dna sequencing via transverse transport: possibilities and

35
Massimiliano Di Ventra Department of Physics, University of California, San Diego Group Matt Krems Yoni Dubi H. Appel S. La Fontaine Former Members Johan Lagerqvist (London) Mike Zwolak (LANL) Yuriy Pershin (USC) Roberto D’Agosta (Spain) Neil Bushong (NC) Na Sai (U. Texas, Austin) Tony Schindler (UNM) John Gamble (Wooster) Yu-Chang Chen (Chiao Tung U.) Zhongqin Yang (Fudan Univ.) Mairbek Chshiev (UA) DNA sequencing via transverse transport: possibilities and fundamental issues M. Zwolak and M. Di Ventra, Physical approaches to DNA sequencing and detection, Rev. Mod. Phys. 80, 141 (2008).

Upload: ledung

Post on 01-Jan-2017

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: DNA sequencing via transverse transport: possibilities and

Massimiliano Di VentraDepartment of Physics, University of California, San Diego

Group

Matt Krems

Yoni DubiH. AppelS. La Fontaine

Former Members

Johan Lagerqvist (London)Mike Zwolak (LANL)Yuriy Pershin (USC)Roberto D’Agosta (Spain)Neil Bushong (NC)Na Sai (U. Texas, Austin)Tony Schindler (UNM)John Gamble (Wooster)Yu-Chang Chen (Chiao Tung U.)Zhongqin Yang (Fudan Univ.)Mairbek Chshiev (UA)

DNA sequencing via transverse transport:possibilities and fundamental issues

M. Zwolak and M. Di Ventra, Physical approaches to DNA sequencing and

detection, Rev. Mod. Phys. 80, 141 (2008).

Page 2: DNA sequencing via transverse transport: possibilities and

Outline

� Sequencing via transverse transport

� Quantum transport + Molecular Dynamics

Page 3: DNA sequencing via transverse transport: possibilities and

A primer on DNA

Adenine GuanineThymine Cytosine

Backbone

Humans ~ 3 Billion base pairs

Page 4: DNA sequencing via transverse transport: possibilities and

• Driven by biased electrodes, DNA can

be analyzed as it translocates a nanopore

Kasianowicz et al Proc. Natl. Acad. Sci. 1996

Pore

Mathe, et al. PNAS 2005

Idea: ionic current in nanopores

α-hemolysin nanopore

Page 5: DNA sequencing via transverse transport: possibilities and

Idea: Transverse TransportM

icro

cha

nn

els

Micro

cha

nn

els

FIB Milled Channels

(10-50-nm width)

(a)

AFM Formed Channel

(1-5-nm width and length)

STM Formed Nanoelectrodes

2-nm width

-A-C-T-G-

A C T G

DNAVoltage Biased

translocaton

M. Zwolak and M. Di Ventra,

Nano Lett. 5, 421 (2005)Ramsey et al., unpublished

e-

||Er

⊥Er

Page 6: DNA sequencing via transverse transport: possibilities and

Transverse Transport

( )btDNAHE

EGΣ−Σ−−

=1

( ) ( ) ( )[ ]∫ −= EfEfETdEh

eI bt

2

M. Zwolak and M. Di Ventra,

Nano Lett. 5, 421 (2005)

Use ratio of currents as a

measure of their difference

Page 7: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

0 0.05 0.1Voltage (V)

101

102

103

I A/I

XG

C

T

Electrode Surface

Single Nucleotides

M. Zwolak and M. Di Ventra,

Nano Lett. 5, 421 (2005)

Page 8: DNA sequencing via transverse transport: possibilities and

0 0.05 0.1Voltage (V)

101

102

103

I A/I

XG

C

T

Single Nucleotides

M. Zwolak and M. Di Ventra,

Nano Lett. 5, 421 (2005)

Transverse Transport (static)

Page 9: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

Nearest neighbors

Electrode “size” ~ 1 nm

Transverse Transport (static)

Page 10: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

Page 11: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

What about variations of orientation?

Transverse Transport (static)

Page 12: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

Consider 6 different changes:

Translations:

Rotations:

x y z

x y z

Electrode Surface

Transverse Transport (static)

Page 13: DNA sequencing via transverse transport: possibilities and

Transverse Transport (static)

Electrode Surface

100

101

102

103

104

I A/I

X

GC

T

Variations of orientation

Transverse Transport (static)

Page 14: DNA sequencing via transverse transport: possibilities and

Noise

• Thermal noise:

V= 1 V; I= 1 nA; ∆f= 10 kHz ⇒ ith= 0.4 pA

• Shot noise:ishot< ith

• 1/f noise:operate at f > 0

• Structural noise

R

fTki Bth

∆=

4

Electronic Noise

Page 15: DNA sequencing via transverse transport: possibilities and

Experimental Pores

� Use 4 probes to collect more info (not necessary though)

5 µm

500 nm

Fujimori, et al. Nanotech. 2004.

