[15].Built-in particulatematter removalcapabilitywasconsideredwiththedesignof acyclonicsuspensioncombustor for the burningof  pulverizedcoalor coal-water slurry[16].Cyclonicseparatorsarealso beingconsideredasdieselsootcollectors.Aunitdesigned byKudosCorp.intheUK involvesspinningagasthrough

a tubewhilealsospinningthetubeitself,toseparate particlesdownto0.11 /,Lm.Thissystemexploitssecondaryflows(Rankinevortices)andoperatesatrotationratesof 60000r.p.m.[17].It hasyetto befieldtested.Acompetingsystemmakesuseof a sprayelectrodewhichcharges(presumably,neutralizes) particlessothattheyagglomerateandarecaptured byacyclone.Between75and90%of the particulateemissions,downtodiametersof about0.6>m,werecaptured bythissystemduringtestswithaPeugeotdieselengine[18].

2.2.Electrostatic precipitators(ESPS)

ESPisa particlecontroldevicethatuseselectricalforcestomove particlesoutof theflowinggasstreamandontocollector  plates.The particlesaregivenanelectriccharge byforcingthemto passthroughacorona,aregioninwhichgaseousionsflow.Theelectricalfieldthatattractsthecharged particlestothewallscomesfromelectrodesmaintainedathighvoltagein thecenter of theflowchannel.Thisarrangement

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 8/37

186

is shownschematicallyinFig.4. Chapter 10of [4]containsa number of goodillustrationsshowingtheconstructionandconfigurationof entireESPunits.

Oncethe particlesarecollected,theymust beremovedfromthe plateswithout

anyappreciablereentrainmentintothe

gasstream.Thisis

usuallyaccomplished byknockingthemloosefromthe plates,allowingthecollectedlayer of  particlestoslidedownintoahopper.Some precipitatorsremovethe particles byintermittentor continuouswashingwithwater.

ESPshaveenjoyedverywidespreadusefor fine particulatematter removalappli-cations.Theyareamature,establishedtechnologyandthemovefor innovationintheESPareaappearssomewhatlessurgentthanelsewhere. Nevertheless,thereisstillsignificantandinterestingactivityfor updatingESPtechnologyfor theimprovedcollectionof ultrafine particulates.Quiteextensivereportingonrecentwork appears

regularly[19, 20].Inviewof the presentlargenumber of ESPinstallations,aconsiderablemarketexistsfor retrofitopportunities.Thetighteningof emissionsstandardsfor S02and NOxandsub-100 >m particulatematter mayimpactonthecapabilitiesof theESPinfrastructure.Anoverviewof someof theissuesfacingtheESPuser community,andanintroductionto someof the basictypesof retrofitoptionswasgiven byOffenandAltman[21].Beyondtheneedtoconditionthefluegas,typicalupgradeoptionsincludeenlargingtheESP,sectionalizingtheESP(dividingfluegas passagesintoagreater number of segmentswhichcanindividually beoperatedatmoreoptimumlevels),spacingthe

collector  platesfurther apart,implementing processcontroland/or improvedrappingandcollectionequipment[22].Twoindependentstudies,focussingonthetechno-economicsof ESPusefoundthatwiththeincreasinguseof high-resistivitycoals,ESPscannotcompetewith pulse-jetfabricfilter systemswhen particulateemissionsregulationsallowonly0.01lb/MBtu[23,24].

Figure4.Schematicof atypicalelectrodeandcollector arrangementfoundinsideanelectrostatic pre-cipitator.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 9/37

187

Anumber of recent papersdetailspecific physicalmodificationstoESPstohandlehigh-resistivityflyash.CasestudiesarediscussedwhereexistingESPinstallationswererebuilttohouselarge plateheightsandwider  platespacings[25].TheESPcan

 be placed

downstreamof anon-leaking,high

dustloadgas-gas

heater (withwater astheheatexchangemedium)toreducethegastemperaturethroughtheESPtothe90-100°Crangerather thantheconventional130-140°Crange[26].Pilottesting

hasshownthatthedecreasedtemperaturedecreasestheelectricalresistivityof thedust,improvingcollectionefficiency.Hitachihasintroducedtwonewconfigurationsfor ESPs[27].ThemovingelectrodeESPhasthe platessectionedintoshort panelsthatcirculatelikea verticalconveyor  belt.Thedustis collected byrotating brushesinahopper zonewherenogasflowsand particulatematter reentrainmentisminimal.Theyhavealsodevelopeda 'saw-edged'wirethatshowssuperior staticdischargecharacteristics,usefulfor 

rapidlychargingsubmicron

 particulatematter whichismore

abundantwhenthe boiler fuelis oilinsteadof coal.Operatingexperiencewithintermittentenergizationof theESPtosuppress back coronaandthusincreaseESPefficiencyfor thecaptureof high-resistivity particulatematter wasreported[28,29].Exampleswerecitedongasstreamtreatmentfromcoal-fired boilers,oil-fired boilers,Kraft pulp boilersandiron-oresintering plants.

Anoveltwo-stageESPwithanelectrostaticagglomerator  betweenthestageshas beentestedatthelaboratoryscale[30].AquadrupoleACelectricfieldisappliedtotheremainingfinesafter thefirstESPstage,inducingoscillatorymotionandelectrical

 polarization,whichhave beenshowntoincreasesubmicronmeandiameters by400%andincreasecollectionefficiencyfrom95to98%.Asystemhas beendesignedwithflowdiversionduringrappingtominimizefinesentrainment[31].Costestimatesfor thistechnologyshowthatthistechnique provides benefitsfor emissionslimits

 below50mg/Nm3.Specialhorizontalstripcollectorswithout baffleshave beenshownto increaseESP performanceonlargeinstallations[32].Seoul-Sharp-CEDhasdevelopedwhattheyterma 'SUPER-ESP'[33].Byseparatingthechargingandcollectingfunctions, bothstepscan bedoneindependentlyina moreconsistentandoptimizedway.Ahigh particlechargecan beimpartedfor anylevelof resistivity,andthenthese particlescan besubjectedtotheappropriateelectricfieldfor collection.Thetemperaturecan becontrolledintheseparatechargingareatomodifytheresistivity.Insteadof anESPwithseverallongconventionalsections,a smaller ESPresultsfromthisconfigurationwhena number of chargingandshortcollector  pairsareused.For low-resistivity particulatematter thisdesigncan provideaunitaboutone-thirdthe

 physicalsizeof aconventionalESPandthesizeisfurther reducedto one-sixthfor high-resistivity particulatematter.

Theelectricalnatureof  precipitatorsmakethemespeciallysuitablefor digitalcon-trol.A recentexpertsystemcontroller employingfuzzylogicallowssomeof themoredifficultoperationsto beruninamoreoptimizedfashion,suchasdiagnosingfaults,start-upandshutdownroutinesaswellascontrollingtheoperatingefficien-cy[34].Fieldtestinghasshownsignificantemissionsreductionsaswellasloweredenergyconsumption.Other typesof controllersfor spark rateandspark anticipationcan better enableexistingESPunitstohandlefluegasandflyashvariabilityin anenergyefficientmanner [35].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 10/37

188

WetESPsystemscontinueto playa keyrolefor specialized particulatematter removalapplications.For certainlower temperatureapplications(belowthedew-

 point)onlywetelectrostaticsystemscan beused.Dissolvingchemicalagentsinthewash

liquidcan

 providea meanstofixunwanted

gaseouscomponentsalongwiththe

suspended particulatematter [36].InJapan,MitsubishiHeavyIndustriesLtdhavedevelopedandtesteda 'highvelocity'wetESP,capableof workingatfaceveloci-tiesof 10m/s,therebyallowingitsinstallationwithinexisting plantconfigurationsinsomecases[37].WetESPsarewellsuitedtoapplicationssuchascoal-firedmag-netohydrodynamicsystemswherethefinescontentinthefluegasissubstantial[38].Asa retrofitoptionfor wasteincineration plants,wetESPshave beenaddedafter awetscrubber totreat particulatematter andacidgas.AunitknownastheSonicKleenwetESPsystemconsistsof a bundleof hexagonal(tosavespace)downflowtubesmadeof a

conductingsteel

alloy,whichcontaindischargeelectrodes[39].Condensed

liquidsfromthegasstreamirrigateandhelpcarry particulatestothe bottomof theunit.Variousinnovationshave beenmadeto addressspecificapplicationneeds.The

final particulatematter cleanupfromwoodfired boilersis oftendonewithESPssincetheflyashhasa lowresistivity.Rappingfor suchsystemsis of  paramountimportanceasresinsandunburnedmaterialmay be presentonthecollector surface,andanysparkingcouldcauseit toignite.Sonichornswereinstalledandtested,replacingrappersfor cleaning precipitator internalsfor woodfiredapplications[40].Emissionsof  particulatematter withsonichornrappingwereshowntohavedecreased.Anoptionalwayof treatingdieselsootis withanelectrostaticagglomerator [41].Acorona-less pipe-typeESPisusedtocollectandagglomeratedieselsoot particleswhichgrowintolarger  particlesandmay becollecteddownstreamwitha simpleinertialdevice.

Anumber of theoreticalmodelshave beendevelopedrecentlytocharacterizeESP behaviour.The performanceof existingESPscan beenhancedwithimprovedfeedstreamdistributionthroughtheir internalvolume.ACFDstudywasconductedtohelpdesigna flowdistributor for ESPsusedinthecementindustry[42].Thedesignrecommendationswereusedto bringadry-processcement plantintoregulatorycom- plianceinIndiana,USA.Ona moremicro-scale,a CFDstudywasmadeonionicwind,whichisthesecondaryflowthatdevelopsunder massconservationrequirementswhenionizedgasdriftstowardsthecollecting plate.It wasfoundthationicwindeffectsaresignificantfor superficialflowvelocitiesunder 0.6m/sanda collectionefficiencyreductionof over 10%mayoccur whenthesuperficialflowvelocityfalls

 below0.2m/s[43].Conditioningthecarrier gasoftenincreasesthefeedstreamhumidity.Theinfluenceof humidityonthechargedensityandtheelectricfieldina

 precipitator wasmodelledandsolvedwithgoodresults[44].

2.3.FabricfiltersFabricfiltersremovedustfromagasstream by passingthestreamthrougha porousfabric.Dust particlesforma porouscakeonthesurfaceof thefabric.Itisnormallythiscakethatactuallydoesthe bulk of thefiltration.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 11/37

189

Themanner inwhichthedustisremovedfromthefabricisa crucialfactor inthe performanceof a fabricfilter system,sothatfluxlossesfromexcessive pressuredropwitha thick cakeare balancedagainstdustleakageoccurringwithtoothina cake.

Fabricfilter systemsarefrequentlycalled baghouses,sincethefabricisusuallymountedincylindrical bags.Thetwomostcommon baghousedesignsarethereverse-air andthe pulse-jettypes.Thesenamesdescribetheaffiliatedfabriccleaningsystem.

Therehas beenanincreasingrecenttrendtowardsselectingfabricfiltersfor newequipmentinstallationsandupgradesinexisting plants.Improvementsinfabricfilter 

 performance,simplicityof operationandlowcapitalcosthave beenmotivatingfactors.Themostsignificantinnovationshavecomeintheareaof fabricmaterials.

Sincethelate1980s, baghouseinstallationshave beguntoappear featuring pulse-jetfabricfilters(PJFFs).Thesesystemsarequicklyreplacingconventionalreverse-gas-

cleaned baghouses(RGB),as themostwidelyusedfabricfilter unit.PJFFsarecharacterized bytheir useof  periodicshort, powerful burstsof air tocleanthe bags,allowingtheunitto beoperatedattwotothreetimesthefacevelocitiesof thereverse-gas-cleanedsystems.Ingeneraltheyexhibitimproved pressuredropcharacteristicsandcan beretrofittedintoESPcasings.SeeFig.5.

Figure5. Schematicof a pulse-jetfabricfilter  baghouse.Thefilter  bagsontheleft-handsideareshowninfiltrationmodeandthoseontheright-handsideareshowninthe pulse-jetcleaningmode.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 12/37

190

Athree-partseriesof  paperswas publishedto provideanoverviewof the per-formanceandoperatingexperienceswithPJFFsfor coal-fired boilers,aleadingap-

 plication[45-47].ExtensivedataonvariousPJFFinstallationswere provided.In

general,theseunits

operate below0.03lb/MBtu

(0.054mg/Kcal)whichistheUS

EPA particulatematter emissionsstandard.WovenfeltssuchasDralonT8,Rytonand Nomexwererecommended bagmaterials.Teflon bagshaveshownsomediffi-cultywith particulatematter collection, possiblyowingtothelargefibrediameters,despitetheir abilitytooperateinhotter andmorecorrosiveatmospheres.Part2 of theseriesreportedon pilottestsfor fossilfuelinstallations,includingoil-fired boilerswithuniformlygoodresults.Higher frequency bagcleaningwasrequiredfor highashcoals.Part3 of theseries providesaneconomiccomparisonwithESPsandRGBs.ESPscouldonlycompetewithPJFFsystemswithlow-resistivityfeeds.ComparedtoRGBs,thePJFFsystemsoffer a 10%lesslevelizedcostover a 30year  plantlifeaccordingtothisanalysis.TherearesomecommercialPJFFsystemsavailable.TheOPTIPULSEsystemfromABBisaimedatsteelmakingapplications[48].TheHosokawaMicropulsystemwasdesignedwithinletgasdiffusersto provideuniformface pressuresover thefilter  bagsurface,givinganoverallimprovementin performance[49,50].Similarly,filter cagedesignsmadefrom perforatedmetalsheet,rather thanwiremesh,subject pulse-jet

 bagstolessstressand prolongtheir lives[51].Baghousesareoftenemployedtocollect particulatematter fromsomeof thefeed

conditioning processesdiscussedinSection3.3.Filter  bagsmadefrom3M Nextel

312wovenalumina/boria/silicaceramicfibrehave beeninstalledintheSNRB pro-cessandhave beensuccessfullytestedattemperaturesupto590°CagainsttheEPAstandards[52,53].

