dissipative dynamics of spins in quantum dots a.o. caldeira universidade estadual de campinas...

62
Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Upload: donna-bearman

Post on 28-Mar-2015

224 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipative dynamics of spins in quantum dots

A. O. Caldeira

Universidade Estadual de CampinasCampinas, BRAZIL

Page 2: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Collaborators

Harry Westfahl Jr. – LNLS – BRAZILFrederico Borges de Brito – UNICAMP – BRAZIL Gilberto Medeiros-Ribeiro – LNLS – BRAZIL Maya Cerro – UNICAMP/LNLS – BRAZIL

Page 3: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

O que é dissipação quântica?

Movimento dissipativo+

Mecânica quântica

Uma breve preparação

Page 4: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Movimento dissipativo

Page 5: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Movimento dissipativo

Movimento em um meio viscoso

Dissipação + Flutuações

O movimento Browniano

Page 6: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

A Mecânica Quântica através de alguns exemplos

O tunelamento de uma partícula quântica

Page 7: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

A Mecânica Quântica através de alguns exemplos

O tunelamento coerente de uma partícula quântica

Page 8: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Mecânica QuânticaX

Dissipação

• A mecânica quântica se aplica a sistemas nas escalas atômicas e sub-atômicas: sistemas isolados ou sujeitos a interações externas controladas.

• A dissipação ocorre em sistemas macroscópicos sujeitos à influência (incontrolável) do ambiente onde estão inseridos.

Page 9: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Onde os dois efeitos podem ser simultaneamente observados?

?

Quântico (microscópico)

Clássico(macroscópico)

md 910 md 610

mdm 69 1010

Page 10: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

mdm 69 1010 Sistemas meso e nanoscópicos

Superconducting Quantum Interference Devices (SQUIDs):

O paradigma

H

Page 11: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Sistemas magnéticos

Partículas magnéticas

Tunelamento coerente de partículas magnéticas(103 104 spins por partícula)

Page 12: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Sistemas de dois níveis

Vários sistemas aqui apresentados envolvem sobreposições de duas configurações

ba

Page 13: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dispositivos e qubits

Dissipação destrói a coerência necessária para ofuncionamento do processador quântico: descoerência

Page 14: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Spin eletrônico em pontos quânticos

Um possível candidato a qubit NANO ???

Page 15: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Introduction

• Main goal – Study of the possibility of implementation of solid state

qubits: spins in self assembled quantum dots

• Candidates and drawbacks – Photons » non-interacting entities – Optical Cavity » weak atom-field coupling – ion traps » short phonon lifetime – NMR » low signal – Superconducting devices » decoherence – Spins in quantum dots » ?

Page 16: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Quantum bits (DiVincenzo '01)

• Well defined two level system– Single electron spin

• Quantum dots: Coulomb blockade + Pauli exclusion

• Addressing– Well defined energy splittings

• g-factor (Landé) engineering

• Reset– Energy splitting » kT

• Electronic Zeeman frequency

• Gates– Resonant EM Field

• Microcavity

• Long decoherence times– Isolated from dissipative channels

• Strong electronic confinement

Page 17: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Quantum bits (DiVincenzo '01)

• Well defined two level system– Single electron spin

• Quantum dots: Coulomb blockade + Pauli exclusion

Page 18: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Self Assembled Quantum Dots

STM scans of self-assembled island formation through epitaxial growth of Ge on a Sisubstrate. Left scans: 50nm x 50nm. Right scan: 35nm x 35nm (Courtesy of G.Medeiros-Ribeiro)

Page 19: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dots

Model

Electronic confinement

Page 20: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Electronic confinement

• Coulomb Blockade

1e 2e

5e3e 4e 6e

s-shell p-shell

by G. Medeiros-Ribeiro

Page 21: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Quantum bits (DiVincenzo '01)

• Addressing– Well defined energy splittings

• g-factor (Landé) engineering

• Reset– Energy splitting » kT

• Electronic Zeeman frequency

Page 22: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Addressing and resetting

