energy futures · 39 new technologies unveiled at eni-mit press briefing ... been chronicled in...

44
Nanocale olar cell that elf-aemble, elf-repair MIT ENERGY INITIATIVE AUTUMN 2010 IN THIS ISSUE Energy Futures A promising lightweight battery for electric cars: New catalysts push up lagging efficiency MIT study confirms natural gas as bridge to low-carbon future Aiming at campus energy savings hitting the targets A breath of fresh air: Students explore alternatives for lab safety test

Upload: lenguyet

Post on 15-Sep-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Nanoscale solar cells that self-assemble, self-repair

The sun’s rays can be highly destructive to materials, so some of the novel solar energy systems now being developed may get less efficient as they are used. Plants deal with that problem by continually disassembling and reassembling their light-gathering molecules so they’re in effect always brand new. MIT researchers have now been able to mimic that strategy. They start with a mixture of components suspended in a soapy solution (above). They then filter out one of the components, and those that remain assemble themselves into a highly ordered series of light-harvesting, electricity-producing structures (front cover). For more details on the diagram and the research, see page 4.

M I T E n E r g y I n I T I a T I v E a u T u M n 2 0 1 0

I n T h I s I s s u E

Energy Futures

A promising lightweight battery for electric cars: New catalysts push up lagging efficiency

MIT study confirms natural gas as bridge to low-carbon future

Aiming at campus energy savings, hitting the targets

A breath of fresh air: Students explore alternatives for lab safety test

3 | Energy Futures | MIT Energy Initiative | Autumn 2010

r E s E a r C h • M I T E I

a l e t t e r f r o m t h e d i r e c t o r s

2 UpdateontheMITEnergyInitiative

r e s e a r c h r e p o r t s

4 Newphotovoltaictechnology:Nanoscalesolarcellsthatself-assemble, self-repair

8 Apromisinglightweightbatteryforelectriccars:Newcatalystspushup laggingefficiency

12 Predictingnaturalgasuse:Trends,trajectories,andtheroleofuncertainty

16 Undergroundstorageofcarbondioxide:Microbesmayhelpsealitin

18 Newinsightsintocapturingsolarenergy

r e s e a r c h n e w s

21 MITEIawardsfifthroundofseedgrantsforenergyresearch

e d u c a t i o n & c a m p u s e n e r g y a c t i v i t i e s

23 Abreathoffreshair:Studentsexplorealternativesforlabsafetytest

e d u c a t i o n

25 NamedEnergyFellows,2010–2011

26 MITEI’sundergraduateenergyresearchflourishes

27 Firstweekoncampusenergizesfreshmen

c a m p u s e n e r g y a c t i v i t i e s

29 Aimingatcampusenergysavings,hittingthetargets

o u t r e a c h

31 MITstudyconfirmsnaturalgasasbridgetolow-carbonfuture

34 MITEIreleasesreportoncriticalelementsfornewenergytechnologies

35 MITEIseminarsandcolloquia

lfee • laboratoryforenergyandtheenvironment

36 MartinFellowsexplorethechangingcoastalenvironment

o t h e r n e w s

37 DeutchnamedtoSecretaryofEnergyAdvisoryBoard

37 Herzogreceivesinternationalaward

38 MITEIExternalAdvisoryBoardmeets

m i t e i m e m b e r s

39 NewtechnologiesunveiledatEni-MITpressbriefing

39 MITEnergyFellowsSymposium

40 LatestseedgrantprojectssupportedbyMITEImembers

41 MITEIFounding,Sustaining,Associate,andAffiliatemembers

c o n t e n t s

Energy Futures ispublishedtwiceyearlybytheMITEnergyInitiative.Itreportsonresearchresultsandenergy-relatedactivitiesacrosstheInstitute.Tosubscribe,[email protected].

Copyright©2010MassachusettsInstituteofTechnology.Forpermissiontoreproducematerialinthisnewsletter,pleasecontacttheeditor.

NancyW.Stauffer,[email protected]

ISSN1942-4671(OnlineISSN1942-468X)

MIT Energy InitiativeTheMITEnergyInitiativeisdesignedtoaccelerateenergyinnovationbyintegratingtheInstitute’scutting-edgecapabilitiesinscience,engineering,management,planning,andpolicy.

MITEnergyInitiativeMassachusettsInstituteofTechnology77MassachusettsAvenue,E19-307Cambridge,MA02139-4307

617.258.8891web.mit.edu/mitei

Coverdiagram:ArdemisBoghossianG,MITDesign:TimBlackburnProofreading:LindaWalshPrinting:PuritanPress,Inc.PSB 10.10.0509

Printedonpapercontaining30%post-consumerrecycledcontent,withthebalancecomingfromresponsiblymanagedsources.

Energy Futures

2 | Energy Futures | MIT Energy Initiative | Autumn 2010

Update on the MIT Energy Initiative

a l e t t e r f r o m t h e d i r e c t o r s

Dear Friends,

MITEIhasjustcelebrateditsfourthbirthday.Wespentourfirstyearlayingthegroundworkandbuildingtheinfrastructureforourprogramsinresearch,education,campusenergymanagement,andpolicyoutreachandthelastthreeyearsadvancingthisagenda.NowisanopportunetimetorevisitandreflectonsomeofthechoicesmadeinstructuringMITEIandtoaddresstheopportunitiesandchallengesthatlieahead.

Fundamentally,thepathwayslaidoutforeachofthefourmissionareashaveprovedtobeveryproductive,andnewdirectionsarealsotakingshapeineacharea.ThesuccessofMITEItodatehasbeenaccomplishedthroughtheeffortsofanextraordinarygroupoffaculty,students,staff,private-andpublic-sectorpartners,alumni,andfriends.

Akeyinitialcommitmentwasadvancingenergyresearchbothforinnovationssupportingtoday’senergysystemsandfortransformational“gamechangers.”Thistwo-trackapproachwasdeemedessentialforreachingalow-carbonandsecureenergyfutureinthe2006MITEnergyResearchCouncilplanningreport,thedocumentthathasguidedourfirstfouryearsofoperation.

Thisjudgmenthasbeenreinforcedbythediminishinglikelihoodthatachargeoncarbondioxideemissionswillbeimplementeddomesticallyanytimesoon.Internationally,expectationsfortheclimatemeetinginCancunareconsiderablylessthantheywerefortheprecedingmeetinginCopenhagen.

Theinterplayofinnovationandtrans-formationishighlightedbyresultsfrom

therecentMITFutureofNaturalGasstudy,summarizedonpage31.Inthenearterm,aneconomicallyefficientpathtoalow-carbonfuturewilllikelybedrivenprincipallybythecombinationofreducedenergydemand,notablythroughimprovedbuildingsandincreasedvehicleefficiency,andthesubstitutionofnaturalgasforcoal.Thispathwaywillbesupplementedbygrowthinnuclearpowerandrenewabletechnologies.Thecombinationofefficiencyandnaturalgasformsthebridgetoalow-orzero-carbonfuture.

Toensurethatthisisa“bridgetosomewhere,”game-changing“zero-carbon”technologiesmustscaleupindramaticfashioninjustacoupleofdecades.ResearcharticlesinthiseditionofEnergy Futures delveintosomeofMIT’sworkonthesegame-changingoptions,includingsolarenergy(page4),vehiclebatterytechnology(page8),andcarbondioxidesequestra-tion(page16).ThisworkissupportedbyMITEIindustrypartners,eitherindividuallythroughsponsoredresearchorcollectivelythroughtheearly-stageseedgrantprogram.Thelaggingprogressontheenergypolicyfrontheightenstheimportanceofloweringthecostoftheseandothertransformationaltechnologiesandrapidlymovingthemintothemarket.

MITEI’sindustry-ledstrategyhasyieldedastronginnovationandtransformationresearchportfolioalignedwithbothfacultyinterestsandcompanystrategicdirections.TheprogramsofourearliestFoundingmembers,BPandEni,haveemphasizedsolidsconversionandsolarfrontiers,respectively.Whilethatworkcontinues,bothcollaborationsarealsoleadingtodeepeningstrategicpartnershipsinnewareas.Similarprogresshasbeenmadewithour

earliestSustainingmembers.Atthesametime,newpartnershipscontinuetoform.InOctober,wewerepleasedtoannouncethatShellhadjoinedtheInitiativeasitsnewestFoundingmember(seephotoatright).

Anewdirectionisalsotakinghold,namely,substantialmultiyearfederalprograms.Overthelasttwoyears,theUSDepartmentofEnergy(DOE)hasplacedrenewedemphasisonenergyscienceandtechnologyprogramsthataresustainedandcompetitivelyawarded.Theseprogramsarecomplementarytoourindustry-supportedprogramsandareopeningupnewopportunitiesforMITEIandforMIT.MIT’ssuccessintheEnergyFrontierResearchCenterandtheAdvancedResearchProjectsAgency-Energy(ARPA-E)competitionshasbeenchronicledinpreviouseditionsofEnergy Futures.

WehavealsoassumedakeyroleintheDOE-fundedNuclearEnergyInnovationHub,ledbyOakRidgeNationalLaboratory.Thishubisdedicatedtoprovidingandemployingnewpetascalesimulationtoolstoadvancelightwaternuclearreactortechnology.Thiseffortisanexcellentexampleofinnovationfocusingontoday’senergysystems:wewillbeusingfrontiermodelingandsimulationcapabilitiestoimprovethenucleartechnologythatwillalmostcertainlydominateinthenextseveraldecades.

MITEI’sinitialfocusontheeducationfrontwasoncreatingnewcurriculumoptionsforundergraduates.UnderthecontinuingleadershipofProfessorsVladimirBulovic(ElectricalEngineeringandComputerScience)andDonaldLessard(Management)andthestrongsupportoftheMITEIEducationOffice

Autumn 2010 | MIT Energy Initiative | Energy Futures | 3

a l e t t e r f r o m t h e d i r e c t o r s

ledbyDr.AmandaGraham,thisgoalisbeingrealizedinlargepartthroughthecreationofanenergyminorprogramandcurricularofferingstosupportit.

Newdevelopmentswillincludeproject-basedsubjectsanddisseminationofnewenergycoursesthroughOpen-CourseWare.MITEIisalsoincreasingitsparticipationinandsupportfortheUndergraduateResearchOpportunitiesProgram(UROP—page26)andtheFreshmanPre-OrientationProgram(FPOP—page27).

Thecampusenergymanagementprogramissimilarlycomingintofullstride,consistentwithMITEI’soriginalvision.ThecombinedstrengthsofProfessorLeonGlicksman(ArchitectureandMechanicalEngineering)andMITExecutiveVicePresidentandTreasurerTheresaStonehavebeenessentialingreeningtheMITcampus.Studentengagementishigh,andannualsavingsfromcampusenergyprojectswillreachwellover$3millionbytheendof2010,accordingtotheMITDepartmentofFacilities.Thecollabora-tionwithNSTARwillreducecampuselectricityuseby15%overthreeyears.Inaddition,MITwasthefirstuniversityinvitedtojoinDOE’snewGlobalSuperiorEnergyPerformancePartner-ship,abuildingenergymanagementcertificationprogram(pages29–30).

Finally,MITEIhasbeenvigorouslypursuingitscommitmenttopolicy

geraldschotman(right),chieftechnologyofficer,royaldutchshell,signsanagreementwithmitpresidentsusanhockfieldtocollaborateonresearchanddevelopmentofhigh-value,sustainabletechnologiesdesignedtodriveinnovationinenergydelivery.undertheagreement,signedoctober13,2010,shellwillprovide$25milliontothemitenergyinitiative(mitei)forresearchandcollabora-tion.beginningthisyear,theresearchpartnershipwillfundasuiteofprojectsat$5millionperyearforthecomingfiveyears.theprojectswillfocusonadvancedmodeling,earthscience,biofuels,nanotechnology,andcarbonmanagement.theagreementestablishesshellasafoundingmemberofmitei,anextensionofthecollaborativeprojectsshellhasbeenconductingwithmitinavarietyofbasicandappliedresearchareassince2002.

Phot

os: J

ustin

Kni

ght

mitei’sresearch,education,campusenergy,andoutreachprogramsarespearheadedbyprofessorernestJ.moniz,director(right),andprofessorrobertc.armstrong,deputydirector.

outreach.Thepaceofourin-depthmultidisciplinarystudiesonthefutureoflow-carbontechnologypathways—startedin2003withnuclearpower—hasquickened.Inthelastseveralyears,studieshaveexaminedthefutureofcoal,geothermal,naturalgas,nuclearfuelcycles,solarenergy,andtheelectricgrid.Thesestudies—somecompletedandothersstillunderway—havedrawnontheexpertiseof40MITfacultyandseniorresearchersandacomparablenumberofgraduatestudentsandpostdocs.ThestudiescontinuetohavepolicyimpactsandarenowsupplementedbyanAssociatemember-supportedsymposiumseriesthatfocusesonmorespecificandtimelytopicsinneedoftechnicallygroundeddiscussion.

