electrical engineering assignment online support chat usa ... · voltage drops in the supply...

16
USA: +1-585-535-1023 UK: +44-208-133-5697 AUS: +61-280-07-5697 Online Support Chat Electrical Engineering Assignment Home About Us Electrical Engineering Topics Blog Submit Your Assignment Make Payment Home Electric Supply System (A.C.) 3;7. Electric Supply System (A.C.) Now-a-days power generation is three-phase, 50-Hz, usually at 11 kV. The generated voltage is stepped upto 132, 220 or 400 kV by means of step-up transformers. Then by means of three wire transmission lines electric power is carried to different places where it is received in sub-stations situated near cities. Here the voltage is stepped down to 66 or 33 kV and further carried through three-wire transmission lines to various sub-stations in the cities where the voltage is further stepped down to 11,6.6 or 3.3 kV. These voltages are further stepped down to 415 V to make available power to small consumers through 415/240 V, three-phase, four-wire distributors. Small consumers receive power at 415/240 V where they can use both three-phase and single-phase supply. Very small domestic consumers are often provided with single-phase supply at 240 V. Distribution of power at 415/240 V is called secondary or low voltage distribution system. Electric power to large consumers is, however, often supplied direct at 11 kV, 6.6 kV or 3.3 kV. Such consumers install their own sub-station to step-down voltage to 415/240 volts. 3.7.1. Three-phase four wire distribution system ·Electric power in India is supplied to the consumers by the State Electricity Boards. The following are the different systems by which power is distributed to the consumer: 1. Single-phase A.C. supply using a 2-wire system; 2.Three-phase A.C. supply using a 3-wire system; 3.Supply of three-phase and neutral using a 4-wire system. D.C. supply may also be available in certain areas, on either a two wire system at 220 V, or a three wire system with 440 V between the two outer conductors and 220 V between the outer conductors and the centre wire. However, D.C. supply is no longer commonly used in India and, therefore, we rarely come across D.C. installations. The standard voltages at which the supply authorities deliver power to the consumer are generally as follows: Single phase: 240 V, 50 Hz, 2 wire Three phase: 415 V, 50 Hz, 4 wire. In India and in many European countries the frequency of the supply is 50 Hz. In the USA the power supply frequency is 60 Hz. Standardisation of supply voltage and frequency is extremely important to both electricity supply authorities as well as the manufacturers of electrical equipment. In the 3-phase, 4-wire power distribution system, power is supplied from the sub-station through 4-wires. Three of these wires are called live or phase or line wires. The fourth wire is usually at zero voltage and is called neutral wire. The neutral wire is earthed at the sub-station. The voltage between any two of the line wires in a 3-phase system is..J3 times the voltage between any phase wire and the neutral. Electric loads of the consumers are connected in such a way that all the three phases are equally loaded. If the individual phases of the 3-phase systems are equally loaded the current through the neutral wire will be zero. In case of 3-phase motors, ovens etc. the three phases are equally loaded by their very design. In such cases the neutral wire may be omitted. But in cases where a large number of single phase loads have to be supplied, loads on the three phases are balanced by connecting various single phase consumers or groups of consumers to different phases of the 3- phase supply. Large consumers, particularly those with heavy motor loads, are provided with a 3-phase, 4-wire supply. Motors

Upload: others

Post on 24-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

USA: +1-585-535-1023

UK: +44-208-133-5697

AUS: +61-280-07-5697

Online Support Chat

Electrical Engineering Assignment

HomeAbout UsElectrical Engineering TopicsBlogSubmit Your AssignmentMake Payment

Home → Electric Supply System (A.C.)

3;7. Electric Supply System (A.C.)

Now-a-days power generation is three-phase, 50-Hz, usually at 11 kV. The generated voltage is stepped upto 132,220 or 400 kV by means of step-up transformers. Then by means of three wire transmission lines electric power iscarried to different places where it is received in sub-stations situated near cities. Here the voltage is steppeddown to 66 or 33 kV and further carried through three-wire transmission lines to various sub-stations in the citieswhere the voltage is further stepped down to 11,6.6 or 3.3 kV. These voltagesare further stepped down to 415 V to make available power to small consumers through 415/240 V, three-phase,four-wire distributors.Small consumers receive power at 415/240 V where they can use both three-phase and single-phase supply. Verysmall domestic consumers are often provided with single-phase supply at 240 V. Distribution of power at 415/240V is called secondary or low voltage distribution system. Electric power to large consumers is, however, oftensupplied direct at 11 kV, 6.6 kV or 3.3 kV. Such consumers install their own sub-station to step-down voltage to415/240 volts.

