ecole polytechnique fédérale de lausanne epfl · ecole spéciale de lausanne 1853 1946 1969 today...

39
Ecole Polytechnique Fédérale de Lausanne EPFL EPFL Presentation | 02.2014

Upload: others

Post on 14-Jan-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Ecole Polytechnique

Fédérale de Lausanne

EPFL

EPFL Presentation | 02.2014

Ecole spéciale

de Lausanne

1853 1946 1969 Today

EPUL EPFLStudents

Faculty

11 399 1,293

56

9,868 (2013)

329 (2013)

Maison Bischoff, rue Saint-Pierre in Lausanne Former Hotel Savoy, 29-33 avenue de Cour in

Lausanne

1968 – Act on the Federal

Institutes of Technology

Ecublens-Dorigny

Looking back… More than 150 years

EPFL History

3

1969 … 2014

Looking back… 1969 to the present day

Premises > 54 hectares > approx. 561,800 sq.m

Fast-paced development (1969-

2014)

EPFLLausanne

ETHZurich

PSIP a u l S c h e r re r In s t i tu te

WSLF o re s t , S n o w &

L a n d s c a p e

EMPAMaterials

EAWAGWater management, treatment &

protection

EPFL at the heart of national endeavours

Students in the ETH Domain

Bachelor Students 13,622

ETH Zurich 8,444

EPFL 5,178

Master Students 7,208

ETH Zurich 4,778

EPFL 2,430

PhD Students 5,947

ETH Zurich 3,889

EPFL 2,058

Total 28,055 ETH Zurich 18,187 EPFL 9,868

ETH Domain = 2 Federal Institutes of Technology & 4 Research Institutes (2013)

CHF 2.27 B

Background The ETH Domain

Missions

Education Research

Technology Transfer

of scientists,

engineers & architects

advanced, fundamental & applied

to industry

& society

Background

EPFL’s three missions according to the Federal Act

6

13 Study Programmes, 316 Research Labs

Overview Education

Mathematics

Chemistry

Physics

ENAC

SB

IC

STI SV

CDM

CDH

5 Schools13 Sections

316 Laboratories and Research Groups

2 Colleges

7 Interdisciplinary Centers

26 InstitutesArchitecture, Civil

Engineering, Environmental

Science & Engineering

Human &

Social Sciences

Computer Science

Communication Science

Electrical Engineering

Microengineering

Mechanical Engineering

Materials Science

Life Sciences

& Technology

Bioiengineering

Management

of Technology

Financial Engineering

Transport, Energy,

Neuroprosthetics, Design

(EPFL+ECAL Lab) etc...

Overview Students

9,868 Students

in 2013

Switzerland

Europe

Asia & OceaniaAmericas

Africa

45.3%41%

2.6%

3.3%

7.7%

Origin of Students (Bachelor+Master+PhD)

8

Study programs at EPFL

Overview Education

Bachelor’s Master’s Doctorate~ 3 years ~ 2 years

Undergraduate Graduate

Master of

advanced Studies

EPFL

Bachelor’s

degree

programs

(13 programs)

EPFL

Master’s

degree

programs

(22 programs)EPFL doctoral school

(18 schools)

MAS

(6)

Swiss baccalaureate (without restrictions)

EU (with restriction)

Polymaths (Swiss students)

CMS(non-EU students)

Vocational baccalaureate

Other degrees (upon

application)

~ 4-6 years

~ 2,100 students ~ 2,000 students – PhD candidates 148 students~ 4,900 students

Swiss or foreign Bachelor’s

degrees

(upon application)

Swiss or foreign Master’s

degrees

(upon application)

Research Swiss Science

The world’s highest science productivity

since 1990 ... (OECD 2010)

SwitzerlandDanemarkNetherland

United States

Singapore

European Union (27)

China

Korea

Average of relative citations, figures by Thomson Reuters

…and one of the highest collaboration rates

Index of international collaboration, figures by Thomson Reuters

Switzerland

Danemark

Netherland

Singapore

United States

Korea

China

Very productive Swiss science

European Ranking 2013 – The EPFL is well-placed

Leiden

Citations/paper normalised by volume

and publication field, across all fields.

300 largest European universities.

Ranking

Shanghaï(Eng./Tech. & Computer Science)

1. University of Cambridge

2. EPFL

3. Imperial College, London

4. University of Manchester

5. ETH Zurich

Most cited scientists.

Number of papers published.