Inshort,wehavebuiltastrongfoundationthatcanaccommodatenewinitiativesineachofMITEI’sfourmissionareas.Inourfifthyear,wewillrevisittheMITEIroadmapinconsultationwithourmanyparticipantsandfriends.Withthecontinuingcontributionofsomanytalentedfaculty,students,andstaff,wefeelconfidentthat“phase2”willsustainMIT’sleadingroleindevelopingcriticalenergysolutions.Wewelcomeyourinvolvementandinputinthedaysahead.

Sincerely,

Professor Ernest J. MonizMITEIDirector

Professor Robert C. ArmstrongMITEIDeputyDirector

November2010

4 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

New photovoltaic technology

Nanoscale solar cells that self-assemble, self-repair

Plants are good at doing what scientists and engineers have been

struggling to do for decades: converting sunlight into stored energy,

and doing so reliably day after day, year after year. Now some MIT

scientists have succeeded in mimicking a key aspect of that process.

One of the problems with harvesting sunlight is that the sun’s rays can

be highly destructive to many materials. Sunlight leads to a gradual

degradation of many systems developed to harness it. But plants have

Above: Professor Michael Strano (center) with postdoctoral researcher Moon-Ho Ham (left) and graduate student Ardemis Boghossian, all of the Department of Chemical Engineering.

Photo: Justin Knight

Autumn 2010 | MIT Energy Initiative | Energy Futures | 5

r e s e a r c h r e p o r t s

adoptedaninterestingstrategytoaddressthisissue:Theyconstantlybreakdowntheirlight-capturingmoleculesandreassemblethemfromscratch,sothebasicstructuresthatcapturethesun’senergyare,ineffect,alwaysbrandnew.

ThatprocesshasnowbeenimitatedbyMichaelStrano,theCharlesandHildaRoddeyAssociateProfessorofChemicalEngineering,andhisteamofgraduatestudentsandotherresearch-ers.Theyhavecreatedanovelsetofself-assemblingmoleculesthatcanturnsunlightintoelectricity;themoleculescanberepeatedlybrokendownandthenreassembledquickly,justbyaddingorremovinganadditionalsolution.

Stranosaystheideafirstoccurredtohimwhenhewasreadingaboutplantbiology.“Iwasreallyimpressedbyhowplantcellshavethisextremelyefficientrepairmechanism,”hesays.Infullsummersunlight,“aleafonatreeisrecyclingitsproteinsaboutevery45minutes,eventhoughyoumightthinkofitasastaticphotocell.”

OneofStrano’slong-termresearchgoalshasbeentofindwaystoimitateprinciplesfoundinnatureusingnanocomponents.Inthecaseofthemoleculesusedforphotosynthesisinplants,thereactiveformofoxygenproducedbysunlightcausestheproteinstofailinaverypreciseway.AsStranodescribesit,theoxygen“unsnapsatetherthatkeepstheproteintogether,”butthesameproteinsarequicklyreassembledtorestarttheprocess.

Thisactionalltakesplaceinsidetinycapsulescalledchloroplaststhatresideinsideeveryplantcell—andwhichiswherephotosynthesishappens.Thechloroplastis“anamazingmachine,”

Stranosays.“Theyareremarkableenginesthatconsumecarbondioxideanduselighttoproduceglucose,”achemicalthatprovidesenergyformetabolism.

Toimitatethatprocess,Stranoandhisteamproducedsyntheticmolecules

calledphospholipidsthatformdisks;thesedisksprovidestructuralsupportforothermoleculesthatactuallyrespondtolight,instructurescalledreactioncenters,whichreleaseelectronswhenstruckbyparticlesoflight.Thedisks,carryingthereactioncenters,areinasolutionwheretheyattach

“We’rebasicallyimitatingtricksthatnaturehasdiscovered

overmillionsofyears”—inparticular,“reversibility,the

abilitytobreakapartandreassemble.”

— Professor Michael Strano

Phot

o: P

atric

k Gi

llool

y, M

IT

thisproof-of-conceptversionofthephotoelectrochemicalcell,whichwasusedforlaboratorytests,containsaphotoactivesolutionmadeupofamixofself-assemblingmolecules(intheglasscylinderheldinplacebythemetalclamp)withtwoelectrodesprotrudingfromthetop,onemadeofplatinum(thebarewire)andtheotherofsilver(intheglasstube).

6 | Energy Futures | MIT Energy Initiative | Autumn 2010

R E S E A R C H R E P O R T S

themselves spontaneously to carbon nanotubes—wire-like hollow tubes of carbon atoms that are a few billionths of a meter thick, yet stronger than steel and capable of conducting electricity a thousand times better than copper. The nanotubes hold the phospholipid disks in a uniform alignment so that the reaction centers can all be exposed to sunlight at once, and they also act as wires to collect and channel the flow of electrons knocked loose by the reactive molecules.

The system Strano’s team produced is made up of seven different compounds, including the carbon nanotubes, the phospholipids, and the proteins that make up the reaction centers, which under the right conditions spontane-ously assemble themselves into a light-harvesting structure that produces an electric current. Strano says he believes this sets a record for the complexity of a self-assembling system. When a surfactant—similar in principle to the chemicals that BP has sprayed into the Gulf of Mexico to break apart oil—is added to the mix, the seven

components all come apart and form a soapy solution. Then, when the researchers removed the surfactant by pushing the solution through a membrane, the compounds spontane-ously assembled once again into a perfectly formed, rejuvenated photocell.

“We’re basically imitating tricks that nature has discovered over millions of years”—in particular, “reversibility, the ability to break apart and reassemble,” Strano says. The team, which included postdoctoral researcher Moon-Ho Ham and graduate student Ardemis

Schematic of decomposition and self-assembly of nanoscale solar cells

Photosyntheticreaction center

Sodium cholate(surfactant)

Sodium cholate(surfactant)

Phospholipids suspended in surfactant

Carbon nanotube

Membranescaffold protein

Membranescaffold protein

Removal of surfactant

Addition of surfactant

Autumn 2010 | MIT Energy Initiative | Energy Futures | 7

R E S E A R C H R E P O R T S

Boghossian, both of the Department of Chemical Engineering, came up with the system based on a theoretical analysis, but then decided to build a prototype cell to test it out. They ran the cell through repeated cycles of assembly and disassembly over a 14-hour period, with no loss of efficiency.

Strano says that in devising novel systems for generating electricity from light, researchers don’t often study how the systems change over time. For conventional silicon-based photovol-taic cells, there is little degradation,

but with many new systems being developed—either for lower cost, higher efficiency, flexibility, or other improved characteristics—the degradation can be very significant. “Often people see, over 60 hours, the efficiency falling to 10% of what you initially saw,” he says.

The individual reactions of these new molecular structures in converting sunlight are about 40% efficient, or about double the efficiency of today’s best solar cells. Theoretically, the efficiency of the structures could be close to 100%, he says. But in the initial

work, the concentration of the structures in the solution was low, so the overall efficiency of the device—the amount of electricity produced for a given surface area—was also very low. They are working now to find ways to greatly increase the concentration.

• • •

By David L. Chandler, MIT News Office

A grant from Eni S.p.A., under the Eni-MIT Solar Frontiers Center of the MIT Energy Initiative, supported work relating to photoelectrochemical cell regeneration, including design and fabrication. A grant from the US Department of Energy supported the spectroscopy and analytical chemistry of complexes in this work. Moon-Ho Ham received support from the Korea Research Foundation Grant funded by the Korean Government. Further information can be found in:

M.-H. Ham, J. Choi, A. Boghossian, E. Jeng, R. Graff, D. Heller, A. Chang, A. Mattis, T. Bayburt, Y. Grinkova, A. Zeiger, K. Van Vliet, E. Hobbie, S. Sligar, C. Wraight, and M. Strano. “Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate.” Nature Chemistry. Published online: 05 September 2010, doi:10.1038/nchem.822.

The self-assembly process involves carbon nanotubes and photosynthetic reaction centers and occurs when a surfactant—here, sodium cholate—is removed. Filtering out the surfactant from the starting mixture induces spontaneous self-assembly of synthetic molecules called phospholipids plus membrane scaffold proteins to form phospholipid disks. These disks provide structural support for reaction centers, which release electrons when struck by light. The disks carrying the reaction centers attach themselves spontaneously to carbon nanotubes, which are suspended in an aqueous solution. The resulting highly ordered structure is shown in the right-hand panel. Addition of the surfactant sodium cholate completely decomposes the structure back into the individual components in the initial mixture (left-hand panel).

Phospholipid disk

Removal of surfactant

Addition of surfactant

Carbon nanotubePhotosynthetic

reaction center

Diag

ram

: Ard

emis

Bog

hoss

ian

G, M

IT

8 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

A promising lightweight battery for electric cars

New catalysts push up lagging efficiency

If electric cars are to provide the range that drivers demand, they need

batteries that can deliver lots more energy, pound for pound, than

today’s best lithium-ion batteries can. Lithium-air batteries could—in

theory—meet that challenge, but while they are far lighter than their

lithium-ion cousins, they are not nearly as efficient.

MIT researchers have now demonstrated significant gains on that

front. Using specially designed catalysts, they have made lithium-air

Photo: Justin Knight

Above: Professor Yang Shao-Horn (center) of mechanical engineering and materials science and engineering, with graduate students Yi-Chun Lu (right) of materials science and engineering and Koffi Pierre Claver Yao of mechanical engineering.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 9

r e s e a r c h r e p o r t s

batterieswithunprecedentedefficiency,meaningthatmoreoftheenergyputinduringchargingcomesoutasusefulelectricityduringdischarging.Lessenergyislostateachrecharge—anadvancethataddressesoneofthemajorstumblingblockswiththispromisingtechnology.

Thoseresultsarejustafirstindicationofwhatcatalystscandofortheperformanceofthelithium-airbattery,accordingtoYangShao-Horn,directoroftheresearchandassociateprofessorofmechanicalengineeringandmateri-alsscienceandengineering.Shepredictsthatevenhigherefficiencieswillcome.

Whileothergroupsareworkingonlithium-airbatteries,sheandherteaminMIT’sElectrochemicalEnergyLaboratoryarethefirsttoperformfundamentalstudiesofcatalyststhatwillpromotekeyelectrochemicalreactionsinthesebatteries.“Thatmakesthisafunareaforustoworkin,”saysShao-Horn.“Everyexperimentislikeadiscoveryforusbecausethere’snopreviousexperimentaldatatoreferenceortolookat.”

Shao-Hornstressesthatdevelopmentofapracticallithium-airbatteryisinitsveryearlystages.“Therearestillmanyscienceandengineeringchallengestobeovercome,”shesays.Butalreadyherteam’sresultsaresignificant—andinsomecasesunexpected.

A lightweight technology

Understandingthepromisesandproblemsoflithium-airbatteriesrequiresunderstandinghowtheywork.Alithium-airbatteryconsistsoftwoelectrodes—alithiumelectrodeandanairelectrodemadeofcarbon—withanelectrolytebetweenthem.Asthe

batteryischargedanddischarged,lithiumions(positivelycharged)andelectrons(negativelycharged)shuttlebackandforthbetweenthetwoelectrodes.

Thediagramaboveshowswhathappensasthebatteryisdischarged.Electrons(e-)travelfromthelithiumelectrodetotheairelectrodethroughanoutsidecircuit,poweringadevice(thelightbulb)alongtheway.Lithiumions(Li+)makethesamejourneythroughtheelectrolyte.Attheairelectrode(showninthedetailedview),theelectronscombinewiththelithiumionsandoxygen(O2)fromtheairtoformlithiumoxide(LixO2).

Torechargethebattery,anoutsideelectricalsupplyforcesthelithiumoxidetodecompose,releasingoxygen

totheatmosphereandsendingthelithiumionsandelectronsbacktothelithiumelectrode,andthesystemisreset.Theprocessofmakingandbreakingthelithiumoxidethusallowsthebatterytogenerateelectricityandtoberecharged.

Inthisdesign,theairelectrodeconsistsofacarbon“skeleton”thatmustbothconductelectronsandprovideemptyspaceforstoringthelithiumoxide,whichisasolid.(Oxygendoesnotneedtobestored;itcomesfromtheatmos-phere.)Asaresult,fully60%oftheairelectrodeisemptyspace,makingitfarlighterthantheheavy,solidelectrodeinalithium-ionbattery.Thelithium-airbatterycanthereforedelivermoreenergyperunitweight—ameasurecalledenergydensity.Shao-Hornandherteamprojecttheenergydensityof

Processes on a lithium-air battery during discharge

whenalithium-airbatteryisdischarged,positivelychargedlithiumions(li+)movefromthelithiumelectrodethroughtheelectrolytetotheairelectrode,whilenegativelychargedelectrons(e-)travelthroughanexternalcircuit,poweringadevice(thelightbulb)alongtheway.thelithiumionsandelectronsplusoxygen(o2)fromairreacttoformlithiumoxide(lixo2),asolidthatsettlesinopenspacesamongthecarbonnanoparticlesintheairelectrode.duringcharging,thelithiumoxidebreaksapart,thethreereactantsgobackwheretheycamefrom,andthesystemisreset.