Thefabricmaterialsthemselvesareof coursethesubjectof considerableresearch.Theextramechanicaldemands placedon pulse-jetsystemsmakeglass-basedfilter media pronetofailure.Asaconsequenceof this,therehave beennumeroussyntheticfeltsdevelopedfor someof theseapplications,suchasindustrial boilers,combustingfluidized bedsandincinerators[54].Polytetrafluoroethylene(PTFE)or Gore-Texefilter materialshave beendeveloped.Someearlywork showsthatthefavourable

PTFEsurface properties permiteasydustlayer removal,andoperationattemperaturesupto 260°C.Fine particulatematter still posesa problem,with50%escapeat0.86 jum[55].Pulpand paper  bark  boilers presentspecial problemsas thesegasstreamscancontainincandescent particles.Temperatureresistanceupto600°Cis

 providedwithBiothermicastainlesssteelfabricfilters.Afault-free4-year testwasconductedatanindustrialsitewiththismaterial[56,57].

Ona morefundamentallevel,therehave beenstudiesconductedonsomeof thedetailedfabric properties.A parametricstudywasconductedontheeffectsof yam

 processingandweavingvariablesonthefiltrationefficiencyof wovenglassfabrics.

It wasfoundthat processingconditionswhichkeeptheglassfilamentsintheyarn bundleseparated producedthe best performance[58].A number of commerciallyavailableconductivefabricshave beendesignedtoreduceelectrostaticchargeindustcollectorswhereflammabledustsare present,suchasinflour mills,woodworkingoperationsand polyvinylchloridemanufacturing[59].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 13/37

191

Analternativetothefilter  bagisthefilter 'box'or cartridgefilter.Theseunitsaremadeof stiff corrugatedfilter materials,whichcanoffer muchhigher filter surfaceareacomparedto baghousesof thesamefootprint.Manyof thetechnicalcapabilities

aresimilar to baghouses, buttheir designmakestheminherentlylesscleanable.Theyareratedfor  particulatematter loadingsof about25%of thatfor  baghouses[60].Owens-ComingFiberglashave beendevelopingavanadium/titaniumcatalystcoated

wovenglassfabricfor simultaneous NOxand particulatematter control.Over 90% N0?removalhas beenobtained, butmanyoperating parametersrequiredtoachievethisleveleconomicallyhaveyetto beresolved[61,62].

Fabricfilter systemscan beelectrostaticallyenhanced.Anearlystudyshowedthatanelectricfieldcanalter thedustdeposition patterninsidea bag,givingalower  pressuredrop[63].A number of analyticalandexperimentalinvestigationsof this

 phenomenaarereviewed

 byRaoandMurthy[64].A portableelectrostaticcartridge-typefilter hasrecently beendeveloped,for applicationssuchascookingodour controlandsmoketreatment.Over 98% particulatematter capturehas beenachievedatdiameters between0.01and1.0 however facevelocitiesmust belessthan0.1m/s[65].

2.4.WetscrubbersIntheseunits,a particleladengasstreamissubjectedto a sprayof liquidwhichcontactsandcapturesthesolidmaterial.Avarietyof geometriesanddesignsareavailablefor implementingthistechnique.Themechanismsof impaction,interceptionanddiffusionall playa rolein particulatematter captureinwetscrubbers.

Condensationscrubberscan beconsideredto bea subclassof wetscrubbers.Incondensationscrubbers,usuallysupersaturatedwater vapour is broughtintocontactwith particulatematter andliquidcondensationoccursonthesurfaceof thesolids.Thiscancreatea nucleationsitefor agglomerationwithother wetted particles.Themassof the particlesgrowsinthiswayandtheycan bemorereadilycollected byinertialimpactionor evengravitysettling.Thethermophoresismechanismis alsoexploitedincondensationscrubbers[9].

Wetscrubber technologiescontinuetoenjoyfavour for  particulatematter removal,especiallyincoal-fired power generationapplicationswherethefluegasalsocontainsS02and NOxandcan beremovedsimultaneously bythescrubbingliquid.Con-ventionalunitsincludeventuriscrubbers,mechanicallyaidedscrubbers, pump-aidedscrubbers,wetted-filter typescrubbersandtrayor sievetypescrubbers.Anoverviewof recentwork inthisfieldis providedinan NTIS bibliographicdatabase[66].SeeFig.6.

Somerecentdevelopmentsinwetscrubbingequipmentareintheareaof rotaryor centrifugaldesigns.Onesuchsystem, basedonaConfinedVortexScrubber (CVS),for 

fine particulateremovalfromcombustionfluegaseshas beendevelopedandconsistsof acylindricalvortexchamber withmultipletangentialfluegasinlets[67].Water isintroducedintothechamber andis confinedwithinthevortexchamber  bytheextremelyhighcentrifugalforcesgenerated bythegasflow.Theconfinedwater formsalayer throughwhichthefluegasis forcedto bubble,leadingtocollection

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 14/37

192

Figure6.Componentsof astandardventuriscrubber.Theoutletisoftenconnectedtoamisteliminator wherethewater andgasstreamsareseparated.efficienciesinexcessof 99.5%for fineflyashof diameter 3gmand98%for 0.3¡Lmdiameter  particles.A commercialunitknownas theRotorfilterTMmakesuseof scrubbingwater inconjunctionwitha seriesof rotatingairfoils,arrangedsothatthetwostreamscarryingtheliquidandsolid phasescontacteachother atrightangles.Inthisway, particulatecaptureoccursinrecirculationregionscreated bythechevronshapedspokes[68].Theseunitsaredesignedfor smallindustryandcanhandle

 between50and500m3gas per minute.Upwardsof 99%of  particulatesat0.25diameter can berecovered.Asystemdesignedfor the power industriesemploysa

 jet bubblereactor andvesselsmadefromfibreglassreinforced plasticstowithstandthecorrosiveelementsinthestreams[69].DownstreamfromanESP,thisscrubber 

wasabletoremoveupwardsof 90%of theescaping particulatematter whilealsoachievinggoodS02control. Newdevelopmentscontinuetooccur withventuriscrubbers.Aspecialintegrated

systemhas beendesignedwitha two-fluidnozzlewhichcan becontrolledtoenhance particleremoval,aided byimpingement platesinthevessel[70].Another suchsystem,aimedatacidgascontrolwhichscrubs particulatesaswell,isintegratedwitha steamstripper toremoveandseparatesaleableS02andVOCs[71].Amulti-stagedsystemusinga saturatedvapour chamber to aidin thenucleationof water-wettablesub-micron particulatematter canachieve99%removalat0.155 >m,withhighturbulence

contributingto particlecaptureatthescrubber walls[72].Somerecentwork has beencarriedoutontheelectrificationof wetscrubbingsys-tems.Anionizingwetscrubber has beendevelopedtoremovefine particulatematter downto0.05itm,whilesimultaneouslyremovingacidgases[73].Itsmainareaof applicationiswasteincineration.Theunitcombinesthe principlesof wetscrubbing

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 15/37

193

andelectrostatic precipitation,chargingandagglomerating particulatematter withsubsequentcollection byinertialimpactionandimageforceattractionwithinanirri-gated packed bed.Ascrubber withoppositelychargedrotating brushesdownstream

of anionizingatomizer toremove particulatematter is presentlyinthedevelopmentstage[74].Thisdesigntargets particulatematter  below5ttmdiameter,andcanoperateatcomparativelylowliquidadditionrates.Treatmentof metalfumefromahazardouswasteincinerator inanionizingwetscrubber wasinvestigated[75].Col-lectionefficienciesrangedfrom22to71%andweregenerallyhigher for lessvolatilemetals.Afundamentalstudyhasmodelledacomplexinterdependenceof theappliedfield,the particlechargeandthedirectionof thefieldrelativeto particlemotionfor electrifiedwetscrubbers[76].Additionally,afundamentalstudyexaminingtheinflu-enceof surfaceelectric propertiesof spraydropletsand particulates,inconjunctionwithsurfactantadditionfor dust

suppressionhas beencarriedout

[77].Themostim- portanteffectfor enhanced particulatematter capturewasanelevateddropletchargefor cationicdropletsolutions.Somerecentwork hasaddressedsector-specificwetscrubbingneeds.Mistelimina-

torsusedinfluegasdesulfurizationareexpectedtohavesomedifficultycomplyingwithanticipated0.002lb/MMBtu(14mg/Nm3)emissionsregulations[78].It has

 beenshownthathorizontalflowconfigurationscanupgradethe performanceof sys-tems,whichmayneedtoremoveupwardsof 99.5%of PM10dust.Atwo-stagescrubber designedfor thealuminumindustryhas beenshowntoremoveover 99%of 

 particulatematter aswellasHClandmorethan90%of 

C12fromaluminumreduc-

tioncast-housefurnaceoffgas[79].Irrigationwithchemicalcleansingagentsallowscrubbedmaterialsto berecycledintothereduction process.Finally,a lessrecent, butrarelyimplementedtechnologyis thatof counterflow

inertialimpactionwetscrubbers[5].Anearlystudyfor thecollectionof alunitedust(analumino-silicate)hadtwocollidingaxisymmetricdustygasstreams,sprayedwithfluidattheimpactionzone.Decelerationof the particlesandturbulentmixingattheimpactionzone bringaboutagglomerationof the particulates,wherebytheydropoutof thestreamandcan beremoved[80].

2.4.1.Condensationscrubbers.Condensationscrubberscan beconsidereda sub-classof wetscrubbers,althoughtherearekeydifferencesinthemechanismsemployedtoremove particulatematter.Inthecaseof condensationscrubbers,the particlestravelinavapour saturatedgasstream,wherevapour condensesontheir surfacesandactsasanagglomeratingagent.Onesuchdesign,for thetreatmentof sub-0.25itm particulatematter frommunicipalwastewater incineratorsis documented[81].Existingwetscrubberscan beretrofittedtooperateinthecondensationmode.Asimilar designfor municipalwasteincineratorsmakesuseof fluegasmoisturemixedwitha coldgasstreamresultinginfluxforcecondensation

scrubbing[9].

2.5.Granular  bed filters(GBFS)In ananalogousfashionto wetscrubbers,a particleladenstreamcan be passedthrougha bedof solidmaterialwherethe particulatematter iscaptured.The bedcan

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 16/37

194

 bestationary,movingor fluidized.Thecollector materialtypically possessessomefavourablesurface propertiestoenhancecaptureof the particulatematter.Granular 

 bedfiltersareoftenusedwhenwastewater  problems posed bywetscrubbingsystemsare

unacceptable,suchasfor fluorinecontrolinsomealuminum

 plants.Fluidized

GBFsarecurrentlyunder considerationfor hotgascleanupapplications,especiallyasanalternativetoceramiccandlefilterswhichhavehada troublesomedebut.Are-centstudyhasfoundthattheeconomic performanceof GBFscomparesfavourablytocandlefiltersfor coal-fired power generationfacilities[82,83].Theseunitsareme-chanicallysimpleandrequirelessfine-tuningandmaintenance.Themovingcollector 

 bedhassome by-productvalueandalsoeliminatestheneedfor costlyfilter mediacleaning.Morethan97%of flyashcan beremoved byGBFsata facevelocityof 1.6m/s(basedonthestandpipecross-section), buttheyareknowntohave problemscollecting particulatematter under 2ttm.Atfacevelocitiesover 4m/s,thecollectionefficiencydropstoabout80%[84].MovingGBFshavealso beeninvestigatedcombinedwithelectrostaticenhancement.The basicunitdeveloped bytheCombustionPower Co. performedwellfor  particulatematter over 2 >m.Variousfieldstrengths, bothunder ACandDCmodeweretested.TheACenhancementat75Hz producedaslightoptimum.DCoperationalsoshowedvery promisinginitialresults, butitsimplementationisconsideredto beless practical[85, 86].Atlowfacevelocities(0.11m/s),upwardsof 98%of 0.5>mflyashcould

 becollected.Theefficiencydropsoff to50%atfacevelocitiesnear 0.7m/s.Anovelsystemhas beendevelopedwitha fluidizedGBFexitingacrossa metal

filter screen[87].Asketchof theunitis showninFig.7. Thescreensurfacecan becleaned bymomentarilyinterruptingthegasflow.The pressuredropinthissystemislow,althoughmaterialfiner thanabout1.5 pmisdifficulttocapture.Thissystemallowsrelativelyhighfacevelocities,over 2.5m/s.Therearea fewinstanceswhereGBFsystems provideagood particulatematter 

removalsolution.Mosttraditionalair  pollutioncontroldevicesareineffectivefor collectingsubmicronmetalfume,whichoftenarisesin wasteincineration.Oneapproachhas beentotestvarioussorbentsina fluidized bedfilter [88];another has

 beentouseactivatecharcoal packed beds[89].