3.7.1. Three-phase four wire distribution system

·Electric power in India is supplied to the consumers by the State Electricity Boards. The following are the differentsystems by which power is distributed to the consumer:

1. Single-phase A.C. supply using a 2-wire system;

2.Three-phase A.C. supply using a 3-wire system;

3.Supply of three-phase and neutral using a 4-wire system.

D.C. supply may also be available in certain areas, on either a two wire system at 220 V, or a three wire system with 440V between the two outer conductors and 220 V between the outer conductors and the centre wire. However, D.C. supplyis no longer commonly used in India and, therefore, we rarely come across D.C. installations.

The standard voltages at which the supply authorities deliver power to the consumer are generally as follows:

Single phase: 240 V, 50 Hz, 2 wire

Three phase: 415 V, 50 Hz, 4 wire.

In India and in many European countries the frequency of the supply is 50 Hz. In the USA the power supply frequency is60 Hz.

Standardisation of supply voltage and frequency is extremely important to both electricity supply authorities as wellas the manufacturers of electrical equipment. In the 3-phase, 4-wire power distribution system, power is suppliedfrom the sub-station through 4-wires. Three of these wires are called live or phase or line wires. The fourth wire isusually at zero voltage and is called neutral wire. The neutral wire is earthed at the sub-station.The voltage between any two of the line wires in a 3-phase system is..J3 times the voltage between any phasewire and the neutral.Electric loads of the consumers are connected in such a way that all the three phases are equally loaded. If theindividual phases of the 3-phase systems are equally loaded the current through the neutral wire will be zero. Incase of 3-phase motors, ovens etc. the three phases are equally loaded by their very design. In such cases theneutral wire may be omitted. But in cases where a large number of single phase loads have to be supplied, loadson the three phases are balanced by connecting various single phase consumers or groups of consumers todifferent phases of the 3- phase supply.Large consumers, particularly those with heavy motor loads, are provided with a 3-phase, 4-wire supply. Motors

Page 2: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

and heavy heating loads are connected to 415 V, 3-phase supply and are called three phase loads. The load isbalanced over the three phases by equally distributing the lighting load and small power loads over the threephases. Consumers with load requirement more than 250 kVA are provided with supply at high voltage with asubstation installed in the consumer’s premises where voltage is stepped down to 415/240 V. Fig. 15 shows typical3-phase 4-wire distribution from a sub-station to the consumer.

Fig. 15. Three phase 4-wire distribution.

3.7.2. Voltage tolerances

Current carried by the electrical power distribution network varies at different times of the day. This leads to varyingvoltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltagei.e., 415/240 V at his terminals. Supply authorities are, therefore, permitted certain tolerances. Under the IndianElectricity Rules; the voltage fluctuation may not vary by more than 5% above or below the declared nominalvoltage and the frequency must be within ± 1% of the declared frequency of 50 Hz. Thus the terminal voltage mustbe within the range.

228 V to 252 V for a nominal voltage of 240 V;

394.25 V to 435.75 V for a nominal voltage of 415 V.

3.7.3. Service connections

The supplier’s distribution system brings power to the consumer through overhead lines or by means ofunderground cables to a place just outside the consumer’s premises.The line bringing electric power from supplier’s low voltage distributor upto the energy meter installed at theconsumer’s premises is called the service connection.Service connection may be by means of underground cables or by means of overhead conductors or cables,

Fig. 16 shows an underground service connection taken from an overhead distributor.

Page 3: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Fig. 16. An underground service connection taken from an overhead distributor.

Fig. 17 shows an overhead service connection-PVC weather proof cable service line.

Fig. 17. PVC weather proof cable service-line.

Page 4: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

3.7.4. Service mains

Having brought the supplier’s service line into the consumer’s premises it is now to be connected with theconsumer’s internal wiring. The supply authority have to charge the consumer for the electrical energy consumed.For this purpose the supplier’s service lines will be connected to the input terminal of the energy meter to be

provided by the supply authority.