Li+Carbonnanoparticle

O2

CarbonnanoparticleLithium

electrodeAirelectrode

Electrolyte

Catalyst

e-

Diag

ram

: Eva

Mut

oro,

MIT

10 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

lithium-airbatteriesat1,000watt-hoursperkilogram—significantlyhigherthanthe200watt-hoursperkilogramofstate-of-the-artlithiumionbatteriesnowusedinlaptopcomputersandcellphones.

“Withthatkindofenergydensity,thelithium-airbatteryisapotentialtechnologyforelectricvehicles,”saysShao-Horn.Butthereareproblemswiththebattery.Oneislow“round-tripefficiency”duringdischargingandcharging.Whenthebatteryisdischarg-ing,energycomesoutatabout2.7volts.Butchargingituprequiresputtingin4volts.Theround-tripefficiencyisthusabout67%.“Thatmeansthateachtimeyouchargeanddischargeyourelectriccar,youlose

aboutathirdoftheenergyyouputin,”Shao-Hornsays.Instate-of-the-artbatteries,round-tripefficiencyistypically90–95%,puttingenergylossatjust5–10%.

Toimproveefficiency,Shao-Hornandherteamhavebeentryingtospeedupthelithiumoxidereactionsontheairelectrode.Theirgoal:tofindcatalyststhatwillencouragelithiumoxidetoformasthebatterydischargesandtodecomposeasthebatterycharges.Theresultwillbehighervoltagecomingoutandlowervoltagegoingin.

Theirworktodatehasfocusedonthreematerials:platinum,gold,andcarbon(asacontrolcase).Asafirsttest,theyexaminedhowthecatalystsaffectthe

ratesofthelithiumoxidereactionsonpurecatalystsurfaces.Theresultswerenotastheyexpected.Inpreviousworkwithfuelcells,platinumhadacceleratedthecombinationofhydro-genandoxygen.Inthenewexperi-ments,theplatinumdidnotencouragethelithiumandoxygentocombine.Instead,itpromotedtheoppositereaction:breakingthelithiumoxideapart.Furtherexaminationshowedthatduringlithiumoxideformation,theorganic(non-water)solventthatservesastheelectrolytecan“poison”theplatinumcatalyst.Duringlithiumoxidedestruction,thatprocessdoesnotoccurbecausethehighvoltageduringrechargingremovesthesolventpoisons.

Experimentsonthegoldsurfacealsobroughtsurprisingresults.Goldisusuallyassumedtobeapoorcatalystbecauseitisinert.Indeed,goldhadlittleimpactintheearlierfuelcellresearch.Butinthenewwork,itprovedeffectiveatpromotingtheformationoflithiumoxide.

Testing batteries

Totesttherelevanceoftheresultsonthepurecatalystsurfaces,theresearch-ersbuiltaseriesofexperimentallithium-airbatteries.Theirlithiumelectrodeispurelithiummetal(thoughforsafetyreasonsacommercialversionwoulduselithiumstoredinastablematerialsuchasgraphite).Theairelectrodeconsistsofthecarbonskel-etonmadeupoftinyparticles,eachoneabout50nanometers(nm)indiameter.Intheirnoveldesign,thesurfaceofeachcarbonparticleiscoveredwithevensmallerparticlesofthematerialbeingtested—platinum,gold,orcarbon.Thoseparticlesarejust5nmindiameter—atinysizethatmaximizestheirsurfaceareaandthereforethe

4.5

4.0

3.5

3.0

2.5

2.0

Capacity(10-3 amp hour/gram carbon)

Au = goldPt = platinum

Au

Au

PtPtAu

PtAu

Pt

Bat

tery

vo

ltag

e(v

olt

s)

0 500 1000 1500 2000

Impacts of platinum, gold, and platinum-gold catalysts on efficiency in a lithium-air battery

thesemeasurementsweretakeninexperimentallithium-airbatterieswithairelectrodescontain-ingthreecatalysts:pureplatinum(orange),puregold(green),andaplatinum-goldalloy(blue).thebottomthreecurvesshowvoltagesasthebatteriesaredischarged;thetopthreeshowvoltagesastheyarecharged.aspredicted,themeasurementswiththeplatinum-goldcatalysttrackthosewiththegoldcatalystduringdischargeandthosewiththeplatinumcatalystduringcharging.theplatinum-goldalloythusacceleratesbothofthekeyreactionsinalithium-airbatterysothatitdeliversmorevoltagewhenitisdischargedandrequireslessvoltagewhenitisrecharged.thenetresult:thehighest“round-trip”efficiencyeverreportedinalithium-airbattery.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 11

r e s e a r c h r e p o r t s

numberofsitesavailableforchemicalreactionstooccur.

Theresearchersthenmeasuredthevoltageastheychargedanddischargedtheirbatteries.Thevoltagetrendsagreedwellwiththeirmeasurementsonthepurecatalystsurfaces.Indeed,accordingtoShao-Horn,theplatinum“exhibitedextraordinarilyhighactivityduringcharging.”

“Sowehadlearnedtwothingsaboutourcatalysts,”saysYi-ChunLu,agraduatestudentintheDepartmentofMaterialsScienceandEngineeringwhoistheleadauthoronthiswork.“We’dlearnedthatoncharging,platinumisbest;andondischarging,goldisbest.Butbothofthoseactivitiesoccurinthesameplace—ontheairelectrode—sowhynottrycombiningthetwocatalysts?”

Intheirnextroundofexperimentalbatteries,theymadethetinytestparticlesofaplatinum-goldalloy,workingincollaborationwithKimberlyHamad-Schifferli,associateprofessorofmechanicalandbiologicalengineer-ing,andHubertA.Gasteiger,formerlyavisitingprofessoratMITandnowaprofessoratTechnicalUniversityofMunich.Againtheytrackedthevoltagewhilecharginganddischargingthebatteries.Theyhypothesizedthatduringdischargethevoltagewiththealloywouldtrackthatmeasuredwithgoldalone,andduringchargeitwouldtrackthatmeasuredwithplatinumalone.Asshowninthediagramonpage10,theirexperimentalresultssupportedtheirhypothesis.

“Wedemonstratedthatourplatinum-goldalloyexhibitedbifunctionalcatalyticactivity,whichmeansthatondischarge,goldisdoingthework,andoncharge,platinumisdoingthework,”saysShao-Horn.“Bestofall,thebatterywiththeplatinum-goldnanoparticlesdemonstratesaround-tripefficiencyof75%—thehighestefficiencyeverreportedinalithium-airbattery.”Withfurtherwork,shebelievesherteamcanpushthatefficiencyupto85–90%.

Added benefits, future plans

Speedingupthereactionsontheairelectrodemayprovideotherbenefits.Anothershortcomingoflithium-airbatteriesisthattheytypicallycanbedischargedandchargedalimitednumberoftimes,inpartbecausethelithiumoxidetendstoclogtheairelectrode.Movingitoutmorequicklymayhelp.Also,speedingupreactionsontheairelectrodemayhelpaddressthelithium-airbattery’slow“ratecapability”—thesignificantdropintheamountofenergyitcandeliverduringrapidorprolongeddischarging.

Workwiththeirplatinumandgoldcatalystsnowfocusesoncuttingcosts.Tothatend,theyaredesigningtinyparticlesthathavethosepreciousmetalsonlyontheirsurfaces,therebyreducingtheamountneeded.Theyarealsoworkingwithother,lessexpensivematerialsthatmightprovidethesameorbetterbatteryperformance.

Ultimately,theyplantomapoutactivitytrendsonvariousmetalsurfacessotheycandevelopanunderstandingofthebasicmechanisms—thestep-by-stepbreakingandformingofchemicalbonds—involvedinthelithium-oxygen

reactions.Guidedbythatunderstand-ing,theyhopetodesigncatalystsforlithium-airbatteriesthatcouldonedaybeuptothetaskofpoweringelectricvehicles,makingpossibleafundamen-talchangeintoday’spetroleum-basedtransportationsector.

• • •

By Nancy W. Stauffer, MITEI

This research was funded by the US Depart-ment of Energy, the Materials Research Science and Engineering Centers (MRSEC) Program of the National Science Foundation, and an MIT fellowship from the Martin Family Society of Fellows for Sustainability. Further information can be found in:

Y.-C. Lu, H. Gasteiger, E. Crumlin, R. McGuire, Jr., and Y. Shao-Horn. “Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries.” Journal of the Electrochemical Society, v. 157, no. 9, 2010.

Y.-C. Lu, H. Gasteiger, M. Parent, V. Chiloyan, and Y. Shao-Horn. “The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries.” Electrochemical and Solid-State Letters, v. 13, no. 6, 2010.

Y.-C. Lu, Z. Xu, H. Gasteiger, S. Chen, K. Hamad-Schifferli, and Y. Shao-Horn. “Platinum-gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries.” Journal of the American Chemical Society, v. 132, no. 35, September 8, 2010.

“Everyexperimentislikeadiscoveryforusbecausethere’s

nopreviousexperimentaldatatoreferenceortolookat.”

— Professor Yang Shao-Horn

anexperimentallithium-airbatterydevelopedandtestedatmit.theinletandoutletonthesidespermitairtoflowthrough,providingoxygenforthebattery’soperation.

Phot

o: P

atric

k Gi

llool

y, M

IT

12 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

Predicting natural gas useTrends, trajectories, and the role of uncertainty

The work described here was a critical input to MIT’s TheFutureofNaturalGas, a two-year interdisciplinary examination of the role of natural gas in a carbon-constrained world out to mid-century. Key findings of that study are summarized on page 31.

TheemergenceoftechniquestoexploitvastdepositsofnaturalgasinshaleintheUShasraisedhopesthatgascanfulfillourexpandingenergyneedswhilealsoreducingemissionsbyreplacing“dirtier”fuelssuchascoalandoil.AquantitativeanalysisbyanMITteamconfirmsthatoutlook—thoughwithsomequalifications.

TheMITresultsshowthatgasusewillindeedexpand,especiallyifnewpolicymeasuresputapriceoncarbonemissions.Butifthelimitsoncarbonarestringent,eventherelativelylowemissionsofnaturalgascoulddisqualifyitfromtheenergysceneaftermid-century.Thatprojectionunder-scorestheneedforintensiveresearchtoensurethatcarbon-freealternativesarereadytotakeoverbymid-century.

Theevolutionofmarketsfornaturalgascouldalsohaveamajorimpactonitsuseandprice.Today,gasistradedonthreeseparatemarkets—NorthAmerica,Europe,andAsia.Ifatightlyintegratedglobalgasmarketdevelops,theUSwouldgainaccesstogasthatischeaperthanourdomesticresources.Asaresult,overallgasusewouldrise,benefitingtheenvironment,andconsumercostswoulddrop.Domesticproductionwouldcontinue,butby2040theUScouldbegettinghalformoreofitsenergyresourcesfromtheMiddleEastandRussia—thistime,importedgasratherthanoil.

An uncertain future

Thedevelopmentoftechnologyforproducing“shalegas”isgoodnewsonmanyfronts.Theresourceisextensive,domestic,andrelativelylowcost;anditsgreenhousegas(GHG)emissionsarelowerthanthosefromcoaloroil.Indeed,burninggasemitsabouthalfasmuchcarbondioxideasburningcoaldoes.

Sodoesthishugenaturalgasresourcehandusasolutiontoourenergyandenvironmentalworries?Canwesimplyrelyincreasinglyonnaturalgas—atleastforalongtime?It’snotsosimple,warnsateamofMITresearchers.TheroleofnaturalgasinthefutureUSenergypicturewilldependonanumberoffactors,saysHenryD.Jacoby,professorofmanage-ment.Henotesthefollowingquestions:“Howmuchgasisthere,andwhatwillitcost?Whatwillbethecostsofcompetingtechnologies?WillwehaveapolicytocontrolGHGs,andhowstrictwillitbe?Andwhatwillbethestructureoftheinternationalgasmarkets?”

Foreachofthosequestions,thereisarangeofpossibleanswers,somemorelikelythanothers,andtheirimpactsongasusewillinteract.Forexample,gasusewilldependonthecostofnaturalgasaswellasthecostsofcompetingenergysources.Thus,anycalculationofgasusemusttakeintoaccountnotonlytheuncertaintiesassociatedwiththevariouscostpredictionsbutalsohowthoseuncertaintiesinteract.

Togetaquantitativelookathowgaswillfare,Jacoby,SergeyPaltsev,principalresearchscientistintheMITEnergyInitiative,andtheircolleaguesintheMITJointProgramontheScienceandPolicyofGlobalChangeusedtheir

EmissionsPredictionandPolicyAnaly-sis(EPPA)model.ThissophisticatedmodeltrackseconomicactivityandassociatedenergyuseandGHGemissions,recognizingmultipleregionsoftheworldlinkedbytrade.Itcantakeintoaccounttechnologicalchange,resourceestimates,populationchange,andtheeffectsofspecifiedemissions-abatementpoliciesandregulations.