Anumber of fundamentalstudieshave beenconductedrecentlytofurther theunder-standingof granular  bedfilters.Finematerialwasfoundto bemorereadilycollectedatelevatedtemperatures[90].Reynoldsnumber effectswereconsideredinanother study[91].

Sometimesgranular  bedfiltersarereferredtoasdryscrubbers, butmoreoftendryscrubber meansa somewhatsimilar, butdifferenttypeof unit.Anumber of systemsexistwherethestreamdustmay beremoved, butthena sorbentisintroducedfor  NOxand/or SOxremoval.Thiscreatesa needfor subsequent particulatematter removalfromthegasstream.Inviewof this,thesorbentmaterialcan bechosensothat

it issufficientlylargeanduncohesiveto beeasilyseparated bylow pressuredrop baghouses.Withanappropriatechoiceof sorbent,thesulfur andnitrogencontaining productcan beusedtomakea number of saleable by-products[92,93].Anelectron beamdryscrubber existsinwhichtheelectronsgenerateOH-radicalswhichoxidizeS02and NOxintosulfuricandnitricacid, precursorsfor makingfertilizers[94].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 17/37

195

Figure7.Fluidizedgranular  bedfilter fittedwithmetalscreento preventfilter materialentrainment.Adaptedfrom[87].

2.6.CeramicfiltersCeramicfiltersarerigid barrier filtersconstructedwith poresizesdesignedtoremovefineairbornesolids.The physical propertiesof theceramicmaterialallowtheseunits

to beoperatedunder hightemperaturesandincorrosiveenvironmentsaswellas beingsuitablefor cleaningwithcorrosiveagents.Theyaremadeintwostandardformats:dead-endlowdensity'candle'filtersandmulti-channelcross-flowmodules.

Intherapidlyevolvingfieldof hotgasfiltration,ceramicfilter elementshave provento besuitablefor efficient particulateremoval,withtheabilityto performinharshenvironments.Ceramicmembraneswerefirstusedinthe1940sfor uraniumenrich-ment,yetit took untilthemid-1980sfor  particulatematter removalapplicationsfromgasstreamstofirstappear.Generaloverviewsof thisfieldare provided byEggerstedtetal.[95]aswellas byWhiteetal.[96].Recently,ceramicmaterialshavealsofound

their wayintohotgasapplicationsasstructuralfilter components,replacingexoticalloysandsimplifyingdesignapproaches.Anumber of differentceramicfiltrationde-vicesarecurrentlyavailable,eachwithadvantagesanddisadvantages.Thesedevicesincludeceramiccrossflowor ceramicmembranefilters,ceramicfabricfilter  bags,and porousceramicfilter tubesor 'candles'.Inaddition,thesedesignsareavailablein

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 18/37

196

differentceramicmaterials,eachhaving propertieswhichmay or maynot besuitablefor agiven processapplication.

Despitetheroughly40%higher cost per unitfiltrationareacomparedto bagfilters(1991),ceramicunitsaregaining popularity[97].Inadditionto benefits previouslymentioned,theycanalsohandleheavydustloadingsandfacevelocitiesupwardsof 3cm/s,comparedto about1.5cm/sfor fabricsystems.Providedthatthesystemselectediscleanable,theunitlifecan beseveraltimeslonger thanwithother materials.

High-efficiency particulateair (HEPA)filtershave beenin existencefor over 50years.Theyaretypicallymadeof glassmicrofibresandareusedfor veryhighefficiencyremovalof submicron particulatematter.HEPAfiltersaresuitablefor applicationswhereaveryhighlevelof air  purityisrequiredor for theremovalof hazardous particulatematerials[98].

2.6.1.Candle filters.Figure8 showsa schematicunitwhereceramiccandlefiltersareusedtoremove particulatematter fromagasstream[3].Here,thefilter mediumis providedin theformof long,hollowtubesor 'candles',closedat oneendandhungverticallyfromasupport platesothatthegas passesfromtheoutsideinwards.Adustcakeaccumulatesontheoutsidesurfaceof thecandleandiscleanedatregular intervalswithastrong pulseor  jetof gassentfromtheinsideoutviathe pulsenozzles.

Therearetwocommontypesof filtrationmediausedinceramiccandles.Thefirstisahigh-densitysinteredor  bondedgranular siliconcarbide(SiC).Theother type

Figure8.Simplifiedschematicof aceramiccandlefilter unitwith pulseair cleaning.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 19/37

197

is primarilyalow-densityalumina(ash03)intheformof  bondedfibres.Thelow-densityunitsshowlessresistancetoflow,areless pronetothermalshock andarelessexpensive[99].

Themostattractivefeatureof ceramiccandlefiltersistheir abilityto performgascleaningathightemperatures, presentlynear 1000°C.Thedemandfor hotgascleaningisstrongestincoal-fired power  plantsusing pressurizedfluid bedcombustion(PFBC)or integratedgasificationcombinedcycle(IGCC) processes.Conventional

 bagfiltershavethermaltoleranceswhichrequirethatgasstreams becooled,typically bydilutingthestreamwithatmosphericair.Directhotfiltrationeliminatestheneedfor extra processequipment,reducesthegasvolumefor treatmentandallowswasteheatto berecovered,givinga 2-3%increaseinoperatingefficiency[100].

TheSchumacher SiCcandlefiltersweresomeof thefirsttoundergoextensivetestingin pilot

facilities.In1988atGrimethorpe

intheUK,

a pilot

hotgas particulateremovalsystemusingceramiccandlefilterswas builtina PFBCtestfacility[101].EarlytestswereconductedwithSchumalithSC40modelcandles(mean poresize100/tm),as

wellastheDiaSchumalithF40candleswhicharemadewithanadditionalsurfacelayer of aluminafibres.TheDiaSchumalithF40candleswerefoundto besuperior 

 becausetheywereabletowork inasurfacefiltrationmodeathigher facevelocitiesandrequiredlower stressesfor dustcakedetachment.TheF40candleswereusedinmostsubsequentwork atGrimethorpewheretheygave promisingdustremovalresultsover 800h testsconductedat850°Cand10 bar  pressure[102].Further testingatGrimethorperevealedthatextendedusewithcold

 pulsecleaningcausedthecandlesto

liftanddescendrepeatedlyresultinginfractures bothinthecandlesandtheir sealinggaskets[103].Asimilar  pilottestwasreported bySchumacher themselves,withover 4000hattemperatures between780and850°C.Attemperaturesabove700°Cmorethan99.999%of all particulatematter wasremoved,withthemost penetrationoccurringinthe0.2-0.4fLmsizerange(cf.Fig.1)[104].

Increasingly,demandingtestingof theDiaSchumalithF40has beenreportedmorerecently.Concernsover  performancehavefocussedoncandleintegrityover repeatedhot-coldcleaningcycles.Thestrengthof thecandlewasfoundtodecrease by2.2%over a 4 month periodattestsconductedat 850°C.Athermalshock (temperaturechange)of over 600°Cwasfoundtooccur  bynumericalsimulationof thecleaning pulseflowinsidethecandle[105].By1993,newtestshadshownimprovedversionsof theDiaSchumalithF40candles, butstilla recommendationfor hot pulsingwasmadeto minimizetheseverematerialsduty[106].Other testshaverevealedthat

 breakageof candlefiltersarosefromthemechanicalstressesassociatedwithliftinganddropping.Specifically,thedeteriorationmechanismsweretheoxidationof SiCtoformcristobalite(Si02),microcrackingandcrystallizationintheglass bondnecksandglass/SiCinterfaceand pittingof theglass bond byCaS04[107].Servicelivesof uptoaboutoneyear could beexpectedfromtheSiCcandlefilters.Thethermalshock 

resistanceof theDiaSchumalithF40filterswascomparedtoother SiCcandlesmade byRefractonaswellascandlesfromAsahiGlassCo.madeof cordierite[108,109].Schumacher SiCcandlefiltershave been pilottestedfor hotgascleaningata low-

level-wasteincinerator ata Germannuclear facility,andwerefoundto be promisingwhenthefeedstream particulatematter containsverylittlesubmicronmaterial[110].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 20/37

198

Fibrous,layered,low-densityalumina-silica basedcandlefiltersmade byFoseco(FosecoCerafil2000i)have beentestedfor PFBChotgascleaning[111].Thesetestswereconductedattemperaturesupto740°Candtypicallyupwardsof 99.9%of the

 particulatematter wasremoved.Thenominal

 poresizefor theseunitsis lessthan

10fLm[3].Althoughnoneof thefiltersinthesetestsfailed,thetesting periodof 340h wasconsideredtooshorttocommentontheir durability.Candlefiltersmadeof ?-cordierite bytheAsahiGlassCo.weretestedonPFBC

dusts[112].Of noteisthatthesecandlesfilter fromtheinsideout,usinga positive pressurerather thansuction.Atcomparable permeationrates,theywerefoundtogivea downstreamdustlevelunder 3 p.p.m.w.,comparedtolessthan1 p.p.m.w.for theSchumacher SiCcandles.TheAsahifiltersweretestedfor over 2000h attemperaturesupto 880°C.Likelyduetotheir quitelarge physicalsize(lengthof 5.8

m)and

 beingfastenedtothevesselat both

ends,thethermalshocksrelatedto

the pulsecleaning produceda muchhigher rateof filter mechanicalfailurecomparedwithother candles.Anupdateonthestatusof theAsahicandlefilterswas provided byHigashiandMaeno[113].

Testinghas beenconductedonsurfacetreatedSiCcandles(LayCer 50/5)made bytheIndustrialPumpandFilter ManufacturingCo.(USA)[114].Theyhavea nominal

 poresizeof 24ttm,weretestedat870°Candgavea filtrationefficiencynear 100%.Thisstudyfocussedonthenatureof thecake builduponthefilter surfaceandhowdifferentoperatingconditionsrelatedtothe pressure-fluxrelationship.

Westinghousehas

developeda new

housingunitfor candlefiltersandhastestedthe

DiaSchumalithF40candles[115].TheywereexpectedtoreplacetheSiCfilterswithalumina/mullitecandles.A projectsponsored bytheUSDOEis beingconductedtodevelop practicalhotgasfilter designsthatmeettheoperationalrequirementsof PFBC[116].

Theeconomicsand processoptionstoconsider for implementingceramiccandlefilter systemsarediscussed byZievers etal.[117].

2.6.2.Cross-flowfilters.Particulatefilterscanalso bemadefromdensesinteredce-

ramicconstructedinto box-likestructures.Suchdesignsincludeseparate passagewaysfor thefeedandcleanedgaswhicharelinked bythe porousceramicfilter material.Figure9showsa schematicsketchof onecomer of ageneric block shapedceramiccross-flowfilter.Ascan beseen,thisarrangementgivesaveryhighfiltrationareatovolumeratiocomparedtoconfigurationsusedinother technologies.Alltheother 

 benefitsattributedtoceramiccandlefiltersinthe previoussectionapplytoceramiccross-flowfilters[95].Backflow pulsingisusedtocleanthe particulatematter whichcakesonthe passagewalls.

Theemissionof sootfromdieselengineshas poseda problemfromaregulatory

standpoint.Tomeetthesestandards,andsinceit is not practicalto coolexhaustgasesfromavehicle,various particulatetrapsmakinguseof ceramiccross-flowfilter technology(andother typesof ceramicfilters)have been beinginvestigatedsincetheearly1980s[118-120].The proposedEPAair qualitystandardsfor 1994haverenewedinterestinthistopic[121].

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 21/37

199

Figure9.Simplifiedschematicof aceramiccross-flowfilter.Shownhereisthetopcomer of a box-shapedunit.

TheAsahiGlassCo.hasdevelopeda new particulatetrapsystem[122,123].Itfeatures botha cross-flowtypeceramicfilter andreversecleaningregeneration.Thefilter ismadeupof thin plateelementsof modifiedcordierite.Each platehasa rowof sometwodozenopen-end,oval-sectionedchannels.A periodicreverse jetcleaning

 bycompressedair injectionremovesthe particulatefromthefilter wallanddropsitintothevessel bottom.It is burned byanelectricheater.Thetrapefficiencyof thissystemrangesfrom88to95%.Thedurabilityhas beenconfirmed by bothlaboratorytestsandfieldtestswith public busesinLosAngeles,USA. NGK InsulatorsLtdalso producea cordieritediesel particulatetrap[124].Recent

attentionhasfocussedoncleaningrequirementsunder specifiedcombustionflowrateswithminimalthermalshock.The NGK unithas beentestedextensivelyon busesinItalyand performedwellin principle[125].Itwasrecommendedthatthecross-flowfilter unit beenabledwithcontinuousfilter loadingcontrol,to bring particulatematter collectionefficiencytoacceptablelevelsfor  practicaloperatingconditions.