% of papers published in top 20 science

journals.

THE(Eng. & Technology)

1. University of Cambridge

2. University of Oxford

3. ETH Zurich

4. Imperial College, London

5. EPFL

Reputation.

Citations/paper normalised by publication

field, across all fields.

QS(Eng. & Technology)

Reputation.

Citations/paper.

Student/faculty ratio.

Main Criteria

Research

1. University of Cambridge

2. ETH Zurich

3. Imperial College, London

5. University of Oxford

4. EPFL

(Eng. & Technology)

1. EPFL

2. Weizmann Institute of Science

3. University of Cambridge

4. ETH Zurich

5. University of Oxford

(PP (top-10%) indicator)

Global Ranking 2013 – U.S. on top, EPFL close behind...

Ranking

Leiden(PP (top-10%) indicator – World)

Citations/paper normalised by volume and

publication field, across all fields.

World’s 500 largest universities.

Shanghaï(Eng./Tech. & Computer Science)

Most cited scientists.

Number of papers published.

% of papers published in top 20 science

journals.

15. EPFL

THE(Eng. & Technology)

15. EPFL

Reputation.

Citations/paper normalised by publication

field, across all fields.

QS(Eng. & Technology)

Reputation.

Citations/paper.

Student/faculty ratio.

Main Criteria

Research

1. MIT

2. Stanford University

3. Uni. of California, Berkeley

4. California Institute of Technology

5. Princeton University

1. MIT

2. Stanford University

3. Uni. of California, Berkeley

4. University of Texas

5. University of Illinois

1. MIT

2. Uni. of Calif, Santa Barbara

3. Stanford University

4. Princeton University

5. Harvard University

13. EPFL

1. MIT

2. Stanford University

3. University of Cambridge

4. Uni. of California, Berkeley

5. ETH Zurich

8. EPFL

(Eng. & Technology)

Europe

EPFL 4th in Europe, cumulative data for 2007-2013

European Recognition - ERC Grants (European Research Council)

Research

Cambridge

Oxford

EPFL

ETHZ

H.U. of Jerusalem

Imperial College

U.C. London

Weizmann

K.U. Leuven

116

108

76

81

74

68

66

60

38

40 Starting grants

36 Advanced grants

76

13

Alinghi (twice winner: 2003, 2007)

HYDROS: Hydroptère.chSolar Impulse

Great Technology Adventures

Innovation In figures

Start-Up development

168 start-upsestablished between 2000 and 2013

15

EPFL Campus

High-Performance Transaction Processing on Non-uniform

Hardware Topologies

Danica Porobic

[email protected]

DIAS, EPFL

Core Core Core

L1

L2

L1

L2

L1

L2

L3

Core

L1

L2

Memory controller

Inter-socket links

Core Core Core

L1

L2

L1

L2

L1

L2

L3

Memory controller

Core

L1

L2

Inter-socket links

17

Multisocket multicores

Communication latencies vary by an order-of-magnitude

L1

Inter-socket links Inter-socket links

50 cycles500 cycles

<10 cycles

IslandL3

OS

Impact of Islands: TPC-C PaymentThread Placement

0

2

4

6

8

10

12

Thro

ugh

pu

t (K

tps)

4socket x 6cores

39%

18

? ?? ?

Spread Island

Islands significantly impact OLTP applications

0

20

40

60

80

100

120

140

160

Sharednothing

Sharedeverything

Thro

ugh

pu

t (K

tps)

4.5x

4socket x 6cores

Communication granularity

19

Scaling-up on a 8-socket machine

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Thro

ugh

pu

t (M

TPS)

Number of sockets

Shared-nothing

Shared-everything

Islands significantly challenge scalability

8socket x 10coresProbing one row

Outline

• Introduction

• Impact of Hardware Islands on OLTP

• Adaptive Transaction Processing for Islands

• Conclusions

20

OLTP System Configurations

Shared-everything Shared-nothing Islandshared-nothing

21

Partition sensitive microbenchmark

• Single-site version– Probe/update N rows from the local partition

• Multi-site version– Probe/update 1 row from the local partition

– Probe/update N-1 rows uniformly from any partition

– Partitions may reside on the same instance

22

23

Multi-site transactions: reads

0

50

100

150

200

0 20 40 60 80 100

Thro

ugh

pu

t (K

Tps)

