dr. bill pezzaglia orbital motion updated: 2012july12 physics: mechanics 1

44
Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Upload: harold-davidson

Post on 13-Jan-2016

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Dr. Bill Pezzaglia

Orbital Motion

Updated: 2012July12

Physics: Mechanics1

Page 2: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Orbital Motion

A. Galileo & Free Fall

B. Centripetal Force

C. Orbits

2

Page 3: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

A. Galileo & Free Fall

1. Projectile Motion

2. Centripetal Acceleration

3. Galileo & Orbits

3

Page 4: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1. Projectile Motion

Path of a projectile

• Old view was that projectile travelled in an arc until it ran out of impetus and then it fell straight down.

• Galileo shows the natural path is a parabola (which is a combination of constant speed in the horizontal motion with constant acceleration in the vertical)

4

Page 5: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1b. Simultaneous Fall

Simultaneous Fall: Galileo shows a bullet fired horizontal will hit ground at same time as bullet dropped.

(why?)

5

Page 6: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1c Simultaneous FallBoth balls fall in the vertical direction at the same acceleration.

Their paths only differ because of the constant horizontal velocity

6

Page 7: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Fig 2-11, p.54

Galileo proposed that throwing a ball at different speeds causes it to travel farther before it falls to Earth.

Throw it fast enough, and as it falls the earth’s curve falls underneath it, and it falls forever (“free fall”)

The critical speed is called Orbital Velocity.

For Earth, orbital velocity is 17,500 miles/hr, or 8 km/sec

Orbital velocity

7

Page 8: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2. Centripetal Acceleration•Uniform circular motion: the tangential speed is constant, but the direction of the velocity changes, so there is acceleration towards the center.

8

2

2

Ra

RvR

va

c

c

Page 9: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

3. Orbital Speed•Galileo deduces that if the cause of the centripetal acceleration is gravity (centripetal force) then we can calculate the orbital speed

9

gRv

gR

vac

2

Page 10: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

B. Centripetal Force

1. Centripetal Force

2. Centrifugal Force

3. Ficticious Force

10

Page 11: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1. Centripetal Force•Newton (1684) introduces concept of the force towards the center needed to make an object go in a circular path.

11

22

mRR

vmF

Page 12: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2. Centrifugal Force•Huygen (1659?): If you are in a rotating frame of reference, you will “feel” a force outward

•At equator of earth it will make you “feel” less heavy by 0.5%

12

22

mRR

vmF

Page 13: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Example: loop the loop•How fast must roller coaster go so it won’t fall off the track?

13

gRv

mgR

vm

2

Page 14: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

3. Fictitious Forces•In an accelerated reference frame (e.g. accelerating truck) you “feel” forces that mimic gravity.

14

Page 15: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

C. Orbits

1. History

2. Kepler’s Laws

3. Newton’s Laws

15

Page 16: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1a. Claudius Ptolemy

• Claudius Ptolemaeu (87-150 A.D.).

• “Geocentric Model” the earth is at the center of the universe

• Planets move on “epicycles”

16

Page 17: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1b. Nicolaus Copernicus

(1473-1543 AD)Common belief was that the earth was the center of the universe, and everything revolved around us.

Copernicus developed the Sun-centered (heliocentric) view of the Universe, which improved the predictionsof planetary positions.

17

Page 18: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

1b. Copernican System

• Instead of having 5 deferents with 5 epicycles, you only need 5 circles for the planets.

• The only thing that orbits the earth is the moon.

18

Page 19: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

One of the most important books ever …Nicolaus Copernicus “On the Revolution of Heavenly Spheres” (1543)

19

Page 20: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

20The 1000 Zlotych bill features Copernicus. Due to inflation, it was worth about 10 cents USD when I was last in Poland

Page 21: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2a. Tycho

•Tycho Brahe measuring star positions (without a telescope)•Measurements of position of Mars showed deviations from Copernican model!•He built a big observatory with gigantic protractors (no telescopes yet!)

21

Page 22: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2b Tycho Brahe’s Uraniborg Observatory 22

Page 23: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2b.3 Tycho Brahe (1546-1601)

•He suggested a weird hybrid model where planets go around sun, but sun goes around earth

23

Page 24: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c. Johannes Kepler (1571-1630)

•Tycho at first invited Kepler to help in analysis of his data, but then jealously wouldn’t let him have the information.

•On his deathbed he gave Kepler the data.

•Kepler used it (particular data on Mars), to develop three laws of planetary motion.

24

Page 25: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.1 Kepler’s 1st Law: Orbits are Ellipses

1605: Kepler realized that the motion of Mars could not be explained with a circular orbit, or the multiple circles proposed by Ptolemy.