...+dVψψg+dVψψg=g BBAAeff

SRL- strain reducing layer

gA gA

gAgA

gB gC

samples A, D

sample C

• g-factor engineering

G. Medeiros-Ribeiro, E. Ribeiro, H. W. Jr., Appl. Phys. A, 2003; cond-mat/0311644

Page 23: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Quantum bits (DiVincenzo '01)

• Gates– Resonant EM Field

• Microcavity

• Long decoherence times– Isolate from dissipative channels

• Strong electronic confinement

Page 24: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Magnetic moment (red vector) in a magnetic field (brown vector) : the conservative dynamics

– Precession of the moment around the external field direction

SBgμ=dtSd

B

0

S

Dissipative spin dynamics

Page 25: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipative spin dynamics

• Relaxation dynamics– Landau-Lifshits damping (yellow arrow) drives the system towards a

collinear state

S

SSBλ

SBgμ=dtSd

B

0

λ

Page 26: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Noise– Fluctuating terms (green arrow) to our equations of motion

S

Sb+SSBλ

SBgμ=dtSd

i

B

λ

Dissipative spin dynamics

Page 27: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

• Quantum noise and dissipation– Damping and Noise from microscopic interaction with lattice

phonons

Static Field:

Noise+Fluctuations: Phonons

Oscillating Field (microcavity):

,BgμΔ B 0

,ΩtcosBgμtε B 1

Page 28: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

• Quantum dissipation formulation:

xz

y

• Noise and dissipation

Page 29: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Bloch-Redfield equations– Linear differential equations of motion (quantum average of

components)

Determined by noise time correlation function

xz

yJ

Microscopic dissipative spin dynamics

yz

yzyzyyyzxy

xzxzxxxyx

σΔ=dtdσ

tAσtΓσtΓσΔσtε=dtdσ

tAσtΓσtΓσtε=dtdσ

/

/

/

tA,tΓ,tΓ iijii

Page 30: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Fluctuating magnetic field (noise)

Electrons:

Phonons:

Spin-Orbit Interaction:

Orbital degrees of freedom:2D Harmonic Oscillator states

OpticalAcoustic

e-Ph interaction: PiezoelectricDeformation

PotentialMagneto

-elastic

RashbaDresselhaus

Fluctuating magnetic fields RB

Page 31: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipation Mechanism

• No bath• No spin-orbit interaction

Page 32: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• No bath• Spin-Orbit interaction

Dissipation Mechanism

Page 33: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipation Mechanism

• Orbital contact with the phonon bath

• Non-interacting spin and orbit

Page 34: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipation Mechanism

• Orbital contact with the phonon bath• Spin-orbit interaction

– Indirect spin entanglement with the bath

Page 35: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Lateral– - LQD (Hanson et al ’03)– - VQD (Fujisawa et al ’02)– - SAQD (Medeiros-Ribeiro et al ’99)

• Vertical (frozen):

Electronic Confinement

meVω 10

meVω 500

0ωω

meVω 50

Spin-Orbit Hamiltonian:

,BgμΔ xB ,ωmγβ c parameters: 0ω

yyy†y

zzz†zxSO

Pβσ++aaω+

Pβσ+aaω+σΔ

H

2

1

2

1

2

0

0

Page 36: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Acoustic Phonon Bath

65

3

102

355

=δ● “orbital” bath spectral function

piezoelectric– deformation potential

ωωθωω

δωm=ωJ D

s

D

sDs

2

3=s5=s

● GaAs

● InAs

65

3

105

149

Approximate form of the Hamiltonian

2

22

2

220

**

2

2

1

2

2

1

2

qm

Cqm

m

p

qmm

pHH

aa

aaaa

a a

a

SOphe

Page 37: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Effective Bath of Oscillators

Equivalent Hamiltonian:

Laplace transform of the equations of motion for the spin:

)()(ˆ)(ˆ zFzzK

)(ˆlim0

iKIm=ωJ eff

allows us to define an effective spectral function

Page 38: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Spin Orbit Phonon bath

– B is the generalized incomplete beta function

As seen by the spins...