% Multisite transactions

Shared-everything

Shared-nothing

Island shared-nothing

Contention for shared data

No locks or latches

Messaging overhead

Fewer messages for 1 transaction

More nodes -> faster performance drop

4socket x 6coresN=10

0

10

20

30

40

50

60

0% 50% 100%

Tim

e p

er

tran

sact

ion

s (µ

s)

Multisite transactions

Logging

Locking

Communication

Xct management

Other

Where are the bottlenecks? Read case

24

Island shared-nothingN=10

Communication overhead dominates

25

Multi-site transactions: updates

0

20

40

60

80

100

120

0 20 40 60 80 100

Thro

ugh

pu

t (K

Tps)

% Multisite transactions

Shared-everything

Shared-nothing

Island shared-nothing

No latches

2 phase commit

Update distributed transactions are more expensive

4socket x 6coresN=10

0

50

100

150

200

250

300

0% 50% 100%

Tim

e p

er

tran

sact

ion

s (µ

s)

Multisite transactions

Logging

Locking

Communication

Xct management

Other

Where are the bottlenecks? Update case

26Several overheads contribute to the cost

Island shared-nothingN=10

OLTP on Hardware Islands

• Shared-everything: stable, but non-optimal

• Shared-nothing: fast, but sensitive to workload

• Island shared-nothing: a robust middle-ground

• Challenges:– Optimal configuration depends on workload and hardware

– Expensive repartitioning due to physical data movement

27Can we have one system that adapts to all cases?

Outline

• Introduction

• Impact of Hardware Islands on OLTP

• Adaptive Transaction Processing for Islands

• Conclusion

28

29

Critical path of transaction execution

Many accesses to shared data structures

Core Core Core Core Core Core Core Core

Data

System state

30

PLP: Physiologically partitioned SE

System state is still shared

Core Core Core Core Core Core Core Core

System state

31

Perfectly partitionable workload

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Thro

ugh

pu

t (M

TPS)

Number of sockets

Shared-nothing

PLP

Inter-socket accesses to system state are a bottleneck

8socket x 10coresProbing one row

32

ATraPos: Island-aware SE

Core Core Core Core Core Core Core Core

System state System state

33

Perfectly partitionable workload

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Thro

ugh

pu

t (M

TPS)

Number of sockets

Shared-nothingPLPATraPos

Island awareness brings scalability

8socket x 10coresProbing one row

34

Naive partitioning and placement

0

300

600

900

1200

1500

1800

2100

PLP ATraPosHW-aware

ATraPosLoad

balanced

ATraPos

Thro

ugh

pu

t (K

TPS)

Cores are overloaded with contending threads

8 socket x 10 core800K rows per table

Probing 1 row each from A and B

Probe A Probe B

1.9x

35

ATraPos partitioning and placement

0

300

600

900

1200

1500

1800

2100

PLP ATraPosHW-aware

ATraPosLoad

balanced

ATraPos

Thro

ugh

pu

t (K

TPS)

Ignoring Islands -> synchronization overhead

4.4x

Probe A Probe B

8 socket x 10 core800K rows per table

Probing 1 row each from A and B

36

ATraPos partitioning and placement

0

300

600

900

1200

1500

1800

2100

PLP ATraPosHW-aware

ATraPosLoad

balanced

ATraPos

Thro

ugh

pu

t (K

TPS)

ATraPos: balanced load + reduced synchronization

4.8x

Probe A Probe B

8 socket x 10 core800K rows per table

Probing 1 row each from A and B

37

TATP - speedup over PLP

0

1

2

3

4

5

6

7

GetSubData GetNewDest UpdSubData Mix

No

rmal

ize

d t

hro

ugh

pu

t

ATraPos

ATraPos improves performance of TATP by 3.1-6.7x

8socket x 10cores

PLP

38

Dynamic workloads

0

60

120

180

240

300

360

0 15 30 45 60 75 90

Thro

ugh

pu

t (K

TPS)

Time (s)

Static

ATraPos

ATraPos gracefully adapts to any change

8 sockets x 10 coresTATP

UpdSubData

GetNewDest

Mix

Repartitioning

Monitoring

• OLTP on Hardware Islands– Shared-everything: stable, non-optimal performance

– Shared-nothing: fast, sensitive to workload

– Island shared-nothing: a robust middle ground

– Optimal configuration depends on workload and hardware

• Adaptive transaction processing for Islands– Minimal inter-socket accesses in the critical path

– Workload and HW-aware partitioning and placement

– Lightweight monitoring and repartitioning

Summary

39Thank you!