Fig. 18. Block diagram of the meter distribution board.

Fig. 18 shows the block diagram of the meter distribution board.

ELECTRIC SUPPLY TO OUR HOUSES AND FACTORIES

Houses: Fig. 19 shows how supply comes to our houses.

·From a pole of overhead lines through service line or from sub-main in the street (L.T. Pillar) throughunderground cable to the house, electric supply enters our house.

The supply comes direct in energy meter fixed by supply authority.After energy meter the live and neutral wires are controlled in fuse and link supplied by supply authority.

Then comes owner’s main switch I.C.D.P. After passing through I.C.D.P. wires are againcontrolled in distribution box which may be three, four, five or more ways. Separate phase andneutral, from distribution board, goes in different rooms for every eight to ten points. Now-a-daysinstead of fuse grips, miniature circuit-breakers are used and instead of I.C.D.P. automaticisolators are used.

Page 5: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Fig. 19. Electric supply to houses.

Factorie: Fig. 20 showing how supply comes to factories.

Page 6: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Fig. 20. Factory wiring.

In factories or big buildings 3 phase four wire supply comes through overhead lines orcables to the factory in 3-phase meters, supplied by supply company.

From there, as shown in Fig. 20 supply comes in ICTP switch from which supplyenters in busbar section. From there it is distributed to different sections through ICTPswitches to give supply to 3 phase motors etc. and ICDP for single phase to givesupply to lighting load.

3.7.5. Electrical wiring systems

There are several wiring systems in use. Each system of wiring has its own particularadvantages, no one system is suitable for all installations. Great care, therefore, must be taken inthe selection of system which depends upon working voltages, atmosphere and class of buildingor size of installation.

Systems of wiring may be broadly classified as follows:

Page 7: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

1.Tree system

2.Distribution system.

1. Tree system:

In tree system branch circuits are tapped from the circuits main at convenient places.In this system there are many joints and often fault occurs which is very difficult to locate.This system is not used for installation purpose.

Advantages: Less costly.

Disadvantages:

(i) Poor appearance.

(ii) The fuses are scattered.

(iii) Voltage drop affected.

(iv) Fault location is difficult.

2. Distribution system:

In this system mains are taken to one or more distribution centres and connected to thedistribution boards. From those distribution boards connections to the branch circuits aretaken.·In this system no joints are required, each circuit can be readily disconnected from themain without interfering with other circuits.

This system is now-a-days widely used for indoor wiring in buildings.

Advantages:

(i) Good appearance.

(ii) Easy fault location.

(iii) Each circuit is protected by a fuse.

Page 8: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

(iv) Easy fuse replacement.

(v) Simple and easy for further extensions.

(vi) All the points are maintained almost at the same voltage.

Disadvantage:

It is costlier since more wire will be required to install this system.

I.E. rules recommend such a system.

Systems of Wiring for Domestic Installations

The various systems of wiring for domestic installations are:

Cleat wiring1.C.T.S. (T.RS.) wiring2.Wooden casing and capping wiring3.Lead-sheathed wiring4.Conduit wiring5.

- Surface conduct;

- Underground or concealed conduct.

1. Cleat wiring:

This type of wiring is not used practically for permanent wiring and is only suitable fortemporary wiring purposes such as for marriages with advantages of saving in labour andoverall cost.In this type of wiring, insulated conductors are supported on porcelain or wooden cleats.

The cleats are very easy to erect and fixed at a distance of 4.5 cm to 15 cm apart. V.I.R(Volcanised India Rubber) or P.V.C. (Polyvinyl chloride) wires are normally used in this system,though T.R.S. (Tough rubber sheathed system) wires can also be installed in special cleats for

Page 9: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

certain types of installation.

Fig. 21. Wires laid in three groove cleats.

Fig. 21 shows wires laid in three groove cleats.

Advantages:

(i) It is easy to retrieve the materials used.

(ii) Rare fire accidents.

(iii) Cheaper in cost comparatively.

(iv) Reduced risk of short-circuit (since the conductors are insulated from eachother).

(v) Inspections are easy.

(vi) Alterations can be made easily.

Disadvantages:

(i) Appearance not attractive.

(ii) Regular cleaning is needed.

(iii) Due to the exposure of the conductors, there is a risk of mechanical injury.