Upfront,theMITresearchersstressthattheiranalysescan’tprovideabsoluteanswers.“Wehavetobecarefulaboutinterpretingournumericalresults,”saysPaltsev.“Wedon’tknowpreciseanswers,butwecancapturetrendsandtrajectoriesandseethemajorimplica-tionsofpolicyandregulatorychoicesandotheruncertainfactors.”

Carefully selected assumptions

Toperformtheiranalyses,theresearch-ersranaseriesofsimulationsusingvariousassumptions,eachwithitsdefineduncertainty.Basedonthebestavailableinformationandtheirbestjudgment,theyselectedthefollowingparameterstomodel.

Scale and cost of gas resources. Basedondatafromvarioussources,anMITteamassessedexistingandpotentialnaturalgasfieldsintheworldtodeterminehowmuchgasisrecover-ableatwhatprices.Combiningthatinformation,theycreatedgassupplycurvesforallregionsoftheirmodelandthendefinedthreecases:low,mean,andhighresources.

Timing, stringency, and design of GHG mitigation policy.Theanalysislooksatthreeoptions.Thefirstassumesnoclimate-relatedpolicy.Thesecondassumesaprice-basedpolicythatimposesaneconomy-widepriceoncarbonemissionsdesignedtogradually

Autumn 2010 | MIT Energy Initiative | Energy Futures | 13

r e s e a r c h r e p o r t s

reducethoseemissionsto50%below2005levelsby2050.(Thescenarioallowsno“offsets,”thatis,allactionsaretakendomestically,andemissionspermitscannotbeboughtfromabroad.)Thethirdpolicyisaregulatoryapproachthatmandatesthegradualretirementofcoalpowerplantssuchthat55%ofcurrentcoalgenerationisretiredby2050;italsorequires25%ofallelectricitytocomefromrenewablesourcesfrom2030onwards.

The technology mix. Ingeneral,theanalysesestimatethatcompetingtechnologies—specifically,nuclearpower,renewables,andcoalandnaturalgaswithcarboncaptureandstorage—continuetoberelativelyexpensivecomparedwithnaturalgas-basedtechnologies.Theyalsoestimatethatnaturalgas-poweredvehiclesdonotsignificantlypenetratethetransportationsector.

The evolution of global natural gas markets. Heretheyselecttwopossiblefutures.Oneassumesthatworldtradeinnaturalgascontinuesasitistoday:concentratedinthreeregionalmarkets—NorthAmerica,Europe,andAsia—thathavedifferingpricesandtypesofcontractsbetweenbuyersandsellers.Theotherassumesthatthereisatightlyintegratedglobalgasmarketsimilartotoday’sinternationalmarketforcrudeoil(butwithoutsuppliercartels).Theresearchersemphasizethatthosetwoviewsrepresentpolarcases.Inreality,futureglobalmarketswillfallsomewherebetweenthoseextremes.

The changing role of natural gas

Ingeneral,thesimulationsshowthatnaturalgaswillplayamajorroleintheUSenergyfuture.Withnonewclimatepolicy(andassumingthemeanresourceestimatesandregional

Imports Production–Exports Exports

45

40

35

30

25

20

15

10

5

0

Nat

ural

gas

(tri

llion

cub

ic fe

et)

2020 2030 2040 2050 L M H L M H L M H L M H

Year

6.69.6

6.59.5

6.49.4

7.913.7

7.513.3

7.413.2

10.018.5

8.617.3

8.216.9

11.623.6

8.821.9

8.321.8

Imports Production

45

40

35

30

25

20

15

10

5

0

2020 2030 2040 2050 L M H L M H L M H L M H

Year

Nat

ural

gas

(tri

llion

cub

ic fe

et)

5.18.1

5.18.1

5.18.1

5.811.5

5.711.4

5.611.3

6.614.5

6.414.3

6.214.2

7.317.2

7.017.0

6.816.9

US natural gas outlook including effects of international market evolution

Regional markets

Global market

thetopsetofbarsassumesthattheregionalmarketsoftodaypersist,withtradinglargelyoccurringwithinthreemarkets:northamerica,europe,andasia.thebottomsetofbarsassumestheexistenceofatightlyintegratedglobalgasmarket(withoutsuppliercartels).withaglobalmarket,naturalgasuseishigherandpricesarelowerthanwithregionalmarkets,butbymid-centurytheusdependsonimportsforabouthalfitsnaturalgas(underthemeanresourceestimate).

L,M,H=low,mean,highresourceestimates

Price-basedpolicyineffect(seetextfordetails)

Numbersabovebars=dollarsperthousandcubicfeet(Mcf)excludingcarboncharge(top)andincludingcarboncharge(bottom)

14 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

markets),USgasuserisessteadilyfromabout25trillioncubicfeet(Tcf)in2020toabout35Tcfin2050.Withthelowresourceestimates,gasusestillrisesslightlyandthenin2050dropsbackdowntoroughlywhereitstartedin2020.Pricesgraduallyriseovertimeaslower-costresourcesaredepleted.

Thetopchartonpage13showswhathappensifthepreviouslydescribedcarbonprice-basedpolicyisimposed(assumingregionalinternationalmarkets).Thebarsshowtotalconsump-tion,withexportsandimportsindi-cated.Aboveeachbararetwoprices.Thetoponeexcludesthecarboncharge;thebottomoneincludesit.

Withtheclimatepolicy,gasuseissomewhatlowerthanintheno-policycase,becausetotalenergyuseisreducedbythepolicy.Butitstillrisesuntilabout2040,althoughataslightlylowerrate.However,by2050gasusehasdeclined—aresponsetohighgaspricesduelargelytotheaddedcostofcarbonemissions.By2050morethanhalfthetotalpriceisduetothecarboncharge.Importsandexportsaresteadyoverthetimeperiod,anddomesticproductionexpandsuntil2050,whenitdropsback.

Impact of global gas markets

Thebottomchartonpage13showstheeffectsofchangingoneassumption:regionalmarketsarereplacedbyatightlyintegratedglobalgasmarket.Internationalgasresources(mostlyintheMiddleEastandsomeinRussia)arelikelytobelesscostlythanmostofthoseintheUS.AsthelessexpensiveUSresourcesareexhaustedandthecostofUSgasproductionrampsup,importsbecomemoreandmoreattractive.Nevertheless,domesticproductioncontinuesfromthose

Energy mix in electric generation under two emissions-control policies

Price-based policy

Regulatory approach

thetopgraphassumesaprice-basedclimatepolicythatimposesapriceoncarbonemissions;thebottomgraphassumesaregulatoryapproachthatmandatesincreasesinrenewablegenerationanddecreasesincoal-basedgeneration.(thesepoliciesareintendedforillustrationonly.fordetails,seethetechnicalreportcitedattheendofthearticle.)themoststrikingdifferenceisintotalelectricgeneration.theassumedprice-basedpolicybringsadramaticdropinelectricityuse—fargreaterthanthatelicitedbytheassumedregulatoryapproach.

Reduced Use

Gas CCS

Coal CCS

Renewables

Hydro

Nuclear

Gas

Oil

Coal

Elec

tric

gen

erat

ion

(tri

llion

kilo

wat

t-ho

urs)

Year2010 2015 2020 2025 2030 2035 2040 2045 2050

7

6

5

4

3

2

1

0

3.3a Electric Sector (TkWh)

GasCoal

Reduced Use

Renewables

Hydro

Nuclear

Gas

Oil

Coal

Year2010 2015 2020 2025 2030 2035 2040 2045 2050

7

6

5

4

3

2

1

0

3.6a Electric Sector (TkWh)

Elec

tric

gen

erat

ion

(tri

llion

kilo

wat

t-ho

urs)

Coal

Gas

Renew

Autumn 2010 | MIT Energy Initiative | Energy Futures | 15

r e s e a r c h r e p o r t s

USresourcesthatarecheaperthanimports.Inthisscenario,theUSimportsabouthalfitsgasby2050.

Somepeoplearesurprisedandsomepleasedbythoseresults.“Afterall,USproducersarestillproducing,consumerswillseecheapergasprices,andwehavealternativesourcesofgas,”saysPaltsev.“Buttheironyisthateventhoughwenowhavethiswonder-fuldomesticresource,ifaglobalnaturalgasmarketisestablished—andifit’sdrivenpurelybyeconomics,whichisabigif—thenwe’restillgoingtoendupdependingontheMiddleEastandRussia,notforoilbutfornaturalgas.Thereason:in20to30years,ourrelativelycheapdomesticgaswillhavebeenproduced,andlower-costresourcesfromothercountriescanenterthemarket.”

Energy mix in electric generation with climate policies

Howwelldoesgasdoagainstotherenergysources?Thefigurestotheleftshowforecastsofhowtheenergymixintheelectricgenerationsectorwillevolveovertime.Thetopfigureassumestheprice-basedpolicy;thebottomfigure,theregulatoryapproach.Bothanalysesassumemeanestimatesofgasresourcesandregionaltradingmarkets.

Withtheprice-basedpolicy,overallelectricityuseflattensout,andthehighpriceoffossilfuels—duetothecostofcarbonemissions—drivesdowntheiruse.Coalandoildisappearby2035,butnaturalgaskeepsdoingwelluntil2045,whenthecarbonpriceissohighthatevengasiscostly.

Thatdrop-offinnaturalgasin2045shouldgetourattention.Inalonger-termanalysisoutto2100,theresearch-

ersfoundthatnaturalgasalmostdisappearsby2075.“Soifwe’rereallyseriousaboutclimatepolicyandtoughreductionsinGHGemissions,weneedtobeworkingoneconomicallycompetitiverenewables,advancednuclearpower,andcarboncaptureandstorageforbothgasandcoal.Gasisgreat,butitisnotgoingtosolvealltheproblems,”saysPaltsev.

Thefigureassumingtheregulatoryapproachlooksquitedifferent.Here,therapidexpansionofrenew-ables—requiredbytheregulation—tendstosqueezeoutgas-basedgeneration,thoughgasremainsrelativelystrong;andcoalandoilarestillinthepicturein2050.Mostimportant,overallelectricityusedoesnotdropasitdoesundertheprice-basedpolicy—areflectionoflowerpricesduetotheabsenceofthecarboncharge.

Energy mix in all sectors

Theresearchersalsolookedattheenergymixinallsectorsoftheeconomy.Withtheeconomy-widecarbonprice,gasuseisrelativelylowinnon-electricitysectors,whereitcompetesagainstpetroleumandelectricity.Inthosecases,gasdoesnotprovideasbigacarbonadvantageasitdoesagainstcoalintheelectricsector.Withtheregulatoryapproach,gascontinuestobeamajorplayer,butcoalandespeciallyoilarestillusedin2050.

Butthemostremarkabledifferenceisintotalenergyuse.Withtheprice-basedpolicy,totalenergyusein2050isabout55quadrillionBtu;withtheregulatoryapproach,itisabout125qBtu.Whilethecarbonpriceaffectsemissionsinallsectors,theregulatoryapproachfocusesontheelectricsector,leavingotherGHG-emittingsectors

suchastransportationandindustryrelativelyunaffected.

“Theregulatoryapproachissometimesportrayedasaclimatepolicy,butitdoesn’treallybuyyoumuchintermsofemissionsreduction,”saysPaltsev.“Ifyourpoliciestargetjusttheelectric-itysector,you’renotgoingtosolvetheclimateproblem.”

Theresearchersemphasizetheroleofuncertaintyintheirstudy.Otherassumptions—greaterpenetrationofnaturalgasintothetransportationsector,forexample,orthediscoveryofvastamountsofshalegasinChina—wouldprofoundlyaltertheirresults.Nevertheless,theybelievethattheirscenarioshelptoprovideboundsonfutureprospectsfornaturalgasandillustratetherelativeimpor-tanceofdifferentfactorsindrivingtheresults.

• • •

By Nancy W. Stauffer, MITEI

This analysis was carried out as part of an interdisciplinary study, The Future of Natural Gas (see page 31). Development of the economic models applied in this work was supported by the US Department of Energy, Office of Biological and Environmental Research; the US Environmental Protection Agency; the Electric Power Research Institute; and a consortium of industry and foundation sponsors through the MIT Joint Program on the Science and Policy of Global Change. More information can be found in:

S. Paltsev, H. Jacoby, J. Reilly, Q. Ejaz, F. O’Sullivan, J. Morris, S. Rausch, N. Winchester, and O. Kragha. The Future of US Natural Gas Production, Use, and Trade. MIT Joint Program on the Science and Policy of Global Change, Report No. 186, June 2010. Available at globalchange.mit.edu/pubs/reports.php.

16 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

Underground storage of carbon dioxideMicrobes may help seal it in

Storingcapturedcarbondioxide(CO2)emissionsundergroundisonewaytokeepthatgreenhousegasfromenteringtheatmosphere.ButhowcanweensurethattheCO2willnotleakoutovertime?MITresearchershaveidentifiedanunlikelysourceofhelp:amicrobethatthrivesintheharshenvironmentofaCO2-filledreservoirandnaturallysecretesafilmthatcould—likeplasticwrap—sealthereservoirshut.Asanaddedbonus,themicrobemaycatalyzereactionsthathelptheCO2becomepartofthesurroundingrock—theultimateinleakprevention.