Page 16: DNA sequencing via transverse transport: possibilities and

Molecular Dynamics

� Thousands of atoms

� Full quantum mechanical treatment not possible

NAMD, UIUC

Page 17: DNA sequencing via transverse transport: possibilities and

Molecular Dynamics

12.5 Å

25 Å

� Inner diameter 12.5 Å

� Outer diameter 25 Å

� Potassium chloride concentration 1M

� Room Temperature

pore

Top view

E

Page 18: DNA sequencing via transverse transport: possibilities and

Molecular DynamicsAdenine

Page 19: DNA sequencing via transverse transport: possibilities and

Molecular Dynamics

Adenine

Field effects:� Bending� Stretching

||Er

Page 20: DNA sequencing via transverse transport: possibilities and

Transverse Transport (dynamics)

J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Letters 2006

Page 21: DNA sequencing via transverse transport: possibilities and

Transverse Transport (dynamics)

Page 22: DNA sequencing via transverse transport: possibilities and

Transverse Transport (dynamics)

15 bases

Page 23: DNA sequencing via transverse transport: possibilities and

Transverse Transport (dynamics)

Page 24: DNA sequencing via transverse transport: possibilities and

Driving electric field

� As the field strength increases, the minimum diameter can be decreased

� Decreasing field, bases bend less

0.2x electric field

⊥<< EErr

||

⊥Er

||Er

Page 25: DNA sequencing via transverse transport: possibilities and

Controlling the dynamics

J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Letters 2006

⊥Er

Page 26: DNA sequencing via transverse transport: possibilities and

Current Distributions

{ } ∏∏∏∏

∏∑ ∑

====

=

= +++

=−=N

n

n

G

N

n

n

C

N

n

n

T

N

n

n

A

N

n

n

X

GCTAX PPPP

PX

PError

1111

1

I ,,,n4

1

J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Letters 2006

Accuracy 99.9 %

107 measurements/ s

Genome seq. time < 7 hours

No parallelization

Page 27: DNA sequencing via transverse transport: possibilities and

Current distributions1 Volt, 12.5 Å spacing

Lagerqvist et al., Nano Lett. 2006

Page 28: DNA sequencing via transverse transport: possibilities and

Current distributions1 Volt, 12.5 Å spacing

Lagerqvist et al., Nano Lett. 2006

• Large bias, risk of electrolysiseven though not obvious at nano scale

Page 29: DNA sequencing via transverse transport: possibilities and

Current distributions

1 V

Lagerqvist et al., Nano Lett. 2006 Lagerqvist et al., BioPhys. J. 2007

0.1 V

Page 30: DNA sequencing via transverse transport: possibilities and

Stabilizing field

Lagerqvist et al., BJ 2007

Adenine, 15 Å spacing

• Stabilizing field helps increase the conductance

Page 31: DNA sequencing via transverse transport: possibilities and

Finite bandwidth

Lagerqvist et al., BJ 2007

0.1 V

Page 32: DNA sequencing via transverse transport: possibilities and

Finite bandwidth

Lagerqvist et al., BJ 2007

Average:

100 / 1,000 / 10^7 times

Sample at:

10 GHz / 1 GHz / 100 kHz

0.1 V

Page 33: DNA sequencing via transverse transport: possibilities and

Effect of probes and environment

1) Electrical probes help distinguish bases due to averaging over configurations

2) Water is not the main source of noise

Without water

With water

3) Main sources of noise: thermal andion fluctuations

� May lead to decoherence

0.1 V

Page 34: DNA sequencing via transverse transport: possibilities and

Conclusion: Sequencing protocol

1) Bases can be distinguished statistically if some control is exerted: transverse field.

2) Need to slow down DNA translocation so that more measurements per base can be performed.

⊥<< EErr

||

3) Need to calibrate the device with polybase strands. Re-calibration is probably necessary at intervals of time due to possible atomic rearrangements of the nanopore/electrodes.

Page 35: DNA sequencing via transverse transport: possibilities and

References

1) M. Zwolak and M. Di Ventra, Physical approaches to DNA sequencing and detection, Rev. Mod. Phys. 80, 141 (2008).

2) J. Lagerqvist, M. Zwolak, and M. Di Ventra, Influence of the environment and probes on rapid DNA sequencing

via transverse electronic transport, Biophys. J. 93, 2384 (2007).3) J. Lagerqvist, M. Zwolak, and M. Di Ventra, Comment on “Characterization of tunneling conductance across

DNA bases”, Phys. Rev. E 76, 013901 (2007).4) J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, 6, 779

(2006).5) M. Zwolak and M. Di Ventra, Electronic signature of DNA nucleotides via transverse transport, Nano Lett. 5,

421 (2005).

Thanks