In NorthAmerica,GeneralMotorsincooperationwithCominghavedevelopeda

cordieritewall-flowfilter for lightdutydieselengines[126].Thethermaldurabilitywastestedanddesignedtoachievearequired120000vehiclemiles( 192 000km),withoutexceedingthe0.13g/mile particulateemissionsregulation.Theuseof Com-ing particulatetrapsonheavydieselequipmentinundergroundmineshas beenshowntoimproveair quality[127].

Inrelatedresearchonfilter regeneration,ithas beenshownthatitis possibleto pro-videa moreuniformenergyinputtoa filter  byincorporatingmicrowave-susceptiblematerialsinthefilter  bodyandthenusingRF(microwave)energytoinitiatecombus-tion[128].Thismethodgivesimprovedcontrolover thesootcombustionandlower 

thermalstresseswithinthefilter.For genericair  pollutioncontrolapplications, preliminarycommercialunitshave beenmadeavailable byCeraMem(USA)[129].The particulatematter removalabilityisnear 100%withnominal poresizesfrom0.5to0.004 >m,dependingonthesurfacemembranecoatingused.Asetof 36moduleseachwithexternaldimensions

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 22/37

200

of 12x 12x30cmandover 3.4m2filter areawasabletocleansatisfactorilythe0.28m3/sfluegasat120°CfromanEPRI baghousefacilityover a periodof 1100h.Testingonhotgasstreamsfromamagnetohydrodynamic(MHD) power generationcombustor revealedsomeunit

sealing problemsalongwith

unsatisfactory pressuredropsandfacevelocities[130].Ceramiccross-flowfiltersfor MHD plantswere,however,stillconsideredto bea promisingtechnology.Arecentadvancewastheuseof acatalyticvanadiacoatingfor simultaneous NOand particulatematter removalfromhotgasstreams[131].TheUSDOEisalsoinvestigatingacatalyticmixedmetaloxidecoatingonceramiccross-flowfiltersfor integratedS02, N0?and particulatematter removal[132].

Across-flowceramicfilter unithas beenunder development byWestinghouseandCoorsCeramics[133].Itunderwenttestsat900°Cfor  periodsof 1000hwithvarious

typesof PFBC

flyash.In

general, particulatematter removalwas

quitehigh, but

 posttestinspectionrevealeda number of materialflaws.Whenthemeansizeof theairborne particulatematter fell below5tim,theflowresistancefromthedustcakeandtherequiredcleaning pulseintensityincreasedmarkedly.

Anew product byCeraNovaandSpecificSurfaceCorp.usesa novel powder  pro-cessingmethodtotailor ceramiccrossflowfilter elements[134].Theyemploya'three-dimensional printing' process,wherebyfunctionalceramiccomponentsarecre-ateddirectlyfromcomputer generatedmodelstructureswhichcontrolafabricatingunitwhich'prints'themonolith,layer  bylayer.Thecompositionwithineach build-

 planecan beselectivelycontrolled byvaryingthecompositionof  powder andsus- pendingfluid.Anink  jet printingheadisusedtometer thematerials.Inthiswaythemicrostructurecan becontrolled bytherelativeinfluenceof cohesiveandcapillaryforcesof thematerialsintroducedtoeachlayer.Functioningfiltershaveyetto bemadeinthisway, butsamplemonolithshave been preparedinthelaboratory.

3.RECENTPROCESSINGINNOVATIONSIn additiontoimprovementsmadeonair  pollutioncontrolequipment,therehas

 beenmuchrecentattentiongiventoaddressingairborne particulateemissionremovaland/or reductionfromanintegrated perspective.Researchanddevelopmenton pro-cessmodificationsaimedat producingahigher qualitygasemissionarediscussed

 below.

3.1.HybridsystemsTheneedfor simultaneouscontrolof  particulatematter andtoxicgases,or even

 particulatematter of variablesizeandcharacter often,resultsintheuseof hybrid

systems.Thesesystemscompriseeither asingleunitor a processinwhichvarious particulatematter collectionmethodsareemployedin seriestoobtainsignificantlyreducedsolidsemissions.

For the purposeof thistreatiseahybridsystemwill beconsideredto beasingle physicalunitwhichcombinestwoor more particulatematter removaltechnologies.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 23/37

201

Atechnologydeveloped byEPRIintheUScombineselectrostatic precipitationwithfabricfiltration.ThissystemisknownastheCompactHybridParticulateCollector (COHPAC)[135].The baghousefollowstheESP,either inseriesor actuallyinside

theESPhousing.Ina COHPACsystem,theair leavinga power  plantflowsfirstthroughanESP,thenthrougha baghouse.TheinitialESPtreatmentsignificantlyreducestheconcentrationandoftenimpartssomeelectricchargeto the particlesenteringthe baghouse.Thecharged particlesaremoreliabletorepeleachother aswellasthefabricfilter material,sothatthelevelof  porecloggingis reducedand

 bagcleanabilityis increased.For thesereasons,thefacevelocityintheCOHPAC baghousecan befour toeighttimeshigher thaninconventionalinstallations.Inturn,theincreasedthroughputallowsa muchsmaller  physicalunitsize[136].Anumber of  pilotandcommercialscaletestsof theCOHPACsystemhave beenmade.The

 particulatematter emissionrequirementsweremetsatisfactorily, but baglifeconcernswereraised, perhapsowingtothecomparativelyhigher facevelocitiestowhichthe bagsaresubjected[137].

Afewmiscellaneoushybrid-typetechnologieshave beendeveloped.A processandapparatusfor treating particulatematter andacidgasinoneunithas been patented[138,139].Here,theexhaustgas(i.e.fromsintering plantsor fuel-fired plants)isfirstde-dustedinacyclonestage,thenafter carefullycontrolledmoistureaddition, passedtoanESPstagewherethe particulatematter collectedis humidified butessentiallydry,thusallowingit to beseparatedfromtheacidgas.A smallindustrialmodule

has beendevelopedwhichcombinescentrifugationandwetscrubbingfor  particulatematter removal,followed by passingthegasstreamthroughactivatedcarbonsponge bagsfor demisting[140].Thedemistingstepcanincludeacidgasfixationand/or odour removal.

3.2.Feedsamplingand processcontrolTheelectricalnatureof ESPsmakesthemwellsuitedfor implementingon-linecontrolsystems, principallyfor  power efficiency.Someof thesecontrolstrategieshave beennotedinSection2.2.On-linemonitoringof emissionstotheatmospherefor regulatorycomplianceisa differentmatter andsometechnologiesfor this purposehaverecently beendeveloped.

A prototypeESPdevicewasdevelopedcontaininga total-reflectionX-rayfluores-cencespectrometer (TXRF),intendedtodetectheavyelementsandmetals[141].Atflowratesunder 1.31/min,essentially100%of submicron particulatematter is col-lectedandtheconcentrationof HAPsinthestreammay beaccuratelymonitored.Anon-lineair samplingapparatushas beendevelopedfor measuringVOCconcen-trationsingasstreams[142].Twoinitialfiltrationstagesremove particulatematter above2.5fLmindiameter,atwhich pointimpactionseparatorsmakesizeclasses be-

low2.5,1.5,0.8and0.32itm.Thecaptured particulatematter canthen beanalyzedfor adsorbedVOCs.Somedeviceshave beendevelopedfor on-linemeasurementof  particulateconcentrationsingasstreams.Aglassfibrefilter has beenincorporatedintoagravimetricdevicefor continuoussamplingof  particulatesdownto0.011 >minsize.Theglassfibreshavesuperior opticalcharacteristicswhichcan beexploitedfor 

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 24/37

202

other analyticalmeasurementsandareavailablewiththissampler [143].Similarlyaconceptualdesignhas been patentedfeaturingaseriesof impingingcollectorswhich

 provideagasstream particulateconcentrationandsizedistribution[144].Practical

operatingrangeshavenot

yet beenestablished.

TheBHAGrouphavea lineof continuous particulatemonitoringdevicesusingamodulatedLEDlightsignalwhichrespondsonlytomoving particulates,soitremainsunaffected byaccumulationof dustor moisture[145].Theextentof signalmodulationcan becalibratedtodustconcentrationinthegasstream.A primaryintendeduseis in baghouseinstallationsasa monitor for filter  bagleaksor failures.Another 

 potentiallyusefuldevicefor  baghouseinstallationsistheHansentekTMspark detector andextinguisher [146].Sparksof diametersdownto0.4itmcan bedetected byinfraredsensorsandanappropriateextinguisher can betriggeredtoeliminatethem.Sucha

systemwouldallowtheintroductionof fabricfiltersto control

 particulateemissionsfromwood-fired pulpand paper  boilers.Fabricfiltershave beenslowtogainwidespreaduseinthissector duetotherisk of firefromairbornemicro-embers.

Processcontrolsystemshavefounda morelimitedapplicationin particulatecontrolinstallations.TheHarwellLaboratoryinEnglandhas beendevelopinganexpertsystemfor thecontrolof fabricfilters[147].Thestateof theartin thisareaissomewhatrudimentary becausethe primaryoperatingvariable,the pressuredropatsteadystate,is notreadily predictable.Usingon-line pressuredropmeasurements,theflow,compressor  pressureand pulse periodscan beadjustedinrealtime,and

earlyresultshaveshown

upto20%

savingsin power consumption.3.3.Feedstreamconditioning

Oftenthe performanceof air filtrationunitscan beenhancedif the particulatematter in thefeedstreamenteringtheseunitsisgivensome preliminarytreatment.Feedstream'conditioning'mayconsistof suchtreatmentsasinjectingadditivesto thestream,irradiatingitor subjectingittoacousticshock.Theobjectivestypicallyaretomodifythesurface propertiestoimprovethe particulatematter collectionefficiencyor toagglomeratethe particulatematter tolarger,morereadilyremovableentities.

Awellknownconditioningapproachistheinjectionof S03intotheexhauststreamsfromlow-sulfur coal burning power  plants,whichisknownasflue-gasconditioning(FGC).The presenceof theS03reducestheresistivityof theflyashinthesestreamsfor easier capture byESPs.Areviewof recentadvancesinthisareais provided byKrigmontandCoe[148].Someinnovationsincludehot-sideinjection,co-injectionof ammonia(dual-conditioning),anddual-conditioninginfrontof fabricfilterswheretheresultingfilter cakedragcan besignificantlyreduced.A patented processwasdesignedwhere NH3andS03areinjectedataratioof 2:1,inconcentrationsof 1to100 p.p.m.[149].Fabricfilter  pressuredropsfor cleaningflyashfromPittsburgh#8

andMonticellocoalsampleswerefoundto betypicallytwoto threetimeslower,andthe particulatematter capturewasalsoimproved.Thisresultwasfollowedup bytestsinAustraliawhichshowedoppositeresults,whereahighlycohesivefilter cakewasreported[150].Thedisparityintheresultswasattributedtodifferencesinthecoalandfabricmaterials.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 25/37

203

Testshave beenconductedwithanumber of differentsulfur andammoniacontainingconditioningcompoundsfor ESPfeeds.Regardingcosteffectiveness,ammoniumsulfate[(NH4)2S041inlowdosageswasfoundto perform bestfor lowsulfur coal

fiyash[151].A relatedtechnologyis knownas sorbentinjection.In thiscase,solidsorbent particulatessuchassilicates,calciumsalts,limes,etc.areinjectedintoagasstreamto adsorbSOxfromthegas.Arecentreview presentssixsuchcommercial pro-cesses[152].Afollowuparticleonhigh-temperaturesorbentinjectionreportsthattheelectricalresistivityof the particulatematter is increasedsubstantiallyandthe

 performanceof theelectrostatic precipitator isdegradedaccordingly.Theresistivitymay be brought back to anacceptablelevel bytheuseof fluegashumidificationor conditioningwithS03.Certainmixturesof ashandhighlyreactivesorbentdonot

appear to

respondto

S03conditioning.Various

catalyticadditiveswereviewed

asa potentialmeanstomakehigh-temperaturesorbentinjectiona moreviable pro-cess[153].Sorbentinjection putsincreasedloadson particulatematter collectionequipmentandalsomodifiesthe particulate properties,especiallywithhumidifiedsorbentinjection.Recentresearchhasfocussedondesigningsorbentsystemswhich

 possibly benefit,or atleastdonothinder the performanceof the particulatematter removalequipment.TheADVACATE processdeveloped bytheUSEPAusesaspe-cially preparedcalciumsilicatesorbentwhichappearsto bequitecohesiveandentersthesysteminanagglomeratedstatewhichaidstheoverall particulatematter control

 bynot

introducingadditionalsubmicronmaterial[154].Babcock &Wilcoxhavede-

velopeda sorbent processdesignedtowork infrontof  baghouses[155].ItisknownastheSO,-NO,-RoxBoxTMsystem(SNRB)andisanadvancedair  pollutioncontrol processthatsignificantlyreducessulfur oxide(SOx),nitrogenoxide(NOx)and par-ticulateemissionsfromcoal-fired boilers[156].The processusesahigh-temperaturecatalytic baghousefor integratingSOxreduction byinjectinganalkalisorbent(suchashydratedlimeor sodium bicarbonate), NOxremovalthroughammoniainjectionandselectivecatalyticreduction,and particulatecollection.