“Tomyknowledge,ourgroupisthefirsttoreportmeasurementsofmicro-bialgrowthunderconditionsofCO2sequestration,”saysJanelleR.Thomp-son,directoroftheprojectandtheDohertyAssistantProfessorinOceanUtilizationintheDepartmentofCivilandEnvironmentalEngineering.Thompsonnotesthatthosefindingsmayhaveimplicationsforthelong-termstabilityandintegrityofCO2-filledreservoirsandthereforefortheviabilityofcarboncaptureandsequestration(CCS)asaclimatechangemediator.

IntheCCSprocess,CO2iscapturedfrommajoremissionssourcessuchaspowerplantsandthencompressed,transported,andinjectedintodeepgeologicformations,salineaquifers,orotherreservoirsforlong-termstorage.“Butatthedensitiesanddepthsinvolved,CO2isquitebuoyant,somakingsureitdoesn’tleakbackoutintotheatmosphereisamajorconcern,”saysThompson.

Ingeneral,asequestrationreservoirconsistsofporousrocksuchassand-stoneoverlaidbyalesspermeablelayersuchasshale.Butoftentherearewellboresdrilleddownthroughthe“cap”rock—signsofearlierexploration

foroil.Thoseopeningshavebeensealedwithcement,butCO2pluswaterformsanacidthatcancorrodethecement.Asaresult,sequesteredCO2couldescapenotonlythroughsmallnaturalfracturesbutalsothroughintentionallydrilledwellboresfilledwithcrumblingcement.

Oneapproachtosecuringsuchreser-voirsinvolvesbiofilmbarriers.SaysThompson,“Ifwecanstimulatemicroorganismstogrowunderneaththecaprock,theymaycreateasheetofslimeandgoothatwilleffectivelysealshutthecementplugsandotherpossibleescaperoutes.”Thediagramtotherightillustratestheconcept.

Othergroupshavedemonstratedthatbiofilmscreatedbymicrobescanretardthemovementof“supercritical”CO2—ahighlyconcentrated,high-pressuregas—throughporousrock.ButcanmicrobesliveandgrowinthepresenceofsupercriticalCO2?Mostexpertsassumethatconditionswouldbetooharshforthemtoexist.

Totestthatassumption,Thompsonandhercivilandenvironmentalengineeringcolleagues—HectorH.Hernandez,postdoctoralassociate,andKyleC.Peet,graduatestudentand2008–2009BP-MITEnergyFellow—gothelpfrominvestigatorswhowererunningpilot-scaletestsofcarbonsequestrationinFrioRidge,Texas.Inthosetests,teamsfromtheUniversityofTennesseeandOakRidgeNationalLaboratoryinjectedsupercriticalCO2intoa1.5km-deepsalineformationfor10days,collectinggroundwatersamplesastheundergroundplumeevolved.Theythenfilteredthesamplestotrapthebiomass,someofwhichtheysenttoThompson’steam.

Usingaspeciallydesignedhigh-pressuregrowthchamber,theMITresearcherscultivatedthebiomasssamplesinthepresenceofnutrientsatconditionsmimickingthoseinaCO2sequestrationreservoir.Andmicrobesinthesamplesgrew.Theydoubledaboutonceeverydayandahalf.Examinationofstainedsamplesfromthebioreactorunderafluorescentmicroscoperevealedclustersofcells,each0.5–1.0micronindiameter,surroundedbyathicklayerofextracellularmaterial.

Closer examination

Ideally,Thompsonandherteamwantedtoworkwithasingle,purestrainsothattheycouldstudyitsphysiologyandgeneticmakeupindetail.“Thebetterweunderstandmicrobialgrowthandactivityinhigh-pressureCO2environ-ments,thebetterwecanengineerbiofilmbarriersinsequestrationreservoirs,”saysThompson.Andbydeterminingthegeneticmechanismsthatenableastraintotoleratesuper-criticalCO2theymightbeabletoidentifyorgeneticallyengineerstrainswithevenhighertolerance.

Tosingleoutthebeststrain,theyusedaprocesscalleddilutionsubculturing.Theyallowedtheirmixtureoforgan-ismstogrowforaperiodoftimeandthenremovedsamplesthattheyusedasan“inoculant”forthenextgrowth.Byreplicatingthatprocess,theyweededouttheweakerstrainsandendedupwiththefittestones.(Ateachstep,theycryo-preservedsomesamplessothattheycanregrowtheentiremixtureifnecessary.)

Ultimately,theyidentifiedasinglestrainthatdoesnotjusttoleratehigh-pressureCO2butactuallyrequiresahigh-pressureenvironmentforsurvival—acharac-teristicthatclassifiesitasan“obligate

Autumn 2010 | MIT Energy Initiative | Energy Futures | 17

r e s e a r c h r e p o r t s

2

Microbes

Carbon dioxide

Sediment grain

Sediment grain

Biofilm

Water

Biofilm

Conceptual model of microbial growth in a sequestration reservoir

barophile.”Insubsequenttesting,theyfoundthatthisstraincannotsurviveat1atmosphereofpressurebutgrowsnicelyat120atmospheres—innitrogenaswellasCO2.

Todeterminetheidentityofthestrainwiththisunusualcharacteristic,theresearcherssequencedasectionofthemicrobe’sDNA—specifically,asectionfromthe16SribosomalRNAgene.Thatgeneisausefultool:someregionsofitarecriticaltocellularmetabolismsotheyarethesameinallorganismswhileotherregionscanvary,exhibitingclock-likeevolutionarybehavior.“Sowecantakethe16Sgenefromseveralorganisms,lineuptheconstantregions,andthencomparethevariableregionstoseehowtheorganismshavedivergedovertime,”explainsThompson.

Theiranalysisshowedthatatthe16SgenetheirstrainiscloselyrelatedtoBacillus cereus,awell-knownorganismthatincludesstrainsthat

causefood-borneillnessinhumansandotherstrainsthatareusedasprobioticsinanimals.“Tomysurprise,oursubsurfacestrain—anobligatebarophile—hasalmostthesame16SribosomalRNAgenesequenceasaknownnon-barophilicstrainthatlivesonthesurfaceandcanbeeitherpathogenicornon-pathogenic,”saysThompson.

Thenextstepistosequencetheentiregenomeoftheirmicrobeandcompareittothealready-sequencedgenomeoftheBacillus cereus.SeeingwherethegenomicsignaturesofthetwostrainsdifferwillprovideimportantcluesintothemolecularadaptationsthatenabletheirmicrobetosurviveinthepresenceofsupercriticalCO2whilecloselyrelatedstrainscannot.

Other ongoing work

Thompsonandherteamarecontinuingtoexaminethephysiologyoftheirstrainandareworkingtodetermineconditionsthatwilloptimizeitsabilitytogrowandtomakeextracellularbiofilms.Theyarealsousingfluores-centmicroscopytoexaminethethree-dimensionalarchitectureofthebiofilmandthespatialorientationofthemicrobialcellswithinit.

Inotherwork,theyareexaminingtheeffectsoftheirmicrobeon“mineraltrapping,”anotherprocessthatwillpreventCO2leakage.Here,theCO2chemicallyreactswithrockmineralstoformsolidcarbonatecompounds.Therateatwhichthatreactionoccursdependsontemperatureandvariousaspectsofthereservoir’schemicalenvironment—allofwhichhasbeencapturedincomputermodelsofreservoirbehavior.

Inthosemodels,oneofthekeyfactorslimitingthereactionrate—andhencemineraltrapping—istheavailabilityinthesubsurfaceofpositivelychargedparticlescalledcations.Researchhasshownthatmicroorganismscandissolvesilicateminerals,aprocessthatreleasescationsandcouldpoten-tiallyacceleratethosereactionratesbymanyordersofmagnitude.However,currentmodelsgenerallyassumeasterileenvironment,sotheimpactofmicrobialactivityonmineraltrappingisdiscounted.

“Wenowknowthatmicrobeswillbepresent,soweplantolookathowmuchtheymayacceleratetheproduc-tionofcations,”saysThompson.“Ifwecanmeasureandquantifythatrate,thenthatinformationcanbefedintothemodelsofreservoirbehaviornow

thisschematicillustrateshowabiofilmbarriercanpreventtheescapeofcarbondioxide(co2)throughporesinasequestrationreservoir.theenlargedimageattheleftshowsclustersofmicrobes(blue)suspendedintheirextracellularbiofilm(green)betweentwograinsofsediment(gray).theimageattherightshowsthestoredco2andwateraheadofitbeingstoppedbythebiofilm,whichshutsoffspacesamongthegrainsandkeepstheco2frommigrating.

18 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

New insights into capturing solar energy

beingdeveloped.Theimpactontheoutcomemayormaynotbesignifi-cant—buteitherwayweneedtoknow.”

Thompsonstressestheneedtocon-sidermicrobialactivitiesinstudiesofCCS.Whilelotsofpeopleareworkinginthefieldofgeologiccarbonsequestra-tion,relativelyfewarethinkingaboutmicrobes.“Butmicrobialactivityissomethingthatyoujustcan’tignore.It’spresentineveryenvironment,andit’sessentialtolifeasweknowitonplanetEarth,”shesays.“Ithinkit’sreasonabletoassumethatitwillplayaroleintrappingandtransformingthesequesteredCO2,andweneedtotakethatroleintoaccountasweexploretheviabilityofcarbonsequestration.”

• • •

By Nancy W. Stauffer, MITEI

This research was funded by a seed grant from the MIT Energy Initiative and by the US Department of Energy’s National Energy Technologies Laboratory. Publications are forthcoming.

AnMITteamhasdevelopedasimula-tiontechniquethatcanprovidecriticalinsightsintothebehaviorofelectronswithinsunlight-drivendevicesusingdays,notdecades,ofcomputertime.Usingtheirtechnique,theyhavecalculatedhowelectronsmovewithinanamorphousphotovoltaic(PV)system.Theabilitytounderstandsuchprocessesattheatomiclevelwillhelptoacceleratetheimprovementoftechnologiesforturningsolarenergyintousefulformssuchaselectricity.

Mostpeopleagreethatsunlightispotentiallyourbestlong-termsourceofabundantenergy.“Butwecan’trunourcarsonit,”saysTroyVanVoorhis,associateprofessorofchemistry.“Weneedtoconvertitintosomeotherform—electricityorhydrogenorliquidfuels.”Heandhisteamfocusontwoapproaches:PVtechnologytoconvertsunlightintoelectricityandphotochemistrytoproducechemicalfuels.Inbothcases,cutting-edgetechnologiesrelyoncarefullyselectedmoleculestoachievetheconversion.

Whilethosetechnologiesdothejob,theyaremuchlessefficientthantheorysuggeststheycouldbe,andscientistsdon’talwaysunderstandwhy.“Wehaveageneralideaofthefundamentalprocessesinvolved,butthedetailedphysicsofwhyonedeviceworksbetterthananotherorwhythismoleculeworksandthatonedoesn’t—thosethingsaremuchmoreopaque,”saysVanVoorhis.

The PV challenge

Asanexample,hedescribeswhathappensinaPVdevice.Typically,thedeviceismadeoftwomaterialswithdifferingelectronenergylevels.Whenaphoton(apacketofsunlight)strikesamoleculeinoneofthematerials,themoleculegainsextraenergy.Thatextraenergycanmigratethroughthedevicetotheinterfaceofthetwomaterials.There,theenergizedmaterialcandissipatetheextraenergybylosinganelectrontoaneighboringmoleculeintheothermaterial—aprocessthatleavesbehindavacancycalledahole.Overtime,holesaccumu-lateinthefirstmaterialandelectronsinthesecond.Iftheoutsideedgesofthetwomaterialsareconnectedbyacircuit,theelectronswillflowbacktothefirstmaterialasacurrent.

Thedescriptionofthatprocessleadstoseveralsimpledesignprinciples.Forexample,thebestresultscomewhenonematerialhasastrong“affinity”forelectronsandtheotherforholes.Andagooddesignhaslotsofinterfacebetweenthetwomaterialssothattheabsorbedenergydoesn’thavefartogotoreachtheinterface—abenefitbecauseenergydoesnotflowquicklythroughbulkmaterial.