1. C.T.S. T.R.S. (Batten Wiring) :1.In such a wiring, the wires used are sheathed in tough rubber of P.V.C. wires and they areclipped on wooden button with clips. The button is fixed on the wall or ceiling.This wiring is suitable for damp climate, but cannot withstand much heat and so is notsuitable for places of very hot weather and there is also danger of mechanical damage andfire hazard. C.T.S. wires are not suitable for outdoor use. Therefore, they should not beexposed to direct sunlight and where there are corrosive acid fumes. At such places nowP.V.C. wire can be easily used.

Clips used are of the following two types:

1. Link clips

2. Joint link clips.

Advantages:

Page 10: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

(i) Less risk of short circuit.

(ii) Least risk of mechanical injury.

(iii) Cheaper than wooden casing and capping wiring.

Disadvantages:

(i) Skilled workmen are required to do the wiring.

(ii) Need to be protected from sunlight, rain etc.

(iii) Sharp bends should be avoided.

3. Wooden casing and capping wiring:

This type of wiring is most commonly used for indoor and domestic installations.Here, insulated conductors are laid inside rectangular teak wood boxes having groovesinside it. A rectangular strip of wood called capping, having same width as that of casing; isfixed over it.

The casing is attached to the wall or ceding (and they can be painted matching with walls andceiling). In place of wood, these days PVC is used.

The obvious objections to the wooden casing and capping system are that wood is veryinflammable. This type of wiring should not be used where there is a danger of mechanicaldamage or fire hazard according to I.E. Rules. Positive and negative wires should be takenin different channels and there should be no crossing of + ve and – ve wires in the channel,

Advantages:

(i) Less costly.

(ii) Wires are separated in respective grooves of the casing.

(iii) Easily accessible for inspection, repairs and alterations.

(iv) Suitable for low voltage installations.

Disadvantages:

(i) Wood may get damaged by white ants etc. (if wood is not properly seasoned)

(ii) There is a risk of damage due to fire.

(iii) For making proper casings and cappings, skilled carpenters are required.

4. Lead-sheathed wiring:

In lead-sheathed system the conductor, either twin core or three core, each beingseparately insulated and covered with the common lead sheath, is used. The lead-sheathedwires arc easily fixed by means of metal clips on wooden batten and form a good surfacesystem.Whenever the wires are broken for connections to switch or light point, a junction box mustbe used. The junction boxes are usually of metal and provided with some means of earthing so that continuity of the sheath is obtained.Being very costly, these wires are not used now-a-days.

5. Conduit wiring. Refer Fig. 22.

Page 11: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Fig. 22. Rigid conduit coupling (Screwed).

In conduit wiring V.1.R. wires, or P.V.C. wires are carried through steel or iron pipes goinggood protection from mechanical injury or fire risks.This system is the best and most desirable system of wiring for workshops and publicbuildings. It gives very good appearance when concealed.

In this wiring the pipes are cut with hacksaw and are threaded with die set for bend,tee junction box etc. and are then fixed on the walls on wooden gutties or plugs withsaddles. Then wires are drawn with the help of fish wire (steel wire).Now-a-days P.V.C. conduit pipes are also available which do not require threading.

Jointing is done with a special made solution. These are flexible and can be bent easily. Forconcealed wiring, the pipes are directly buried in the wall and roofs and then wires are drawnthrough them.

Advantages:

(i) No risk of fire.

(ii) Protection against mechanical injury.

(iii) The lead and return wires are carried in the same tube/pipe.

(iv) Earthing and electrical continuity is easily assured.

(v) It is shock proof if earthing and bonding is properly done.

(vi) Replacement/alteration of defective wiring is easy .

(vii) The whole system is water proof.

Disadvantages:

(i) As compared to other systems, it is costlier.

(ii) In order to avoid drop in voltage due to induction, bunching of wires needs to bedone.

(iii) This type of wiring requires skilled workers.

(iv) There is risk of short circuit under wet conditions (due to condensation of waterin the tubes/pipes).

(v) Its erection is not so easy and requires time.