TheWestinghouseILEC(IntegratedLowEmissionsCleanup)systemrepresentsadifferentapproachtofeedconditioning.Theuseof ceramicfiltersisenvisionedfor 

 particulatecontrolattemperaturesabove900°Cindirectcoal-firedturbineapplica-tions.Someadhesiveflyash particleswill beemittedthatcouldforma difficult-to-removefilter cake.TheILEC processinjectssorbent particlestoeither removetheadhesive particles beforetheyreachtheceramic barrier filters,or modifytheadhesivenatureof thefilter cakesothatit ismoreeasilyremovable[157].

Froma morefundamental perspective,a recentreviewis availableonhowthe performanceof fabricfiltersandelectrostatic precipitatorsusedtocollectashfromthecombustionof coaldependson bulk  propertiesof theash,suchascohesivityor electricalresistivity[158].Anumber of recentfindingshave beencited;thesurface

of flyashwasfoundto beextremelycomplexintermsof chemicalspecies;sorbentmaterialscan beaddedtoenhancesurfacecharge propertiesfor streamstreated byESPs; NH3addedaloneor withS03changesthecohesivityof ash,reducingrappingemissionsfromESPs;smallsizedsorbent particulateshave beenfoundtoactasstericinhibitorstoreducecohesivityof coalashcleaned byfabricfilters;ahumidifiedstream

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 26/37

204

infabricfilterswillexhibitalower  pressuredropduetothehigher  porosityinthedustcake,whichformsmorecompactashagglomerates.AUSDOEexperimental

 programisnowunderwaytofollowuponcharacterizingthemechanismsatwork in

fluegasconditioning[159].Acousticagglomerationhas beenrecentlyemployedtoenlargethesizeof submi-cronmaterialsothattheycan beremovedmorereadily byESP.At present,somelaboratorytestinghasshownimprovedresultsonmodelsystems[160,161].Sometheoreticalanalysessuggestthatorthokinetic,hydrodynamicandturbulentmecha-nismscontributetoanincreaseof  particle-particlecollisionsfor systemssubjectedtoacousticalvibration[162,163].Anumericalsimulationwasruntomodel bimodal(flyashwithsorbent)acousticagglomeration,withsomecomparisontoexperimentaldata provided.Theneteffectof thecontributingcollisionmechanismswasestimated

 bycurve-fitting;no

modellingof theadhesion

 process between

 particleswas

 provid-ed[164].TheUSDOEisaimingtodevelopacousticagglomerationmethodsthatwouldallowtheuseof conventionalcyclonestoachieveveryhigh particulatecollec-tionefficiencyandeliminatetheneedfor  barrier filters,whichhave been problematicin viewof durabilityandeconomicsfor  proposeddirectcoal-firedturbines[165].A patenthas been procured[166]andinitialtestingisunderway[167].

Yetanother noveltechnologyto beinvestigatedis knownas theelectron beam precharger [168],alsoenvisionedfor coalflyashremoval.Anelectron beamisem- ployedtoionizegasmoleculesina precharger region, producinga bipolar  plasmaof ionsandelectronsinacontinuousstateof formationandrecombination.Whensub-

 jectedtoastrongelectricfield,the plasmaisseparatedintotwomonopolar fractions.Onlythenegativefractionisusedandisdrawnacrosstheducttochargethedusttoveryhighlevels,whichfacilitatesitsremoval byESP.Theelectron beam precharg-er wasfoundtoimprovethe particulatecollectionefficiencyof aconventionalESP.Testinghasalso beenconductedtocompare pulsecharginginsteadof directcurrentcharging,whichcan bedoneathigher strengthwhereit shouldcreatea morestableenvironmentfor freeelectronsto precharge particles.

3.4.Processmodifications

toreduceemissionsAs partof anoverallstrategytocomplywithenvironmentalstandards,a preferredlonger termsolutionissimplytomodifythe processwhichemitsthe particulatesto lower emissionlevels.Thus,reducedloadis placedonthe particulateremovalequipment.Withoutaugmentationof existingequipment,lower emissionlevelsof 

 particulatematter can beattained.For example,inthesteelmakingindustry,ithas beendemonstratedthat byreducing

thequantityof limeaddedto thefurnaceearlyintheoxygen blowingcycle,theresultingslag becomesmoreviscousandfoamy,reducing particulateemissions by

upto59%[180].Thechromeelectroplating process producesa toxichexavalentchromiumemission.Changesinfour  processconditionswereimplementedwiththeobjectiveof reducingemissionsfromthe process[181].Theseincludedthefreeboardheightof theelectro-

 plating bath,eliminationof compressedair for  bathagitation,theuseof floating balls

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 27/37

205

onthetank surfaceandananti-mist bathadditive.Infour differenttestfacilitiesusingtheir existingcommon particulatematter controlequipment,reductionsinchromiumemissionsof 85-95%wereobserved,allmeetingthequantitativeindustryobjective

of 0.006mg/Ah.Unfortunatelyatthistime,therearenotmanyexamplesof such processesintheliterature, butuseof emissionreductionstrategiesisexpectedtoincreaseinthefuture.

3.5.Sector-specificairborne particulatematter controlconsiderationsAsubjectreceivingconsiderableattentionrecentlyisthetreatmentof emissionsfromincinerationsites.Medical,municipalandindustrialwastes beingincineratedhave

 beensubjecttoincreasinglytightregulationsdueto the potentiallytoxiccontentof theemissions.ThewetESPsystem(alsodescribedin Section2.2)has beenfoundto beaneffectivemeansfor reducing particulateandtoxicemissionsfromsewagesludgeincineratorsunder the proposedPart503USEPA(February1989)regulations[169].Part503wouldlimitarsenic, beryllium,cadmium,chromium,lead,mercuryandnickelcontentsof  particulateemissionstomaximumconcentrationsof 6.3,42.3,1.8,233.9,125.1,135.5and72.6mg/kg,respectively.TheUSEPAhas

 projectedthatmorethan50%of theexistingsewagesludgeincineratorswill beoutof compliancewiththese proposedregulations.Pilottestingwitha post-scrubber feedconsistingof  particulatematter whichwas50% below0.6ftm,wasabletoincreasetheoverall particulatematter removalefficiencyfrom98.3to 99.88%.Equipmentoptionsandcostconsiderationsarediscussedfor cleanair actcompliancefor wasteincinerators[170].Astudyof thethenatureandcompositionof incinerator generated

 particulatematter asrelatedtofueltypewasdone byHackfortandBorchardt[171].Ashortreviewisavailablewhichdiscusses particulatematter treatmentintheminer-

al processingindustries[172].Four mainsourcesof  pollutionareconsidered:miningandsitetreatment,smelting,recyclingandlargescalecombustion processes.Atten-tionisgivento processmodificationswhichreduce particulatematter emissionsor 

 producegasstreamsmoreamenableto particulatematter removal.A paper devotedtorecentdevelopmentsinironoresinteringdiscussesenvironmentalaspectsinclud-

ing particulatecontrol[173].PertinentESPandscrubbingsystemsarenotedaswellassome processes byBritishSteelandLurgiwhichhave beenupdatedto producelower  particulatematter emissionlevels.TheUSDOEconducteda study provid-inganoverviewof  particulatematter controltechnologiesfor hotgassteamsfromcoal-firedinstallations[174].Themajor  particulatecontroldeviceissuesaddressedincludedtheintegrationof the particulatecontroldevicesintocoalutilizationsystems,on-linecleaningtechniques,chemicalandthermaldegradationof components,fatigueor structuralfailures, blinding,collectionefficiencyasa functionof  particlesize,andscale-upof  particulatecontrolsystemstocommercialsize.

Particulatecontrolis alsoanissuein the pulpand paper sector.Powers etal.conductedasurveyof applicabletechnologiesfor magnesiumor ammoniumsulfiterecoveryfurnacesin pulpmills[175].WetsystemsarerecommendedinthiscaseassimultaneousS02removalis alsodesired. Normally, pulpmillshavea wastewater treatmentsystem,sotransfer of airbornecontaminantstoanaqueousstreamdoesnot

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 28/37

206

 poseanadditionalenvironmentalconcern.Successfulsystemstestedona pilotscalewerewetESPsfromFluid-IonicsandBeltran,andMonsanto'sDynawaveScrubber.A similar approachis takenin the particleboardindustry.Fine particulatecleaninghas beensuccessfulwithwetESPsfor 

treatingthegasstreamfroma sander dustfireddrumdryer [176].Withtighteningenvironmentalregulations,recoveryof heavymetalemissionsis becomingamorecrucialissue.Of the189HAPsregulatedunder thenewCleanAir Act,11areheavymetalsandmostarecapturedasPM10.Theviabilityof variousexistingandemergingtechnologyfor  particulateheavymetalcaptureisdiscussed by

 Nudo[177].Ageneraloverviewonthescrubbingof inorganictoxicsisgiven byMcInnesetal.[178].Wetscrubbingor absorptionarethemostcommon particulatematter removalmethodsfor nonmetallicinorganics,whileESPsand baghousesarethe

 primaryeffectivemeansof controllingmetals.Aspecialventuriscrubber operatedatalarger  pressuredropwhencomparedtostandardventuriscrubbers,wasdesignedtoremoveheavymetalsfromwasteincinerator gasstreamsdowntoUSEPAguidelinelevels[179].Theincreasedoperatingcostsof thissystemmayhinder itswidespreadacceptance.

4.SUMMARYIngeneral,manyof theconventional processunitsusedfor airborne particulatecon-trolareconsideredto

employeffectivemature

technology.Thechoiceof 

specificunitsandthewaytheyareinsertedintoanengineeringdesigndependonthesourceof theairborne particulatesandthefinalemissionrequirements.Asurveyof recentrelevantscientificandengineeringliteratureonthissubjecthasrevealedthatmostof theresearchanddevelopmentinthisareaisincremental,andis oftenundertak-entoachievesitespecificobjectivestoreachcompliancewithtighteningemissionsregulations,i.e.air  pollutioncontrolunitsaretypicallyinstalledasadd-onsandsomeresearchmay bedonetofinetunetheunittofunction properlyfor eachspecificgasstreaminquestion.Mostreportsof newtechnologiesdescribeenhancedversionsof conventionalunits,whicharesometimesimproved bycombiningcapturemechanismsthatarenormallyexploitedinisolation(i.e.electrificationof fabricfilters).TheUSCleanAir ActAmendmentsof 1990didnotspecificallyupdateregulationsfor all particulateemissions, butthereisgrowingexpectationthatstricter legislationisforthcominginthisarea[182].Asstated previously, particulateemissioncomplianceat presentdoesnot posea serioustechnologicalchallenge.However, particulateemissionsareoftenconcentratedin the0.1-2.0Amdiameter range,sinceexisting

 processunitsarecollectivelyleastefficientinremovingsolidsof thissizefromgasstreams.Further,thelistof 189HazardousAir Pollutantstargetedfor controlintheUSCleanAir ActAmendmentscontainsmanyheavymetalsandheavyorganics

whichexistassubmicron particulatematter [183].Healthrelatedstudiesrecommendcleaningof sub-2.5Am particulates,sincematerialinthissizeclassisrespirableandcontributestohumanillness.

TheUSEPAhasanAir andEnergyEngineeringResearchLaboratorywhichalsomonitorstrendsanddevelopmentsinair  pollutioncontrol.Theycitedevelopment

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 29/37

207

occurringinthe processdesignareawherevariationsof combinationsandsequencesof  particulatecontrolunitscan producesomedesired benefit[1].Theconceptof 

 processdesignandintegrationisincreasinglyimportantfor newinstallationswhere,

for example,novelheat-resistantfilter materialsmay beusedfor  particulateremovalatelevatedtemperaturessothattheheatenergymay bemoreefficientlyretained.Coupledwith processdesignaremethodstoreducetheat-sourceemissionof  par-

ticulatessothattheir  post-processingrequirementsareminimized.For regulationswhichallowemissionsasmass per unitof energygenerated(i.e.fossilfuel based

 power stations),upgradingof thefuelsource prior to combustionmay becomein-creasinglynecessary.Scrubbersandagglomeratingsystemswhere particulatesandgaseoustoxicsaresimultaneouslyremovedarealsounder consideration.

Oneareawherenewadvancesare beingmadeinairborne particulatecontroltech-

nologiesis thatof filter materials.Manyof thefabricsusedin baghousesarenowavailablewithhigher thermalandchemicalresistance,longer servicelifeandfiner  particlediameter control.Cross-flow, pulsed-jet,ceramictubular andrigidcandle-typefiltersarealsoemployedandshow promisingresults.Manyof thesefilter typesoffer theadvantageof  beingreadilyandeasilycleaned.Ceramiccross-flow particulatetrapshave beenshownto performatlevelsmeeting1994EPAstandards.