Microscopicstudiesconfirmthoseprinciples:PVdevicesthatperformwelltendtohaveasandwichstructurewithalternatinglayersofthetwomaterials.Butfiguringouthowtoencourageanelectrontojumpacrosstheinterface,howtomaximizeitssubsequentmobility,andhowtokeepelectronsandholesfromrecombiningrequiresafarmorefundamentallevelofunderstandingofwhatisgoingon—ajobforcomputersimulation.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 19

r e s e a r c h r e p o r t s

2.5

2.0

1.5Density of states

In donor material

In acceptormaterial

During chargetransfer at interfaceE

ner

gy

leve

ls o

f el

ectr

on

s (e

V)

Modeling organic photovoltaics

MMmodelofinterface

Repeat

1000x

QMmodelofsubsystemwithinMMmodel

ResultsfromanalysisusingMM/QMmodel

exampleofmittechniqueforsimulatingcriticalprocessessuchasthosethatoccurwithinaphotovoltaicdevicemadeofamorphousorganicsemiconductors.theleft-handdrawingshowsamolecularmechanical(mm)modelofasampleinterfacebetweentwomaterialsinsuchadevice.themiddledrawingshowsaquantummechanical(Qm)modelofanimportantsubsystemwithinthatmmmodel.theright-handdrawingpresentsresultsfromananalysisinwhichanmm/Qmmodelwasrun1,000timeswithvaryingparameters.

Simulating the system

Oneapproachismolecularmechanical(MM)modeling,whichdrawsonclassicalmechanicsandNewton’slawsandfocusesontheforcesconnectingatomstogethertomakemolecules.Theelectronsthatactuallyholdtheatomstogetherarenotspecified,buttheireffectisrepresentedbybondsbetweenatoms.Thebondscanbethoughtofasrubberbandsaroundtwoatomsorthreeatomstokeepthemfrompullingawayfromoneanother.

MMmodelsarevaluableandefficientcomputationaltoolsformanyapplica-tions.ButtheydonotprovidethedetailsneededbyscientiststryingtoimprovePVdevices.Forexample,theydonottellhowstifftherubberbandsare—thatis,howstrongthebondsare—ordefinetheelectronorholeaffinityofmoleculesorhowelectronsmoveabout.

Capturingthosedetailsrequiresquantummechanical(QM)modeling,anapproachdrawingontheories

thatexplainthebehaviorofmatterandenergyattheatomicandsubatomicscale.Butinadevicejust100nano-meterswide,therearemillionsofelectrons,andalloftheminteract.Sotrackingthemigrationofasingleelectronthroughthedevice(ifitwerepossible)wouldrequiresimulatingthebehaviorofallthoseelectrons.RunningthenecessaryQMcalculationswouldtakedecades—evenwithtoday’sfastestcomputers.

20 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h r e p o r t s

An integrated approach

Thesolutiontothedilemmacomesinrealizingthatitisnotnecessarytounderstandtheentiresystematthequantumlevel.Indeed,theregionsthatneedtobeanalyzedwithQMmethodsmayincludejustafewmolecules—whatVanVoorhiscalls“thesubsystemsofinterest.”

Toperformasimulation,therefore,theresearchersbeginbyperformingMMmodelingoftheoverallsystemtodefinetheimportantsubsystemsandhowlikelyeachoneistooccur.TheythenuseQMmodelingoneachtypeofsubsystemtocalculatethecriticalparametersthatMMmodelingcannotaddress.“Becausethesubsystemsarerelativelysmall,”saysVanVoorhis,“thosesimula-tionstakeafewhoursratherthandecades.”

Thenextstepisto“train”theMMmodelusingtheQMresults.TheresearchersdefineparametersfortheMMmodel—forinstance,thestrengthofbonds—basedonwhattheirQMmodelrevealedaboutthelocalinteractionsamongelectrons,atoms,andmolecules.“Weassumethatthebiggersystemhasthesamelocalinteractions,simplyrepeatedonalargerscale,”saysVanVoorhis.

Finally,theyruntheirrefinedMMmodeloftheoverallsystemtocalculatetheimpactofincomingphotonsattheinterfaceandtoseehowthesubsystemsofinterestaffectandareaffectedbythebroaderenvironmentincludedintheMMmodel.

New ability to probe PVs

Inrecentwork,theresearchersusedtheirtechniquetoexaminePVsmadeofamorphousorganicsemiconductors.Thesematerialsaremoreflexibleandeasiertoprocessthantheirsingle-crystalcounterparts,buttheycanbehardertounderstand.Insingle-crystalPVs,thelocationsofthemoleculesareknown;inamorphousmaterials,themoleculesarenotorderedbutmixedup,andtheirlocationschangeovertime.VanVoorhislikensittotrafficoncitystreets.“Itmaylookorderedinasinglesnapshot,butsequentialsnap-shotsmayshowtrafficmovingandchanginglanesandsoon—that’sdisorder,”hesays.“Likewise,inadevice,moleculesmaybevibratingandmovingandfluctuating,andIneedtoknowhowthat’sgoingtoaffecttheoperationofmydevice.SoIneedtolookatsubsystemsatdifferentplacesandatdifferenttimes.”ThatabilitycouldprovidecluestopreventingthebiggestproblemwiththesepromisingPVs:thetendencyofelectronsandholestorecombine.

Thefigureonpage19demonstratesthetechnique.Theleft-handdrawingshowsasampleinterface(atthenanometer-lengthscale)simulatedbytheMMmodel.Withinitisasubsystemofinterest,expandedinthemiddledrawing.Butthatsnapshotshowsjustonesubsystematonetime.Tocapturetheeffectsofdisorder,themodelmustexaminemanysubsystemsatmanytimes.“Soinordertogetarealisticpicture,Iactuallyhavetoanalyzeathousandsnapshots,”saysVanVoorhis.Ahundredcomputersworkinginparallelcanperformallthoseanalyseswithinafewhours.

Theright-handdrawingshowsresultsfromsuchastudy.Thethreecurvesshowtheenergylevelsofelectronsinthedonormaterial(red),intheacceptormaterial(blue),andtransferringbetweenthem(green).Ineachcase,thewidthofthedistributionreflectsthepresenceofmanydifferentsubsys-temswithslightlydifferentproperties.Theresultsareconsistentwithwhatothershaveobservedinexperimentswiththesematerials.

VanVoorhisandhisteamarecontinu-ingtousetheirnewmodelingtechniquetolookatdifferentPVdevicesaswellasphotochemicalprocessesforproducinghydrogenandliquidfuels.“ThenatureofthesesystemsmakesitnecessarytotailorthedetailedforcesintheMMmodeltoaparticulardeviceorprocess,”saysVanVoorhis.“Butasourresultshaveshown,theoutcomecanbeanewunderstandingofhowsolar-drivendevicesandprocessesworkandthereforenewstrategiesforimprovingtheirefficiencyandperformance.”

• • •

By Nancy W. Stauffer, MITEI

This research was supported by an ignition grant from the MIT Energy Initiative, a fellowship from the David & Lucille Packard Foundation, and the US Department of Energy. Further information can be found in:

S. Difley, L.-P. Wang, S. Yeganeh, S. Yost, and T. Van Voorhis. “Electronic properties of disordered organic semiconductors via QM/MM simulations.” Accounts of Chemical Research, v. 43, no. 7, July 2010, pp. 995-1004. DOI: 10.1021/ar900246s.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 21

r e s e a r c h n e w s

MITEI awards fifth round of seed grants for energy research

informationonthevulnerabilityofelectricalgridcomponentscanhelputilitycompaniesplanrepairworksoastoreduceservicefailuresandincreasepublicsafety.thisimageshowsamanholeinthechelseaneighborhoodofmanhattanthatwashighlyrankedbythevulnerabilitymodelofprofessorcynthiarudinandhercolleagues,publishedinthejournalMachine LearninginJuly2010.dotssuperimposedonthesatelliteimagearemanholes,coloredaccordingtothepredictedvulnerabilityofthemanholetoseriousevents(firesandexplosions).redindicateshighervulnerability;whiteindicateslowervulnerability.linesconnectingthemanholesrepresentundergroundelectricalcables.

TheMITEnergyInitiative’slatestroundofseedgrantsforenergyresearchissupportinginnovativeworkonsolarenergyconversion,fuelcellcatalysts,algorithmsforenergy-efficientcomputing,systemsforintegratingrenewabletechnologiesintosmartgrids,andmore.Inthisround,atotalof$1.9millionwasawardedto13projects,eachlastingbetweenoneandtwoyears.Thefundedprojectsspan10departments,laborato-ries,centers,andinstitutes.

Asinpreviousrounds,manyofthenewawardsinvolvejuniorfacultyandfacultynotpreviouslyengagedinenergy-relatedresearch.Forexample,CynthiaRudin,assistantprofessorofstatisticsattheMITSloanSchoolofManagement,isseekingtoincreasethereliabilityoftheelectricpowergrid—agrowingchallengeduetoaginginfrastructurecombinedwiththeevolutionofnewwaysofusingthegrid.Rudinandothershavedevelopedstatisticalmethodsthatpredictthevulnerabilityofcomponents—informationthathelpsutilitycompaniesdesignmaintenanceplansthatreduceservicefailuresandincreasepublicsafety(seethefigure).Butsuchpredic-tionsmustalsobe“actionable,”thatis,theremustbenointermediatestepsbetweenthedesignofthevulnerabilitymodelandtheprioritizationofrepairwork.Rudin’steamwilldevelopaframeworkfor“actionableranking”thatwillimmediatelyyieldmethodsforimprovingthereliabilityandsafetyofelectricaldistributionnetworks.

Inanotherproject,EvelynWang,assistantprofessorofmechanicalengineering,isfocusingonthermalmanagementforconcentratedsolarenergyconversionsystems.Suchsystemscoulddeliverasmuch

as25%oftheworld’sprojectedpowerneedsby2050.However,increasingtheirpowerproductionrequiresconcentratingsunlightontosmallerandsmallerareasofthesolarabsorber,whichleadstosignificantheatgenera-tionandreductionsinelectricityoutput.Wangandherteamaredevelopinganinnovative,completelypassivenanofilm-basedcoolingsystemthatcanachievehighratesofheatremovalwithlowthermalresistance.Thecoolingachievedwillpermitevenhigherconcentrationstobeused,enablingmajoradvancesinsolarconversiontechnologiesandotherimportantenergysystems.

Carboncaptureandsequestration(CCS)isthefocusofaprojectledbyAlisonMalcolm,assistantprofessor,andMichaelFehler,seniorresearchscientist,bothofearth,atmospheric,andplanetarysciencesandMIT’sEarth

ResourcesLaboratory.TheindustrialviabilityofCCSrequiresreliabletechniquesfordeterminingtheamountandlocationofthesequesteredcarbondioxide(CO2)andfordetectingpotentialleakage.Theoilindustryhasseismic-basedmethodsthatcanalmostcertainlybeadaptedtoperformthosetasks,buttheirhighcostwilllikelyprecludetheiruseateverysequestrationsite.Theresearchersarethereforedevelopingnewimagingmethodsthatshouldbeable—withasignificantlysmallerdataset—todelineatethespatialdistributionofinjectedCO2inareservoirandothermethodsthatcanactasalarms,detectingCO2leakagethroughthecaprock.Themethodsaredesignedtoworktogether,guaranteeingthestablesequestrationoftheCO2inthesubsurface.

22 | Energy Futures | MIT Energy Initiative | Autumn 2010

r e s e a r c h n e w s

JohnJoannopoulos,FrancisWrightDavisProfessorofPhysicsanddirectoroftheInstituteforSoldierNanotech-nologies(ISN),andSrinivasDevadas,professorofelectricalengineeringandcomputerscience—bothnewcom-erstoMITEI—plusIvanCelanovic,researchengineerintheISN,areaddressingpowerelectronicsandtheirroleinincorporatingrenewableenergygenerationsourcesintothefuturesmartgrid.TheMITteamwilldevelopanddeploynoveldigitaltoolsforthedesignandtestingofpowerelectronics-enabledrenewablesintegratedintothesmartgrid.Enablingreal-timesimulationswithultra-highfidelitywillrevolutionizethedesignofpowerelectronicssinceitwillallowreal-timemeasurementandcontrolofprototypesystemsthatcanberedesigned,refined,ortunedforincreasedreliabilityandefficiency.Theconceptwillbedemonstratedontworepresentativesystems—thevariablespeedwindturbineandthehybrid-electricvehicle.

MartinBazant,associateprofessorofchemicalengineering,isfocusingonadifferentenergy-relatedconcern:thegrowingglobalshortageoffreshwater.Massiveamountsofenergyarerequiredtotransportorproducefreshwaterfromseawater,especiallyforremotelocations.Acriticalgoalforenergy-relatedresearchandpolicyisthereforedevelopingnewmeansofwaterdesalinationandpurification.Inthisseedproject,Bazantandhiscolleagueswillfocuson“shockelectrodialysis,”anovelelectrochemicalapproachtoachievingthoseprocesses.Theapproachexploitsthespontaneousseparationofsaltandchargedimpuri-tiesfrompurewaterinchargedporousmedia,passingcurrenttoelectro-dialysismembranes.Theresearchers

willexplorethebasicphysicsofdesalinationshocksinmicrostructuresandwillbegintoengineeranewclassofdesalinationsystemsthatarebothenergyefficientandwellsuitedforsmall-scale,portableapplicationssuchasinremoteregionsorforthemilitary.