Comparison of wiring in domestic use:

S. No. Aspect Cleat wiring

Woodencasingcappingwiring

C.T.S.Wiring

Metalsheathedwiring

Conductwiring

l. Cost Low Medium Medium Medium High2. Life Short Fair Long Long Very long

3.Possibility oflire

Nil Good Poor Poor Nil

Page 12: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

4.Mechanicalprotection

Nil Fair Fair Good Very good

5.Protectionfromdampness

Nil Slight Good Good Poor

6.Type ofpersonnalrequired

Semi-skilledHighlyskilled

Skilled SkilledHighlyskilled

Wiring Accessories:

The wiring accessory is any device associated with the wiring and electrical appliance of aninstallation, such as a fuse, plug, switch etc.

In a complete electrical wiring system the following wiring accessories are used:

Cut-outs1.Switches2.

(i) One-way switch

(ii) Two-way switch

(iii) Double pole switch

(iv) Table lamp switch

(v) Two-way centre off switch

(vi) Push button switch

(vii) Bed switch.

Meter1.Distribution board2.Socket 5A3.Socket 15A4.Plug top5.Holder6.

(i) Bracket holder

(ii) Batten holder

(iii) Pendant holder

Ceiling rose1.

10. Junction boxes

11. Fuses

(i) Round type fuse unit

(ii) Rewirable or kit-kat type-fuses

(iii) Carbridge type fuses

(iv) High rupturing capacity (HRC).

Conventional symbols:

WIRING

General Wiring

Page 13: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Wiring on Wall surface

Wiring below wall surface (concealed

Surface Conduit wiring

Concealed conduit wiring

Wiring going upward

Wiring going downward

Wiring passing vertically through a room.

Two way switch

Intermediate switch

Period limiting switch

Time switch

Pendent switch

Push button or bell push

Luminous push button

Restricted Access push button

SWITCHES:

Single pole switch

Two pole switch

Three pole switch

Single pole pull switch

Multiposition switch

Interlocking switch and socket outlet

SOCKET OUTLETS:

Socket outlet 5 amperes

Page 14: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Socket outlet 15 amperes

Socket outlet 5 amperes with switch

Socket outlet 15 amperes with switch

Interlocking switch and socket outlet 5ampere

Water tight light fitting

Specifications of wires:

For ordinary wiring the wires are of single solid conductors or multistrands.Where flexibility is required, flexible cords are used.Following types of wires are commonly used:

1.Volcanised India Rubber (V.LR.) and tough rubber sheathed (T.R.S.)

2.Polyvinyl chloride (P.V.C.) insulated

- Polyvinyl chloride (P.V.C.) insulated polyvinyl chloride (P.V.C.) sheathed

3.Weather proof wires

4.Flexible wires.

3.7.6. D.C. distribution

In a D.C. system the electrical energy may be fed and distributed either by two wire or by threewire system.

Two-wire D.C. distribution systems:

Fig. 23 shows a two-wire D.C. distribution system from generating station or substation to theconsumer’s terminals.

Fig. 23. Two-wire D.C. system.

This system consists of t\VO wires, one outgoing (known as positive wire) and another

Page 15: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

returning one (negative wire).Untapped feeders run into bus bars in suitable feeding points in the distribution area.Distribution cables are connected to the bus bars through fuses or links.Each separate consumer is fed from the distributor by a service cable tapped on to thedistributor at the nearest convenient point.

The electrical appliances and motors etc. are connected in parallel between the twowires.

Three-wire D.C. distribution systems:

This system consists of two outers and an earthed middle wire known as neutral wire.The lamps or consumer apparatus are connected between the neutral and one of the outer.

The voltage between the outers being twice that of consumer’s terminals increasesthe transmission efficiency and reduces the copper cost.

Search for: Search

Recent Posts

Why is it Necessary to Choose Assignment Help Solution?Why Look for Chemistry Homework Help?English and Education in Every Country Goes Parallel in Every GradeUse of Electrical Equipment in Commercial and Private OrganisationsDemand of Electrical Equipment in the Various Ways and Patterns

Recent Comments

Archives

May 2014January 2014November 2013October 2013March 2013

Categories

Blog

Meta

Log inEntries RSSComments RSSWordPress.org

Copyright © 2012-13 Electrical-engineering-assignment.com All Rights Reserved | FAQ | Privacy Policy | Terms &

Page 16: Electrical Engineering Assignment Online Support Chat USA ... · voltage drops in the supply cables. It is thus impracticable to give each consumer exact nominal supply voltage i.e.,

Conditions | Electrical Engineering Homework Help

Back to Top