For the problematicsubmicron particles,muchattentionhas beendevotedtoag-glomerationof these particlestoformlarger conventionallytreatableunits.Modi-ficationsto wetscrubbinghave beenmadewitha pre-treatmentstepwherethegas

streamwassubjectedtoacondensingsteaminjector whichinduced particleagglom-eration[81].Similar  pre-treatmentsare beingstudiedfor streamssenttoESPs[184].Other newdirectionsin particulatecontrolrelatetothesourcesgeneratingthe pol-

lution.Municipalwasteincinerationisarelativelyrecent processand posesdifficultyowingto thevariabilityin thefeedstock.Specialcatalyticscrubbersand processdesigncombinationshave beenstudiedfor  particulatesfromwasteincineration.

Fromthe presentscientificandtechnical perspective,thefollowingtrendscan beidentifiedasemerginginthedevelopmentof advancedfine particlecontroltechnolo-gies.

(1)Processmodelling,simulationandcontrolfor improved performance.(2)Asaresultof,or closelyrelatedto(1),areopportunitiestointegrateseveraltech-

nologiesthrough processmodelswhichidentifysynergy betweenthetechniques.(3)Sizeenlargementtechniqueswhichmovesub-3fLm particlesintothelarger more

treatablerange.(4)Filtrationmodulesandmaterialsapplicabletohightemperaturesituationsand/or 

whicharecleanableandanti-fouling.

AcknowledgementsTheliteraturesurveyusedin preparingthisreviewwascommissioned byDr K.Ra-machadranof EnvironmentCanadafor their TechnologyAdvancementProgramfor AdvancedFineParticleRemoval,under DSScontractno.K2610-4-2050.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 30/37

208

REFERENCES1.EnvironmentCanada.Technologyadvancement programfor advancedfine particleremoval.Envi-

ronmentalProtectionServicereportno.TS-34(1995),82.2.B.B.Crocker,D.A. Novak andW.A.Scholle.Air  pollutioncontrolmethods.In:Kirk-Othme

Encyclopediaof ChemicalTechnology,3rdedn,Vol.1.Wiley, NewYork (1984), pp.649-716.3.K.V.Thambimuthu.GasCleaningfor AdvancedCoal-basedPower Generation.IEACoalResearch,London(1993).

4.W.Strauss.IndustrialGasCleaning,2ndedn.PergamonPress,Oxford(1975).5.A.Tamir.Impinging-StreamReactors.FundamentalsandApplications.Elsevier,Amsterdam(1994).6.A.J.BuonicoreandW.T.Davis(Eds).Air PollutionEngineeringManual.Van NostrandReinhold, NewYork (1992).

7.P. N.Cheremisinoff (Ed.).Air PollutionDesignandControl for Industry.MarcelDekker, NewYork (1993).

8.J.E.Brockmann,C.L.J.AdkinsandF.Gelbard.Alternate particleremovaltechnologiesfor theAirborne

ActivityConfinement

SystemattheSavannahRiver Site.USDOE

reportWSRC-RP-9

0928(1991),), 108.9.K.Schifftner.FluxForceCondensationScrubbersfor utilizationonmunicipalsolidwasteinciner-ators.In:JointASME/IEEEPower GenerationConf.Dallas,TX(1989)(ASME paper 89-JPGC/EC-5).

10.P.A.Lawless,A.S.Viner,D.S.Ensor andL.E.Sparks.Computationsonthe performanceof  particlefiltersandelectronicair cleaners.In:5thInt.Conf.Indoor Air QualityandClimate,Vol.3.Toronto,Canada(1990), pp.187-192.

11.J.vanHeerdenandP.Sullivan.Theapplicationof CFDfor evaluationof dustsuppressionandauxiliaryventilatingsystemsusedwithcontinuousminers.In:Proc.6thUSMineVentilationSymp.SaltLakeCity,UT(1993), pp.293-297.

12.A.Samanta,

R.Bhaskar andR.Gong.Studiesontheuseof scrubbersincontinuousminer faces.In:Proc.6thUSMineVentilationSymp.SaltLakeCity,UT(1993), pp.51-56.13.P.Schmidt.Unconventionalcycloneseparators.Int.Chem.Eng.33,8-17(1993).

14.P.SchmidtandT.Richter.Duststrandsincycloneseparatorsatlowdustconcentration.Part.Sci.Technol.11,107-113(1993).

15.J.Plucinski,L.GradonandJ. Nowicki.Collectionof aerosol particlesinacyclonewithanexternalelectricfield.J.AerosolSci.20,695-700(1989).

16.C.E.Romero,D.W.ShawandJ.S.Ontko.Particlecollectionefficiencyof acycloniccombustor.In:AIAA/ASME NationalFluidDynamicsCongr.LosAngeles,CA(1992)(reportDOE/METCC-92/7020).

17.J.Barrett.Spinningtubecleansupemissions.Eureka13,26-27(1993).

18.C.WadenpohlandF.Löffler.Anelectro-mechanicaltwo-stagesystemfor theseparationof dieselsoot particles.In:Air PollutionControl:Papersfromthe9thWorldCleanAir Congr.Montreal,Canada(1992)(paper IU-18F-02).19. NationalTechnicalInformationService,UnitedStates.Electrostatic precipitators(Latestcitations

fromthe NTISBibliographicDatabase),Feb.1994,250citations,documentPB94-866779/X20.EPRI-Int.Soc.Electrostatic precipitation.10thParticulateControlSymp.and5thInt.Conf.on

ElectrostaticPrecipitation.Washington,DC(1993).21.G.R.OffenandR.F.Altman.Issuesandtrendsinelectrostatic precipitationtechnologyfor US

utilities.J.Air WasteManage.Ass.41, 222-227(1991).22.H.J.DelGatto.Don'tletESP becomeAchilles'heelof compliancestrategy.Power 138,81-84

(1994).

23.R.P.Gaikwad,D.G.Sloat,R.AltmanandR.L.Chang.Economicevaluationof electrostati precipitator retrofitoptions.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostatiPrecipitation,Vol.1.Washington,DC(1993).24.R.L.Andrews,C.A.AltinandR.Salib.ESPsinthe21 stcentury:extinctionor evolution.In:10th

ParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.1.Washington,DC(1993).

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 31/37

209

25.R.A.MastropietroandR.LeBeau.Rebuildandenlargementof existingweighted-wireESPsasaresultof coalswitching.In:5thInt.Conf.andExhibitionfor thePower GeneratingIndustries-POWER-GEN'92.Orlando,FL(1992), pp.48-65.

26.T.Tanaka,H.FujishimaandY.Tsuchiya.Developmentof advanceddustcollectingsystemfor coal-

fired power  plant.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).27.H.Yabuta.Recentdustcollectiontechnologyfor utility-use boilers.HitachiRev.39,355-362(1990).28.G.Dinelli,V.BoganiandM.Rea.Enhanced precipitationefficiencyof electrostatic precipitators by

meansof impulseenergization.IEEETrans.Ind.Appl.27,323-330(1991).29. N.TachibanaandY.Matsumoto.Intermittentenergizationonelectrostatic precipitators.J.Electro-

statics25, 55-73(1990).30.T.Watanabe,F.Tochikubo,Y.Koizumi,J.Tsuchida,J.HautanenandE.I.Kauppinen.Submicron

 particleagglomeration byanelectrostaticagglomeration.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.1.Washington,DC(1993).

31.H.R.Falaki.Experimentalstudy

of flowdiversionduring

therapping

of collector  plates

insideanelectrostatic precipitator.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).

32.L.LindandE.M.Bojsen.Experiencewith baffle-freecollecting platesinanelectrostatic precip-itator.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).

33.V.S.Lee.USEPA-developedair-pollutioncontroltechnology.In:1st N.AmericanConf.onEmergingCleanAir TechnologiesandBusinessOpportunities.Toronto,Canada(1994).

34.V.ReyesandP.Lausen.Utilizationof expertcomputer systemsfor controlandoperationof elec-trostatic precipitators.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecip-itation,Vol.2.Washington,DC(1993).

35.Anon.UseadvancedcontrolstomaximizeESPefficiency.Power 135,56-57(1991).36.C.Eyraud.Gascleaning bywetelectrostatic precipitation:new prospects.Filtr.Sep.30,637-639(1993).

37.H.FujishimaandY.Tsuchiya.Applicationof wettypeelectrostatic precipitator for utilities'coal-fired boiler.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation.Washington,DC(1993).

38.A.C.Sheth,J.K.Holt,J.R.DouglasandB.R.Thompson.Roleof thewetelectrostatic precipitator inthecoal-firedmagnetohydrodynamicssystem.In:Symp.onEngineeringAspectsof Magnetohy-drodynamics(SEAM30Proc.).Baltimore,MD(1992), pp.9.1-9.11.

39.M.Valenti.Emissioncontrol:retrofitting process plantsfor the1990s.Mech.Eng.114,68-74(1992).

40.E.H.Weaver.Innovativedesignfeaturesfor electrostatic precipitatorsinstalledon biomassfired boilers.In:Proc.1994IndustrialPower Conf.SanFrancisco,CA(1994), pp.73-85.41.D.B.Kittelson,J.ReinertsenandJ.Michalski.Further studiesof electrostaticcollectionandag-

glomerationof diesel particles.In:GlobalDevelopmentsinDieselParticulateControl.Warrendale,PA,Societyof AutomotiveEngineers,Publ.P-240(SAEtech. paper 910329)(1991), pp.145-163.

42.R.Ettema.Electrostatic precipitator  performanceimprovementthroughnumericalsimulation.WorldCement25,63-66(1994).

43.W.-J.LiangandT.H.Lin.Thecharacteristicsof ionicwindanditseffectonelectrostatic precipitators.J.AerosolSci.20,330-344(1994).

44.M.Abdel-Salam.Influenceof humidityonchargedensityandelectricfieldinelectrostatic precipi-

tators.J. Phys.D.Appl.Phys.25,1318-1322(1992).45.V.H.Belba,W.T.GrubbandR.L.Chang.The potentialof  pulse-jet baghousesfor utility boilers.Part1:Aworldwidesurveyof users.J.Air WasteManage.Ass.42,209-213(1992).46.C.J.Bustard,J.M.CushingandR.L.Chang.The potentialof  pulse-jet baghousesfor utility boilers.

Part2:Performanceof  pulse-jetfabricfilter  pilot plants.J.Air WasteManage.Ass.42,1240-1249(1992).

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 32/37

210

47.D.G.Sloat,R.P.GaikwadandR.L.Chang.The potentialof  pulse-jet baghousesfor utility boilers.Part3:Comparativeeconomicsof  pulse-jet baghouse, precipitatorsandreverse-gas baghouses.Air Waste43,120-128(1993).

48.B.Svensson.Advancedfabricfiltersfor effectiveemissioncontrolinthesteelmakingindustry.ABB

Rev.10, 23-26(1990).49.Anon.Advancedfiltrationtechnologytosatisfytomorrow'slegislation.Filtr Sep.30,37-38(1993).50.W.Brame.Fabricfilter apparatus,AustralianPat.AU-B-35992/89(1989).51.T.G.Ebner,C.J.Bustard,F.J.SaganandR.L.Chang.Designanddevelopmentof anovelfilter 

cagefor improvedcleaningandextended baglife.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.1.Washington,DC(1993).

52.T.Gennrich.Filter  bagshelpmeet particulatecontrolstandards.Power Eng.97,37-39(1993).53.G.A.Kudlac,G.A.Farthing,T.SzymanskiandR.Corbett.SNRBcatalytic baghouselaboratory

 pilottesting.Environ.Prog.11,33-38(1992).54.W.T.McKenna.Filter mediaselectionfor fabricfilters.Industrial boilers,CFBs,andincinerators

In:Proc.1990 Ind.Power Conf.,PWR Vol.9.StLouis,MO(1990), pp.9-13.

55.G.A.Brinckman.MicroporousGore-Tex®membranefilter mediacanhelpcontrolsubmicron par-ticulatematter,heavymetal,anddioxan/furanemissions.In:Air andWasteManagementAss.85thAnn.MeetingandExhibition.KansasCity,MO(1992)(paper 92-111.05).

56.F. Noël,M.Dufour andG.Gosselin.Developmentof adustcollector for  bark  boiler exhaustgases.In:1st N.AmericanConf.onEmergingCleanAir TechnologiesandBusinessOpportunities.Toronto,Canada(1994).

57.G.Gosselin.Processfor removingdustfromhightemperaturegasstreams.USPat.5112368(1992).58.R.Barnes.A parametricstudyof theeffectsof textile processingvariablesonthefiltrationefficiency

of a wovenglassfabric.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostatiPrecipitation,Vol.1.Washington,DC(1993).