Asinthepast,theresponsetoMITEI’scallforproposalswasstrong,with44submissionsinvolvingatotalofalmost70researchers,accordingtoErnestJ.Moniz,directorofMITEIandtheCecilandIdaGreenProfessorofPhysicsandEngineeringSystems.“Onceagain,theproposalsincludedsurprising,thoughtful,andpotentiallyimpactfulconceptsandideas,”hesaid.“Thetaskofchoosingamongthemwaschallengingforthereviewcommittee,whichconsistsoffacultyontheMITEnergyCouncilandrepre-sentativesfromMITEI’sFoundingandSustainingmembers.”

FundingforthenewgrantscomeschieflyfromMITEI’sFoundingandSustainingmemberssupplementedbyfundsfromtheChesonisFamilyFoundation,ananonymousdonor,andMITEI.

Todate,MITEI’sseedgrantprogramhassupported67early-stageresearchproposals,withtotalfundingofmorethan$8.4million.Inaddition,eightgroupshavebeenawardedsmaller,shorter-termignitionandplanninggrants.

“Asprojectsfromthefirstfewroundsofawardsarecompleted,we’rereceivingreports,papers,andpresenta-tionsthathaveresultedfromthem,”saidRobertArmstrong,deputydirectorofMITEIandtheChevronProfessorofChemicalEngineering.“Someof

thosenovelprojectshavealreadyhadsignificantpracticalimpacts,whileothershaveledtolong-termfunding,openingupnewandexcitingareasofresearchfortheInstitute.”

• • •

By Nancy W. Stauffer, MITEI

For a complete list of awards, please see page 40.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 23

e d u c a t i o n & c a m p u s e n e r g y a c t i v i t i e s

A breath of fresh airStudents explore alternatives for lab safety test

uropadvisorpamelagreenley(left),associatedirectoroftheenvironment,health,andsafetyoffice,observeswunminwong’11(center)andevelynZuniga’13(right)astheysetupequipmentforexperimentswithatracergasthatwouldbemoreenvironmentallyfriendlythantheonenowusedintestsoffumehoodperformance.themannequinatthefarleft(affectionatelynamed“betty”bythestudentresearchers)simulatesalaboratoryresearcherandplaysakeyroleindetermininghowwellthefumehoodcontainsthetracergas—anindicatorofitsefficacyatprotectinghumanusersfromnoxiousfumes.

AgasknownasSF6—odorless,color-less,andnonflammable—insulatesdouble-panedwindowsandhelpsbloodvesselsshowuponultrasounds.AtMITandelsewhere,itisalsowidelyusedasatracergastodeterminewhetherlaboratoryventilationhoodsareworkingtoprotectusersfromnoxiousfumes.

Butthere’saproblem.SF6—properlycalledsulfurhexafluoride—isconsideredtobethemostpotentgreenhousegasevaluatedbytheIntergovernmentalPanelonClimateChange.Over100years,SF6hasaglobalwarmingpotentialthatis22,200timesthatofcarbondioxide.Alarmingly,theconcentrationofSF6intheatmosphereisincreasing.

Inresponsetothoseconcerns,MITstudentshavebeeninvestigatingthepossibilityofswitchingtoadifferenttracergasthatwouldhavealess-negativeenvironmentalimpact.Inspring2010,then-freshmanEvelynL.ZunigacameupontheTracerGasSubstituteTestUROPprojectafteradetailedsearchoftheMITEnergyInitiative(MITEI)website.TheprojectwasdevelopedandfundedbytheEnvironment,Health,andSafety(EHS)OfficeincollaborationwithMITEIaspartofaninnovativeprogramtobringstudentexpertisetobearonMIT’sreal-worldcampusenergyandenvironmentalchallenges.

Zuniga,amaterialsscienceandengineeringmajor,jumpedatthehands-onproject,asdidWunMinWong,thenajuniorintheMITSloanSchoolofManagement.“I’mdeeplyinterestedinsustainabilityandenergy,particularlyMIT’sinitiativestobeamore‘green’campus,”saysZuniga.“PamGreenley(associatedirectorofEHS)andLesNorford(professorofbuilding

technology)whoservedasadvisorsontheprojectwereabsolutelyamazing,andtheirexcitementfortheprojectwasalsoamotivationforme.”

Morethan1millionfumehoodsintheUnitedStatesmustbetestedtomeetnationalindustrystandards,sotheimpactofthegasusedintheprocesscanbesignificant.GreenleysaidshedevelopedtheUROPprojectbecauseastudyatSanFranciscoStateUniversityindicatedthatnitrousoxidemightbeapromisingsubstituteforSF6intestingtheoperationofthe1,000-plusfumehoodsontheMITcampus.“Wedon’twanttoseehealthandsafetyissuesnegativelyimpactedbecauseofenvi-ronmentalissues,”shesays.“If(SF6)hasgottenthatserious,it’sworthfindingadifferentgas.”

ReducingenergyusefromMIT’subiquitousfumehoodshasbeenapriorityfortheInstitute,whichhasachievedsignificantenergysavingsbyloweringthevolumeofairmovingthroughnearly200hoodsoncampusfrom100to80feetperminute.Testingtheeffectsofthischangehighlightedtheopportunitytoconsideralternativeapproaches.ProfessionallyconductedtestsusingSF6provedthelowerflowratesweresafe.ZunigaandWongrepeatedsomeofthosetestswithnitrousoxideaswellasSF6andcomparedtheresults.

Withaccesstoalabfullofunusedfumehoods,ZunigaandWongwenttoworkinBuilding18threemorningsaweek.Usingamannequinwithsamplingtubesattachedtoitsface,thestudentsmimickedthereal-timeuseoffume

Phot

o: J

enni

fer D

iMas

e, M

ITEI

24 | Energy Futures | MIT Energy Initiative | Autumn 2010

e d u c a t i o n & c a m p u s e n e r g y a c t i v i t i e s

hoodsandmeasuredchangesinairflowpatternswithinthelaboratoryequipment.“Thegoalistomaketestscloserandclosertoreal-worldconditionswithoutbeingtoocostlyortoocumbersome,”Greenleysays.

“Thisprojectwasmyfirstlab-basedUROP,”saysWong.“IwasgladthatIgainedusefullabskillsdespitecomingfromamanagementsciencebackground.”

Duringfall2010,mechanicalengineer-ingseniorEricGuffeyfocusedhisseniorthesisonthiswork,continuingwhereZunigaandWongleftoffwiththenitrousoxide-SF6comparison.Hehasbeenconductingamorethoroughanalysisofthedatacollectedinthespring,andhealsohasperformedsomeofhisowntestingoffumehoodsaroundcampus,includinginthe

chemistry,mechanicalengineering,andmaterialsscienceandengineeringdepartments,attheKochInstitute,andatMITFacilities.

“ThisprojectisagreatexampleofhowwecanpartnerwithMITEItousethecampusasalearninglab,withstudents,faculty,andstaffworkingtogetheronglobalproblems,”saysNorford.MITEIworkswithmembersofthecommunityfromacrossMITtodevelopprojectsthatbenefitboththeInstituteandthestudents.

AsherfirstUROP,theprojecthelpedZunigagain“essentiallabskillsandagreatintroductiontoresearch,”shesays.“CollaboratingwithWunMin,IalsolearnedalotaboutlabproceduresandMITingeneral.ButthemostinterestingpartformewastoseealltheopportunitiesMIToffersforways

topositivelyimpacttheenvironment,andIwasexcitedthatevenasafreshmanIwasabletotakepartintheinitiativeandmakeanimpact.”

• • •

By Deborah Halber, MITEI correspondent

uropstudentevelynZunigaadjuststhereleaseofthetracergassubstituteintothefumehoodas“betty”thetestmannequinlookson.anairintakeatbetty’smouthandnosewillsimulatethebreathingofaresearchertotestforthepossiblepresenceofthetracergasinfrontofthefumehood.

Phot

o: J

enni

fer D

iMas

e, M

ITEI

Autumn 2010 | MIT Energy Initiative | Energy Futures | 25

e d u c a t i o n

Named Energy Fellows, 2010–2011

ABB Erica Lin MaterialsScienceand

EngineeringPeter Montag Physics

b_TECMatthew Aldrich MediaArtsandSciences

Bosch Kaitlin Goldstein ArchitectureFahri Hizir MechanicalEngineering

BP Kenny Ching MITSloanSchool

ofManagementBomy Lee ChungChemicalEngineeringAdam Freedman CivilandEnvironmental

EngineeringWen MaNuclearScienceandEngineeringAndrew NanopoulosMechanical

EngineeringPeter SwartzPoliticalSciencePing WongMechanicalEngineeringGuoqiang Xu MaterialsScience

andEngineering

ChevronAditya KunjapurChemicalEngineeringJames MeredithMechanicalEngineering

CumminsTommy LeungEngineering

SystemsDivision

DenburyIbrahim Toukan EngineeringSystems

Division

EDFLindsey GilmanNuclearScience

andEngineering

EnelGiancarlo Lenci NuclearScience

andEngineeringMatthew ThomsMechanicalEngineering

EniJennifer BrophyBiologicalEngineeringMartina CocciaEarth,Atmospheric,

andPlanetarySciencesDaniel GrahamChemistrySayalee MahajanChemicalEngineeringDavid RambergEngineering

SystemsDivisionDaniel RowlandsChemistrySven Schlumpberger Chemical

EngineeringRuoshi Sun MaterialsScience

andEngineeringGregory ThielMechanicalEngineeringQing XuChemicalEngineering

ExelonJohn Michael HagertyEngineering

SystemsDivision

GTIKaren Tapia-AhumadaEngineering

SystemsDivision

Lockheed MartinSudhish BakkuEarth,Atmospheric,

andPlanetarySciencesKento MasuyamaAeronautics

andAstronautics

Saudi AramcoPo-Yen ChenChemicalEngineeringEric HontzChemistry

SchlumbergerDavid Cohen-TanugiMaterialsScience

andEngineeringMatthew D’AsaroElectricalEngineering

andComputerScience

ShellQin CaoEarth,Atmospheric,and

PlanetarySciencesDiana ChienBiologyJohn RansonElectricalEngineering

andComputerScienceDavid RosenElectricalEngineeringand

ComputerScienceJacob RubensBiologyYunjian XuAeronauticsandAstronauticsTauhid ZamanElectricalEngineering

andComputerScience

SiemensWilliam Hasenplaugh Electrical

EngineeringandComputerScienceLeah Stokes UrbanStudiesandPlanning

TotalRuel Jerry Earth,Atmospheric,

andPlanetarySciencesRebecca Saari Engineering

SystemsDivisionBenzhong ZhaoCivilandEnvironmental

Engineering

WeatherfordAlan Lai MaterialsScience

andEngineeringMichael ReppertChemistry

TheSocietyofEnergyFellowsatMITwelcomed52newmembersinSeptem-ber2010.TheEnergyFellowsnetworknowtotals139graduatestudentsandspans20MITdepartmentsanddivisionsandallfiveMITschools.Thisyear’sgraduatefellowshipsaremadepossiblethroughthegeneroussupportof19MITEImembercompanies.

Phot

o: J

ustin

Kni

ght

26 | Energy Futures | MIT Energy Initiative | Autumn 2010

MITEI’s undergraduate energy research flourishes

above:sharonXu’13ofarchitecture(center)downloadswindspeeddatafromananemometeratopbuildinge52anddiscussesnextstepsinthecampuswindresourcemonitoringprojectwithresearchadvisorstephenconnorsofthemitenergyinitiativeandgraduateadvisorKathleenaraujoofurbanstudiesandplanning.

pretreatmentofsugarcanebagasse(shownhere)hasyieldedhighlevelsoffermentablesugars—akeystepinproducingethanolfromsuchligno-cellulosicmaterials.thatresearchhelpedguidestudentswork-ingwithotherfeed-stocks(seebelow).

rebeccaKrentz-wee‘12ofnuclearscienceandengineeringreviewsageologicmapofcaliforniatodeterminetheviabilityofheavyoilreservoirstoserveasheatstoragesystemsforcombinednuclear-geothermalpeakelectricityproduction.

perrynga’12(left)andsebastianvelez’12ofchemicalengineeringdiscusstheiruropprojectsaimedatdevelopinglessexpensive,moreefficientmethodsofproducinghighethanolyieldsusingsorghumforagebagasseandligno-cellulosicmaterialsasfeedstocks.

Jenniferhammond’12ofmechanicalengineeringdemonstratesadevicethatmeasuresthereflectivityofasurface.usingthedevice,shehasbeenexamininghowdustorsanddepositedonreflectivesurfacescanreducetheefficiencyofaparabolicsolartroughinthedesert.

e d u c a t i o n

Phot

os: J

ustin

Kni

ghtThispastsummer,23undergraduate

studentsworkedonenergy-relatedUndergraduateResearchOpportunitiesProgram(UROP)projectsontopicssuchasoceanwaveenergy,lithium-airfuelcellcatalysis,chemicallydriventhermo-powerwaves,andportablelightandpowertextilesforthedevelopingworld.FundingforMITEIUROPprojectsis

providedbyprivatedonorsandbyMITEImembers,includingFoundingMemberBPandindividualAffiliatememberswithaparticularinterestinsupportingundergraduateresearch.Formoreinformationonthesummer2010participantsandprojects,gotoweb.mit.edu/mitei/docs/education/urop/project-descriptions-2010.pdf.