He accepted Copernicus’ view that Mars was in orbit around the Sun, rather than around the Earth.

He experimented (mathematically) with orbits of various shapes, and found that Mars’ orbit best fits an ellipse.

25

Page 26: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.1 Kepler’s 1st Law (1605)

• Law No. 1. Each planet moves around the Sun in an orbit that is an ellipse, with the Sun at one focus.

– This is contrary to the earlier belief that the orbits were perfect circles or combinations of circles.

26

Page 27: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Fig 2-3, p.45

27

• Ellipses, circles (parabolas and hyperbolas) are “conic sections”, studied first by the greeks.

• But it would NEVER occur to the greeks that an orbit is an ellipse. (why?)

Page 28: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Fig 2-4, p.45

Focus Focus

Drawing an ellipse

28

Page 29: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

The Ellipse

Do you remember any of this from high school geometry?

29

Page 30: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Focus Focus

Highly eccentric

Not very eccentric

30

Page 31: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

Fig 2-10, p.53

Planet orbits tend to havelow eccentricity (nearlycircular).

Comet orbits tend tobe highly eccentric.

31

Page 32: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

32

Page 33: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.2 Kepler’s 2nd Law (1609)

Kepler also noticed that whenMars is closest to the Sun in its elliptical orbit, it moves faster than when it is fartheraway.

This led him to formulate hisSecond Law of Planetary Motion.

33

Page 34: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

According to his second law, a planet moves fastest when closest to the Sun (at perihelion) and slowest when farthest from the Sun (at aphelion). As the planet moves, an imaginary line joining the planet and the Sun sweeps out equal amounts of area (shown as colored wedges in the animation) in equal intervals of time.

562c.2 Kepler’s 2nd Law (Equal areas in Equal Times) 34

Page 35: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.2 Kepler’s 2nd Law 35

Kepler’s 2nd law is actually a form of conservation of angular momentum

m

L

m

mrvrv

t

A

221

21

Page 36: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.3 Kepler’s 3rd Law: “Harmonic Law” 36

Planets closer to the sun move faster.

This is consistent with his 2nd law, that showed a planet will move faster at perihelion.

He searched for a relationship between orbital period and distance to the sun.

Page 37: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

2c.3 Kepler’s 3rd Law (1618)

• The square of the orbital period (P) is directly proportional to the cube of the semimajor axis of the orbit (a).

P2 = a3

This law explains the proportions of the sizes of the orbits of the planets and the time that it takes them to make one complete circuit around the Sun.

[Note: in physics, the symbol “a” is also used to represent “acceleration”. Confused?]

Why is it called the “harmonic law”? Kepler thought the spacing between planets was related to musical intervals.

37

Page 38: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

38

Page 39: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

An example of Kepler’s third law: The orbit of Mars(Recall: P2 = a3)

Mars’ orbit period (P) is 1.88 years. P2 = 3.53

Kepler’s law says that P2 = a3, so 3.53 = a3. So then a = (3.53)1/3 (the cube root of 3.53), or 1.52.

Thus, the semimajor axis (average distance of Mars from the Sun) is 1.52 Astronomical Units.

But how big is an Astronomical Unit?

Kepler didn’t know.

39

Page 40: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

c. The distances of the planets from the Sun

• In the Copernican world view, the planets are in orbit around the Sun.

• Astronomers knew the relative distances of the planets, but not the absolute distances.

• Known: Jupiter is 5 times farther from the Sun than the Earth is. It takes Jupiter 12 times longer to go around the Sun than it does for the Earth.

• Not known: How many kilometers (or miles) are the Earth and Jupiter from the Sun?

• Fundamental Question: What is the absolute scale of the Solar System?

40

Page 41: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

“How large is the Astronomical Unit?”

Astronomical Unit (AU) The average distance from the Earth to the Sun

150,000,000 kilometers, or 93,000,000 miles

But how was this measured ?

41

Page 42: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

The Newton-Kepler Law• In the Principia Newton also deduced Kepler's

third law, but in an important new form

• Mass of central body: M = a3/P2

– Orbital Radius “a” (in astronomical units)– Period “P” (in years)– Mass “M” in units of “solar masses”

• To measure mass of– Earth, use moon’s orbit– Jupiter, use Galilean moons– Sun, use orbits of planets– Galaxy, use orbits of stars around galaxy

42

Page 43: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

In SI units•With Newton’s law of gravity, his 2nd law and Galileo’s centripetal acceleration, we can derive:

43

2

322

2

2

4

2

P

R

GG

RvM

P

Rv

R

mMG

R

vm

Page 44: Dr. Bill Pezzaglia Orbital Motion Updated: 2012July12 Physics: Mechanics 1

References44

• x