59.L.Bergmann.Conductivefabricsindustcollectors.Staub.Reinhaltungder Luft53, 307-309(1993).60.T.GrafeandG.Kelley.Baghouseandcartridgedustcollectors:acomparison.Am.Cer.Soc.Bull.72,69-73(1993).61.G.F.Weber,S.R. NessandD.L.Laudal.Simultaneous NOxand particulatecontrolusinga

catalyst-coatedfabricfilter.In:Int.Power GenerationConf.SanDiego,CA(1991)(ASME paper 91-JPGC-FACT-2).

62.G.F.Weber,S.R. NessandG.L.Schelkoph.Catalyticfabricfiltrationfor simultaneous NOxand par-ticulatecontrol.Quarterlytechnical progressreport,Oct.1-Dec.31, 1993.ReportDOE/PC/9036T13(1994).

63.A.S.Viner,G.P.Greiner andL.S.Hovis.Advancedelectrostaticstimulationof fabricfiltration: performanceandeconomics.JAPCA38,1573-1582(1988).

64.S.RaoandD.V.S.Murthy.

Electrostaticallyenhancedfabricfiltration.CEWChem.Eng.World24, 21-24(1989).65.Y.Yamamoto.Filter for  particulatematerialsingaseousfluids.USPat.5368635(1994).

66. NationalTechnicalInformationService,UnitedStates.Gasscrubbers(Latestcitationsfromthe NTISDatabase),July1993,111citations,documentPB93-881811/XAD.

67.P.J.Loftus,D.B.Stickler andR.C.Diehl.Confinedvortexscrubber for fine particulateremovalfromthefluegases.Environ.Prog.11,27-32(1992).

68.K.A.Jonsson.Gascleaningmethodsandapparatus.USPat.5076818(1991).69.D.P.Burfordand1.G.Pearl.InitialresultsfromtheCT-121innovativecleancoaltechnology

demonstration projectatGeorgia power's plantYates.In:Proc.JointASME/IEEEPower GenerationConf.KansasCity,KS(1993)(ASME paper 93-JPGC-EC-12).

70.J.J.Schwab.Venturiscrubber and process.USPat.5279646(1994).71.K.D. NguyenandD.R.Spink.Scrubber  productsfor acidrainandair toxicscontrol.In:1st N.AmericanConf.andExhibition:EmergingCleanAir TechnologiesandBusinessOpportunitieToronto,Canada(1994).

72.C-C.Chen,H-K.ShuandY-K.Yang. Nucleation-assisted processfor theremovalof fineaerosol particles.Ind.Eng.Chem.Res.32,1509-1519(1993).

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 33/37

211

73.S.V.Sheppard.Fine particleremovalfor hazwasteincineratorswiththeionizingwetscrubber.In:86thAnn.MeetingAir andWasteManagementAssociation.Denver,CO(1993)(paper 93-TP51.01).

74.T.F.Burger,D.M.Collins,S.M.CollinsandM.R.Burger.Circulatingair scrubber.CanadianPat.1316122(1993).

75.L.R.Waterland,D.J.Fournier,Jr.,J.W.LeeandG.J.Carroll.Tracemetalfateinarotarykilnincinerator withanionizingwetscrubber.WasteManage.11,103-109(1991).76.S.Sumiyoshitani.Effectsof anappliedelectricfieldoncollectionefficiency byachargeddropletfor dust particlesinchargeddropledscrubbers.AerosolSci.Tech.20, 71-82(1994).77.H.Polat,Q.Hu,M.PolatandS.Chander.Theeffectof dropletand particlechargeondustsup-

 pression bywettingagents.In:Proc.6thUSMineVentilationSymp.SaltLakeCity,UT(1993), pp.535-541.

78.E.B.Hanf andW.Ellison.FGDmisteliminatorsfor 0.002LB/MMBTUsolid particulateemission.In:Proc.JointASME/IEEEPower GenerationConf.KansasCity,KS(1993)(ASME paper 93-JPGC-EC-9).

79.Anon.Two-stagescrubber 

systemremoves

HCl,Cl2.Chem.Eng.Prog.10,23(1994).80.A.1.Lainer,T.D.Israfilov,1.T.ElperinandV.L.Meltser.Studyof counterflowtrappingof alunitedust.Sov.J. Non-FerrousMetals48,43-45(1975).81.J.Sun,B.Y.H.Liu,P.H.McMurryandS.Greenwood.Methodtoincreasecontrolefficienciesof 

wetscrubbersfor submicron particlesand particulatemetals.J.Air WasteManage.Ass.44,184-185(1994).

82.K.W.Wilson,J.C.HaasandM.B.Eshelman.Applicationsof movinggranular-bedfilterstoadvancedsystems.In:Coal-firedPower Systems'93:AdvancesinIGCCandPFBCReviewMeeting.Morgantown,WV(1993)(reportDOE/MC/27423-93/C0215).

83.K.W.Wilson,J.C.HaasandM.B.Eshelman.Granular-bedandceramiccandlefiltersincommercial plants:acomparison.ReportDOE/MC/27423-3513(1993).

84.W.Yang,R. Newby,T.LippertandD.Keairns.MGBFconceptlooksgoodfor hotgascleanup.ModemPower Sys.12, 21-24(1992).85.C.A.P.Zevenhoven,B.ScarlettandJ.Andries.Thefiltrationof PFBCcombustiongasinagranular 

 bedfilter.Filtr.Sep.29,239-244(1992).86.C.A.P.Zevenhoven,K.R.G.HeinandB.Scarlett.Movinggranular  bedfiltrationwithelectrostatic

enhancementfor high-temperaturegasclean-up.Filtr.Sep.30,550-553(1993).87.J.S.Mei,P.C.YueandJ.S.Harlow.Fluidized-bedfiltrationfor  particulateclean-up.In:Proc.1993

Int.Conf.onFluidizedBedCombustion.SanDiego,CA(1993), pp.1351-1358.88.T.C.Ho,L.Tan,C.ChenandJ.R.Hopper.Metalemissionscontrolthroughheterogeneousdepo-

sitionduringfluidized bedincineration.J.Hazard.Mater.24,292-293(1990).89.B. Neukirchen.Reductionof 

heavymetalanddioxanemission

 bymeansof anactivatedcarbonfilter 

onthehazardouswasteincinerationfacilityatRZR Herten.In:Air PollutionControl:Papersfromthe9thWorldCleanAir Congr.Montreal,Canada(1992)(paper IU-18E-04).90.W.PeukertandF.Löffler.Influenceof temperatureon particleseparationingranular  bedfilters.

Powder Technol.68,263-270(1991).91.Y.Otani,C.KanaokaandH.Emi.Experimentalstudyof aerosolfiltration bythegranular  bedover 

awiderangeof Reynoldsnumbers.AerosolSci.Technol.10, 463-474(1989).92.SorbentTechnologiesCorp.Supported-sorbentinjection.In:1st N.AmericanConf.andExhibition:

EmergingCleanAir TechnologiesandBusinessOpportunities.Toronto,Canada(1994).93.J.G.Toher,P.FeldmanandK.S.Kumar.Circulatingdryscrubbers-presentandfuturecapabil-ities.In:1st N.AmericanConf.andExhibition:EmergingCleanAir TechnologiesandBusiness

Opportunities.Toronto,Canada(1994).94.H.R.Paur,W.Schikarski,W.Baumann,C.H.Leichsenring,W.Linder andH.Mätzing.Stateof theartinelectron beamdryscrubbingof fluegas.In:Air PollutionControl:Papersfromthe9thWorldCleanAir Congr.Montreal,Canada(1992)(paper IU-18A-03).

95.P.M.Eggerstedt,J.F.ZieversandE.C.Zievers.Choosetherightceramicfor filteringhotgases.Chem.Eng.Prog.89,62-68(1993).

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 34/37

212

96.L.R.White,T.L.Tompkins,K.C.HsiehandD.D.Johnson.Ceramicfiltersfor hotgascleanup.J.Eng.GasTurb.Power 115,665-669(1993).

97.C.Butcher.Hotnewsinceramicfilters.Chem.Eng.(London)505,27-29(1991).98.T.W.Smith. Newdevelopmentsinhigh-efficiency particulateair filtration.Am.Cer.Soc.Bull.72,

79-84(1993).99.J.Seville.Handlinghotgas.ProcessEng.74,51-54(1993).100.G.OndreyandS.Moore.Gascleaningcomesoutof the bag.Chem.Eng.101, 28-31(1994).101.W.Cheung,J.P.K.Seville,R.Clift,C.J.Bower andA. N.Twigg.Filtrationandcleaningcharacter-

isticsof ceramicmedia.In:4thInt.FluidizedCombustionConf.London(1988), pp.II/9/ 1-II/9/ 1102.J.Stringer andA.J.Leitch.Ceramiccandlefilter  performanceattheGrimethorpe(UK) pressurized

fluidized bedcombustor.In:Int.GasTurbineandAeroengineCongr.andExposition.Orlando,FL(1991)(ASME paper 91-GT-381).

103.J.Stringer andA.J.Leitch.Ceramiccandlefilter  performanceattheGrimethorpe(UK) pressurizedfluidized bedcombustor.J.Eng.GasTurbinesPower Trans.ASME114,371-379(1992).

104.M.Durst,M.Müller,M.R.SchnellandA.R.Wagner.Performanceof rigidceramicfilter elements

inan8,000hour durabilitytestathightemperatures.In:Proc.1991Int.Conf.onFluidizedBedCombustion,Vol.3.Montreal,Canada(1991), pp.1081-1086.105.S.Laux,B.Giernoth,H.Bulak andU.Renz.Hotgasfiltrationwithceramicfilter elements.In:

Proc.1993 Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.1241-1251.106.R.Clark,P.Holbrow,J.E.Oakley,K.BurnardandJ.Stringer.Somerecentexperienceswiththe

EPRIhotgasrigidceramicfilter atGrimethorpePFBCestablishment.In:Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.1251-1258.

107.C.E.Selmer andW.T.Bakker.Evaluationof siliconcarbidecandlefilters.In:Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.1259-1264.

108.T.Eriksson,J.Isaksson,P.StÅberg,E.KurkelaandV.Helanti.Durabilityof ceramicfiltersinhot

gasfiltration.BioresourceTechnol.46,103-112(1993).

109.K.R.Valentino, N.R.Brown,J.J.Brown,Jr.andW.T.Bakker.Durabilitytestingof ceramiccandlefiltersinPFBSenvironments.In:Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.1375-1383.

110.H.Leibold,F.DirksandV.Rüdinger.ParticulateemissionsfromaLLWincinerator andoff-gascleaningwithanewtypeof ceramiccandlefilter.WasteManage.9, 87-94(1989).

11 J. Jalovaara,I.HippinenandA.Johkola.ParticleremovalinPFBCusingafibrousceramiccandlefilter.In:Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993),

 pp.713-718.112.R.A.BrownandA.J.Leitch.Filtrationof PFBCdustsusingarigidceramictubetypefilter.In:

Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.1229-1239.

113.K.HigashiandH.Maeno.Thelateststatusof the

developmentof theadvancedceramictubefilter.

ReportsRes.AsahiGlassCo.,Ltd.42,81-95(1992).114.J.P.K.Seville,R.Legros,C.M.H.Brereton,C.J.LimandJ.R.Grace.Performanceof rigidceramicfiltersfor CFBCgascleaning.In:Proc.1991Int.Conf.onFluidizedBedCombustioVol.1.Montreal,Canada(1991), pp.279-286.

115.M.J.MuddandJ.D.Hoffman.OperatingdatafromtheTIDDhotgascleanup program.In:Proc.1993 Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.719-727.

116.T.E.Lippert,G.J.Bruck,R.A. NewbyandE.E.Smeltzer.Specificfilter designsfor PFBC.In:Coal-firedPower Systems'93:AdvancedinIGCCandPFBCReviewMeeting.Morgantown,WV(1993)(reportDOE/MC/21023-93/C0212).

117.J.F.Zievers,P.Eggerstedt,E.C.ZieversandD. Nicolai.Whataffectsthecostof hotgasfilter 

stations?J.Eng.GasTurbinesPower,Trans.ASME115, 652-657(1993).118.C.M.Urban,L.C.LandmanandR.D.Wagner.Dieselcar  particulatecontrolmethods.In:DieselParticulateEmissionsControl.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 830084)(1983), pp.87-96.

119.P.R.Miller,J.Scholl,S.Bagley,D.LeddyandJ.H.Johnson.Theeffectsof a porousceramic particulatetraponthe physical,chemicaland biologicalcharacter of diesel particulateemissions.

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 35/37

213

In:DieselParticulateEmissionsControl.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 830457)(1983), pp.159-185.

120.J.J.Tutko,S.S.Lestz,J.W.Brockmeyer andJ.E.Dore.Feasibilityof ceramicfoamasadiesel particulatetrap.In:DieselParticulateTraps.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 840073)(1984), pp.15-24.121.C.Bertoli,F.E.Corcione, N.DelGiacomo,G.PoliceandM.Migliaccio.Performanceevaluationof  particulatetrapsfor  passenger car dieselengines.In:AdvancesinEngineEmissionControlTechnology.Presentedatthe12thAnn.Energy-SourcesTechnologyConf.andExhibition.Houston,TX(1989), pp.27-35.