where

D

ss

DD ωω

φδ+ωω

ω

ω=ωZ 1

22

0

0102

s,x,B+s,x,Bπ

x=xφ s

s

s

s

D

s

+s

D

s

eff

ωω

δ+ωZ

ωω

δβm

=ωJ 2

22

2

2

Page 39: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Bath resonance

Behaviour of the effective bath spectral function

Piezoelectric coupling:

H. W. Jr. et al.Phys. Rev B. 70 (2004)

6

23

2

5

32

D

Deff

ωω

δ+ωZ

ωω

δβm

=ωJ

Page 40: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Dissipative Mechanism)1( sδ• weak coupling

)1( sδ

Bath resonance

• strong coupling

210 sπ

δω~Ω s

s

s

s δ

)π(sω~Ω

2

20

Page 41: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Effective spectral function

• Low frequency limit ( and )

Always super-ohmic– See also (Khaetskii & Nazarov '01)

sΩω s

sDD δωω

ωω

∕1

0 1

– Can be ohmic!

24

0

2

+s

D

Dseff ω

ωωω

δβmωJ

• High frequency limit ( )

2222

42

s

Ds

eff ωω

δsπ

βmωJ

Ds ωωΩ

Page 42: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

yz

yzyzyyyzxy

xzxzxxxyx

σΔ=dtdσ

tAσtΓσtΓσΔσtε=dtdσ

tAσtΓσtΓσtεdtdσ

/

/

/

Microscopic dissipative spin dynamics

xz

y

• General expression for the microscopic spin dynamics:

The Bloch-Redfield equation

Page 43: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

• General expression for the coefficients

ijU is the free spin time evolution operator

Page 44: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

• Long time asymptotic behavior– (No driving) Damped precession around the static field

direction

2coth

211

)/2(1

ΔΔJ=

Tt sxx

0)()(0)( ttAt xzy

)(2

1)/2( JtAx

yz

zyzyyyzy

xxxxx

σΔ=dtdσ

σΓσΓσΔ=dtdσ

AσΓdtdσ

/

/

/

Page 45: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

2coth

2

1

1)/2(

1

ΔΔJ

=T

txx

s

Page 46: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

Page 47: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Microscopic dissipative spin dynamics

Page 48: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Driven spin dynamics

ztt ˆcos)( 0 • Transverse external field

• Useful parameters for the model

detuning

effective field amplitude

dephasing

Page 49: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

ΔΩ Δ5.0Ω

Driven spin dynamics

Peaks: ||0 S

Page 50: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Driven spin dynamics

Peak: S

Page 51: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Two distinct time regimes

Driven spin dynamics

R

• Short time dynamics

• Long time dynamics

Page 52: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Long time dynamics

s

Resonant dynamics s

Page 53: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Resonant dynamics

• Very long decoherence (relaxation) times– Good for keeping quantum information – Bad for reseting

T 1

Page 54: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Very long decoherence (relaxation) times– Good for keeping quantum information – Bad for reseting

Resonant dynamics

Page 55: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Short time dynamics

Resonant dynamics s

Page 56: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Very long decoherence (relaxation) times– Good for keeping quantum information – Bad for reseting

Resonant dynamics

Page 57: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

• Very long decoherence (relaxation) times– Good for keeping quantum information – Bad for reseting

Resonant dynamics

Resonance dominated

Page 58: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

ΔΩ Resonant dynamics

Page 59: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Resonant dynamics

Bulk valuesΔΩ

Page 60: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Off-resonance dynamics

Bulk values0.8ΔΩ

Page 61: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Bath assisted cooling

– A high degree of polarization can be achieved in short times with a sequence of (ns) short pulses

A. E. Allahverdyan et al., Phys. Rev. Lett. 93 (2004)

• Reset pulses– Use the large dissipation mechanism (cooling)– Reset times O(ns)

Page 62: Dissipative dynamics of spins in quantum dots A.O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL

Summary

• Indirect dissipation mechanism: Spin Orbit Phonon• Non-perturbative approach reveals a new resonance and new

regimes of dissipation• Perturbative regime only valid for large confinement energies

(SAQD)• Solution of the Bloch-Redfield equations reveals two

dynamical regimes• Short time dynamics dominated by the bath resonance

Thanks:HP-Brazil, FAPESP, CNPq