122.K.Takesa,T.UchiyamaandS.Enamito.Developmentof  particulatetrapsystemwithcrossflowceramicfilter andreversecleaningregeneration.SAETrans.100, 428-439(1991)(SAEtech. paper 910326).

123.K.Takesa,T.UchiyamaandS.Enamito.Developmentof Asahi particulatetrapsystem.ReportsRes.AsahiGlassCo.,Ltd41,197-214(1991).

124.J.Kitagawa,

T.HijikataandS.Satoru.Electricheatingregenerationof largewall-flowtypeDPF.In:GlobalDevelopmentsinDieselParticulateControl.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 910136)(1991), pp.63-71.

125.A.Balzotti,G.M.Cornetti,F.Pidello,M.SigneandV.Scorsone.Italiancity buseswith particulatestraps.In:AdvancesinDieselParticulateControl.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 900114)(1990), pp.79-86.

126.S.T.Gulati,D.W.Lambert,M.B.HoffmanandA.Tuteja.Thermaldurabilityof aceramicwall-flowdieselfilter for lightdutyvehicles.In:DieselParticulateControl,Trap,andFiltrationSystems.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 920143)(1992), pp.69-79.

127.M.G.Grenier andS.G.Hardcastle.SafetyandhealthintheCanadianmineenvironment.Anoverviewof ventilation,dust,radiationanddieselemissionresearch.CIMBull.83,41-46(1990).

128.F.B.Walton,P.J.HaywardandD.J.Wren.Controlledenergydepositionindiesel particulatefiltersduringregeneration bymeansof microwaveirradiation.In:AdvancesinDieselParticulateControl.Warrendale,PA,Societyof AutomotiveEngineers(SAEtech. paper 900327)(1990), pp.131-140.129.R.F.AbramsandR.L.Goldsmith.Fieldtestingof ceramicmembranegasfilters.In:10thParticulate

ControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).130.C.J.Bustard,S.M.Sjostrom,R.H.SlyeandJ.Foote.Applicationof novelfiltrationtechnolo-

giestotheMHD process.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).

131.R.L.GoldsmithandB.A.Bishop.Catalyticfiltrationdeviceandmethod.USPat.5221484(1993).132.K.Benedek andM.Flytzani-Stephanopoulos.Cross-flow,filter-sorbentcatalystfor  particulate,SO2

and NOxcontrol.Seventhquarterlytechnical progressreport.ReportDOE/PC/89805-T8,1992.

133.R.A. Newby,T.E.Lippert,E.E.Smeltzer,A.RobertsonandD.Bonk.Crossflowfilter  performancewithsecond-generationPFBCcarbonizer fuelgas.In:Proc.1993Int.Conf.onFluidizedBedCombustion,Vol.2.SanDiego,CA(1993), pp.703-712.134.M.ParishandA.B.Jeffrey.Ceramicfilter elementswithtailoredmacro-andmicrostructures.Filtr.

Sep.32,31-35(1995).135.R.Chang.CompactHybridParticulateCollector (COHPAC).USPat.5158580(1992).136.L.Lamarre.COHPingwith particulates.EPRIJ.18,18-23(1993).137.A.K.Hindocha,B.BrownandR.Chang.Commercialdemonstrationof COHPAC.In:10thPar-

ticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.1.Washington,DC(1993).

138.K.Steinbacher,H.SchmidtandW.Leussler.Processandapparatusfor  purifyingdustand pollutant-

containingexhaustgases.AustralianPat.AU643794(1993).139.K.Steinbacher,H.SchmidtandW.Leussler.VerfahrenandVorrichtungzunReinigungstaub-undschadstoffhaltiger Abgase.EuropeanPat.EP461695(1991).

140.H.Schen.Pollutionemissioncontrolsystem.USPat.5171446(1992).141.J.Dixkens,H.FissanandT.Dose. New particlesamplingtechniquefor directanalysisusing

total-reflectionX-rayfluorescencespectrometry.Spectrochim.Acta48B,231-238(1993).

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 36/37

214

142.R.M.Burton.Methodandapparatusfor samplingair contaminants.PCTInt.Pat.WO9306910(1993).

143.Anon.Highvolume particlesamplingandanalysis.AtmosphericMonitoring&Abatement News,July,7(1994).

144.D.E.Pike.Apparatusfor thequantificationof dustcollectibility.USPat.5119684(1992).145.Anon.Choosingthecorrect particulatemonitor for your facility.BHAGroupInc.,companyliter-ature,June14(1994).

146.S.Rowsell.Spark detectionhelpto preventfiresindustcollectionsystems.Cdn.Firefighter,July,19 (1995).

147.K.Morris.Expertsystemcontrolof fabricfilters.Filtr.Sep.28, 275-280(1991).148.H.V.KrigmontandE.L.Coe,Jr.Flue-gasconditioning:keyadvancesinrecentyears.Power 136,

30-36(1992).149.D.L.LaudalandS.J.Miller.Controlling particulateemissionsfromcoalcombustion plantstacks-

ammoniaandsulphur trioxidegasesareinjectedupstreamof  baghouse.USPat.5034030(1991).150.W.

Humphries,R.Beck 

andA.Lowe.Effectof ammoniainjectiononfabricfilter  pressuredrop.J.Air WasteManage.Ass.41,1523-1527(1991).151.L.A.Rikhter,S.L.Chernov,A.A.AverinandS.V.Cherepov.Improvingtheefficiencyof removalof high-resistanceashinelectrostatic precipitators bychemicalconditioningof fluegases.ThermalEng.38, 137-140(1991).

152.R.S.Dahlin,T.R.Snyder andP.V.Bush.Effectsof sorbentinjectionon particulate properties.PartI.Low-temperaturesorbentinjection.J.Air WasteManage.Ass.42,1592-1602(1992).153.R.S.Dahlin,T.R.Snyder andP.V.Bush.Effectsof sorbentinjectionon particulate properties.PartII.High-temperaturesorbentinjection.J.Air WasteManage.Ass.43,91-96(1993).154.C.B.Sedman,R.E.Valentineand N.Plaks.Evaluationof  pilotESP performancewithelevated

loadingsfromsorbentinjection processes.In:9thSymp.onParticulateControl.Williamsburg,VA

(1991)(reportEPA/600/D-91/244).155.J.B.Doyle,E.A.PirshandW.Downs.Integratedinjectionand bagfilter housesystemfor SOx-NOx particulatecontrolwithreagent/catalystregeneration.CanadianPat.1273474(1990).

156.G.A.Kudlac,G.A.Farthing,T.SzymanskiandR.Corbett.SNRBcatalytic baghouselaboratory pilottesting.Environ.Prog.11, 33-38(1992).

157.R.A. Newby,M.A.Alvin,D.M.Bachovchin,W.C.Yang,E.E.Smeltzer andT.E.Lippert.IntegratedLowEmissionsCleanupsystemfor directcoalfueledturbines(moving bed,fluid bedcontactor/ceramicfilter).Twenty-fifthquarterlyreport,Oct.-Dec.1993.ReportDOE/MC/2423705(1993).

158.P.V.BushandT.R.Snyder.Implicationsof  particulate propertiesonelectrostatic precipitator andfabricfilter  performance.Powder Technol.72, 207-213(1992).

159.T.R.Snyder.Fundamentalmechanismsinfluegasconditioning.Quarterlyreport,Oct.-Dec.1993.ReportDOE/PC/90365-T13(1994).160.J.Magill,P.Caperan,J.Somers,K.Richter,S.Fourcaudot,P.Barraux,P.Lajarge,J.A.Gallego-

Juarez,E.Riera-FrancoDeSarabia,G.Rodriguez-Corraland N.Seyfert.Characteristicsof anelectro-acoustic precipitator (EAP).J.AerosolSci.23,S803-S806(1992).

161.A.Renoux.Actiondesondesacoustiquessur lesaerosols.In:Air PollutionControl:Papersfromthe9thWorldCleanAir Congr.Montreal,Canada(1992)(paper IU-18F-05).162.L.Song,G.H.KoopmanandT.L.Hoffmann.Animprovedtheoreticalmodelof acousticagglom-eration.J.Vib.Acoustics,Trans.ASME116,208-214(1994).163.M.A.Al-Nimr andV.S.Arpaci.Acoustical propertiesof interactingandagglomerated particles.

J.SoundWb,165,19-30(1993).164.T.L.Hoffmann,W.Chen,G.H.Koopman,A.W.ScaroniandL.Song.Experimentalandnumericalanalysisof  bimodalacousticagglomeration.J.Vib.Acoustics,Trans.ASME115,232-240(1993).165.M. N.Mansour,R.R.Chandran,J. N.Duqum,A.W.Scaroni,G.H.KoopmanandJ.L.Loth.

Particlecollectionenhancement byacoustics.In:Coal-firedPower Systems'93:AdvancesinIGCCandPFBCReviewMeeting.Morgantown,WV(1993)(reportDOE/MC/26288-93/C0

7/27/2019 Developmentsin the control of fine particulate.pdf

http://slidepdf.com/reader/full/developmentsin-the-control-of-fine-particulatepdf 37/37

215

166.M. N.Mansour.Pulsecombustedacousticagglomerationapparatusand process.USPat.5197399(1993).

167.USDOE.SonicEnhancedAshAgglomerationandSulfur Capture.Quarterlytechnical progressreport,Sept.1993-Jan.1994.ReportDOE/MC/26288-3688(1993).

168.W.C.FinneyandW. N.Shelton.Pulsedelectron beam precharger.Finalreport,Sept.1989-May1992(progressreport).ReportDOE/PC/89768-T14(1992).169.L.H.Hentz,F.B.JohnsonandA.Baturay.Air emissionstudiesof sewage-sludgeincineratorsat

thewestern branchwaste-water treatment-plant.Water Environ.Res.64,111-119(1992).170.V.J.PettiandP.Maurin.'Cleanair actcompliance'trash-to-energyfacilities-retrofittingfor acid

gascontrol.In:Proc.JointASME/IEEEPower GenerationConf.KansasCity,KS(1993)(ASME paper 93-JPGC-FACT-5).

171.H.HackfortandJ.Borchardt.Influencingandcontrollingultrafine particulateemissionsfromaCFB-wasteincinerator.J.AerosolSci.23,S729-S732(1992).

172.A.Arrowsmithand N.Ashton.Air  pollutioncontrolfromthemineral processingindustries.Min-eralsEng.4,1071-1080(1991).

173.P.R.Dawson.Recentdevelopmentsiniron-oresintering.Part4:Thesintering process.Ironmaking&Steelmaking20,150-159(1993).174.USDOE.Hotgascleanuptestfacilityfor gasificationand pressurizedcombustion.Quarterly

technical progressreport,Oct.-Dec.1992.ReportDOE/MC/25140-3555(1992).175.W.E.Powers,M.W.Short,J.A.EvensenandB.A.Dennison.Retrofitoptionsfor controlling

 particulate-emissionsfromamagnesiumsulfiterecoveryfurnace.TappiJ.75,113-120(1992).176.D.Adair,J.L.StaffordandG.A.Raemhild.Innovativedryer andemissioncontrolsystemsat

a particleboardinstallation.In:Proc.WashingtonStateUniversityInt.Particle-board/ComposMaterialsSeriesSymp.Pullman,WA(1990), pp.209-225.

177.L. Nudo.Capturingheavymetals.Pollut.Eng.25,80-82(1993).178.R.McInnes,K.JamesonandD.Austin.Scrubbingtoxicinorganics: particulatesarecontrolled

with baghousesor electrostatic precipitators,whilenonmetallicsarescrubbed.Chem.Eng.97(9),116-121(1990).179.R.J.Cowley,B.P.Gallagher andB.M.,Jr. Nee.Developmentandexecutionof ametals pretest

 programfor ahazardouswasteincinerator.Hazard.WasteHazard.Mater.11(1), 31-51(1994).180.E.Cocchiarella,M.S.GreenfieldandS.Chubbs.Theeffectof foamyslagon basicoxygen

steelmaking processemissions.CIMBull.86(974), 56-61(1993).181.C.A.PopejoyandF.R.Weintraub.Asystemsapproachtocontrollingchromeelectroplating

emissions.In:Air PollutionControl:Papersfromthe9thWorldCleanAir Congr.Montreal,Canada(1992)(paper IU-18E-10).

182.R.W.McIlvaine.Forecastandmarketsfor  particulatecontrolsystems.In:10thParticulateControl

Symp.and5thInt.

Conf.onElectrostatic

Precipitation,Vol.1.

Washington,DC

(1993).183.P.L.FeldmanandK.S.Kumar.Thechallengeof high-efficiencycontrolof fine particles.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.2.Washington,DC(1993).

184.M.D.Durham,D.B.Holstein,R.G.Rhudy,R.F.Altman,T.A.Burnett,L.LepovitzandG.Blythe.Performanceof ESPswithsmallSCAsinspraydryer retrofitapplications.In:10thParticulateControlSymp.and5thInt.Conf.onElectrostaticPrecipitation,Vol.1.Washington,DC(1993).