Autumn 2010 | MIT Energy Initiative | Energy Futures | 27

First week on campus energizes freshmen

e d u c a t i o n

participantsinmitei’s2010freshmanpre-orientationprogramcalleddiscoverenergy:learn,think,apply.

Phot

o: J

ustin

Kni

ght

Designawindturbine.Negotiateclimatechangewithleadersofthedevelopingworld(insimulatedfashion).Makefastfriendsbyworkingcloselywithpeopleyoubarelyknow.DiscoverhowmuchenergyMITsaveswhenpeopleuserevolvingratherthanconventionaldoors.

Numerousdoorswereopened—physically,socially,andconceptually—forthe24incomingfreshmenenrolledinaFreshmanPre-OrientationProgramcalledDiscoverEnergy:Learn,Think,Apply.HeldbytheMITEnergyInitiativeduringthelastweekinAugust2010,“DELTAFPOP”treatedstudentsto

provocativelecturesfromworld-classexperts,intriguingcampustours,andanarrayofhands-onactivities.Theresultofthistotalimmersion?Adeeperunderstandingofthechallengesandopportunitiesofenergyandclimatechange—andachancetogetajump-startonestablishingnewfriendshipsbeforeclassesevenstarted.

Tointroducethestudentstotheregiontheynowcallhome,thescheduletookthemtodiverseBostonlocales,rangingfromtheStateHouseandMuseumofSciencetoBostonHarborandtheCharlesRiver.Accordingtoparticipants,

however,oneoftheweek’smostimpressivefeatureswasitscampusfocus,wherethestudentsliterallyfollowedtheInstitute’senergyflow,fromgenerationanddistributiontoconversionandend-useconsumptionintheelectricaloutlets,switches,andhotwaterfaucetsuseddailybytheMITcommunity.AfterstoppingtostudyBuilding32’selectricalandmechanicalrooms,thegrouptracedsteam,water,andelectricitypathsthroughundergroundandoverheadconduitstoMIT’scogenerationplant.Theirtourendedonthe8thfloorofBuilding36,wheretheygotabird’s-eye

28 | Energy Futures | MIT Energy Initiative | Autumn 2010

e d u c a t i o n

glimpseofthecentralutilityfacility.Alongtheway,theylearnedabouttheenergylossesassociatedwithvariousdistributionnetworks—throughuninsulatedpipes,leaks,andmostconspicuously,theaging,maintenance-intensivesteamsystem.Bygettinganin-the-trencheslookatthecampus-wideenergysystem,thestudentscametounderstandasmall-scaleanaloguetothecountry’sfull-scaleenergyinfrastructure.

“Welearnedaboutthetechnologies—whatworks,whatdoesn’t,whatneedstobeimproved,andwhatMITisdoingaboutthem,”saysFPOPparticipantKellySnyder,fromAlaska.“MIThasa‘walk-the-talk’approach,tryingtodecreaseitsownenergyconsumption,whichIthinkisverycool.”

Thestudentsalsogainedamorerobustviewofalternativeenergy,supplement-ingtheirgeneralunderstandingofitspotentialbenefitswithnewinsightsonitslesser-knownlimitations,suchasenergy-storageissues.“Itwasscarybutinterestingtolearnthere’sareallylongwaytogowithallthesealternativeenergies,”saysSnyder.“ThepossibilitythatIcanbepartofthesolutiontoenergystorageandalternativeenergyisinvigorating.”

Thedifficultiesoffindingsolutions,especiallyonaglobalscale,werebroughthomeinaninteractiveclimatenegotiationsimulation.Studentsrole-playedthestancesofselecteddevelopedanddevelopingcountriesaswellassmallislandnations.Negotia-tionswereinformedbynumerousfactors—emissionreductiontargets,deadlinesforthosecuts,financialsumscountrieswouldinvestinadevelopmentfund—allofwhichwerepluggedintotheC-LEARNmodel,aweb-accessibleinternationalsimulation

developedbyateamledbyJohnSterman,theJayW.ForresterProfessorofManagement.Thesimulationhelpsusersunderstandthelong-termclimateimpactsofvariousparametersusingeasilycomprehendedgraphicaldisplays.

“Wesawhowournegotiatingtermswouldactuallyaffecttheenvironment,”explainsFPOPparticipantAnvishaPai,a17-year-oldfromMumbai,India.“Ithelpedusseehowdifficultitistocomeupwithacomprehensivesolution,andhowandwhyglobalpoliticshasbeensoinefficientinslashingemissions.”

Thelocalsideofenergypoliticswasalsodramaticallyspotlighted.Studentswereintroducedtothecollectiveimpactofleavinglightson,keepingelectronicspluggedin,andnotusingrevolvingdoors.“Lettingpeopleknowhowtodecreaseourownpersonalconsumption—itmadememoreexcitedtocometoaplacewhereallthisisgoingon,”saysSnyder,addingthattheFPOPexperience“wasmyfirstexposuretopeoplewhocareaboutthesekindsofcriticalthings,whichotherpeoplefindnerdyordorky.It’simportanttoseethatasateenagerit’sOKtobeinterestedinenergy,ratherthangoingtothemall.Itwasrefreshing.”

ForPai,theDELTAFPOPwassimilarlyeye-opening.Inadditiontolearninghowtoworkbetterinaculturallydiversegroupandunderstandingthatsheneeds“tofocusequallyhardonsocialsciencesasonengineering,”Paisaysshecametoafewrealizations.Oneconcernsherfuture—“I’mdefinitelygoingforwardwithenergyworkandresearch.”Anotherisaboutherfellowstudents.“IthoughtAmericankidswouldbeverydifferentfromme,butwe’reallonthesamepage.Beforecominghere,theonly

thingIknewaboutMITwasthatit’sanumber-oneuniversity.Iwasawedthinkingthere’salwayssomeonesmarterthanyou.”DELTAFPOPtookawayherintimidationfactor.FifteendaysafterarrivingintheUnitedStates,Paisays,“DELTAFPOPhelpedmefeelthatMITismorelikehome.”• • •

By Orna Feldman, MITEI correspondent

Autumn 2010 | MIT Energy Initiative | Energy Futures | 29

Aiming at campus energy savings, hitting the targets

ThreenewinitiativesatMITaretakingaimatenergysavingsfrommultipledirections.Thegoal:savingtensofmillionsinenergycosts,reducingtheInstitute’scarbonfootprint,andforgingnewpartnershipsthatencourageandrewardstrategicenergyuse.Sofar,thenewprogramsareallhittingtheirtargets.

Fast forward to savings

MassachusettsgasandelectricutilityNSTARandMIThaveembarkedonwhattheutilityhasdubbeditsmostaggressiveefficiencyprojecttodate.

TheMITEfficiencyForwardprogramaimstosaveupto$50millioninenergycostsoveraperiodof10years.Upgradestoheating,ventilation,andairconditioning(HVAC),electricalsystems,andlightingareexpectedtosetthestageforthelong-termsavingsbycuttingelectricaluseby15%overthenextthreeyears.

“WhatwearelaunchingwithMITisaboldnewplanforconfrontingclimatechangeandaproposaltoofficiallyestablishenergyefficiencyasthe‘firstfuel’inMassachusetts,”saidNSTARpresidentandCEOTomMaywhentheinitiativewasannouncedinspring2010.

MIT’sgoaloverthenextthreeyearsistoconserve34millionkilowatt-hours(kWh)—theequivalentelectricaluseof4,500Massachusettshomesinayear.MIT’scurrentaverageelectricityconsumptionisaround18millionkWhpermonth.TheInstituteismakingrapidprogresstowardthisyear’sgoalofsaving10millionkWh.Todate,theInstitutehassaved7.7millionkWhthroughitsEfficiencyForwardprogram,includingcompletionofseveralnewlightingretrofitprojectsinbuildingsinthenorthwestsectionofcampus;

thecompletionofseveralnewbuildingprojects,includingtheSloanSchoolofManagementbuilding;achillerplantexpansion;andotherprojectsthatincludeefficiencyenhancements.

“Wehaveover2millionkilowatt-hoursofprojectsintheplanningstage,andweexpecttomeetorexceedour2010goal,”saidWalterE.Henry,directorofthesystemsengineeringgroupfortheDepartmentofFacilities.The$50millioninsavingswillbeachievedoverthelife-timeoftheprojects,NSTARandMITsaid.

AccordingtoStevenM.Lanou,MIT’sdeputydirectorforenvironmentalsustainability,lightingretrofitsareexpectedtocontributeabouthalfthesavingsandnewconstructionfeaturesabout20%.ImprovementstoHVACandcoolingandcompressedairsystems—aswellasbehaviorchangemeasures—areexpectedtoroundoutthebalance.ThecompanywillworkwithMITtoconductHVAC,electrical,andlabsystemsimprovements,andlightingfixtureandcontrolupgrades,inadditiontoothersteps.

SeveralfactorsmadeMITanespeciallypromisingpartnerforNSTAR,accordingtoLanou.Amongthosefactorsareanewlyestablishedrevolvingfundforcampusenergyandefficiencyprojects;asetofpilotprojectsestablishedlastyear;andadisciplined,long-termenergymanagementprogramwitharobustmeasurementandverificationcomponentforenergysavings.

Witha$1milliongiftfromJeffreySilverman‘68inApril2009,theInstituteestablishedtheSilvermanEvergreenEnergyFundtosupportcampusenergyandefficiencyprojectsthathaverapidpaybacks.DavidDesjardins‘83,aconsultantandinvestorwhoisalso

passionateaboutcampusenergyissues,hassincedonatedanadditional$500,000totheeffort.

Todate,thefundhaspaidtoupgradethelightingsystemsintheRayandMariaStataCenterforComputer,Information,andIntelligenceSciences,aswellasintheStrattonStudentCenter.Thetwoprojectsrequiredacombinedinvestmentofnearly$600,000andhaveresultedinestimatedannualsavingsofabout$185,000,meaningtheywillhavepaidforthem-selvesafteraboutthreeyears.

Inaddition,theSilvermanfundallocated$430,000torecalibrateandimprovetheefficiencyofthenearly200fumehoodsintheDreyfusChemistryBuilding(Building18).Fumehoodsareenergy-intensiveventilationdevicesthatprotectresearchersfromchemicalfumes.Theyworkwellatlowerflowvolumes,savingabout$160,000annually.

The ups and downs of megawatts

In1995,MITinstalledanaturalgas-firedcogenerationplantthatprovideselectricity,steamheat,andchilledwatertomorethan100campusbuildings.Bygeneratingmuchofitsownpower,MITcutscostsandreducespollution,butoperatingtheplantrequiresa

mit’schillerplantexpansionhasaddedtwo2,500-tonhigh-efficiencychillersinotherwiseunusablespaceoverarailroadright-of-way.here,oneofthechillersisloweredintoplacebya600-toncrane.

c a m p u s e n e r g y a c t i v i t i e s

Phot

o: c

ourte

sy o

f Bon

d Br

othe

rs

30 | Energy Futures | MIT Energy Initiative | Autumn 2010

c a m p u s e n e r g y a c t i v i t i e s

decision-makingprocesssimilartothatusedinrunningfull-scaleutilities.

Thecogenerationfacilityprovides21megawattsofelectricityplusheatingandcoolingtomeetabout75%ofcampusenergyneeds.Fortheremain-ing25%,MITbuyselectricityfromNSTAR.Butwithenergypricesconstantlyfluctuating,itcanbedifficulttofigureoutwhenit’smorecost-effectiveforMITtobuyelectricityfromthegridortoproduceitsown.

EnterICETEC,Industrial/CommercialEnergyTechnologies.Earlierthisyear,MITcontractedwiththePennsylvania-basedcompanytotestaserviceandsoftwarepackagedesignedtoincreasetheplant’seffectivenessandmanagetheeconomicrisksassociatedwithbeingyourownutility.

ICETEChasprovidedMITwithacomputerserverthroughwhichpeoplelikeplantengineerSethKindermanconnectthroughawebinterfacethatpresentsgrapheddatafrommultiplesources.Usingdatafromtheplant’sowncontrolcenter,itshowshowmanymegawattstheplantisproducing,whichchillersarerunning,andthecurrentload.Itpredictshowtheweathermayboostelectricitycosts,stressthegrid,andcreatecongestioninenergydelivery.

“Ifit’sgoingtogethotter,consumersaregoingtousemoreelectricity,andcostsaregoingtogoup,”Kindermansaid.“ICETECmakesrecommendationstousonhowweshouldruntheplant.

“Before,wehadtoruntheturbineonthehighestoutput—setitandforgetit,sotospeak.Ifthecampusloaddropped,weproducedless.Ifitwentup,weproducedmore.

“Butthereisahugevariationinelectric-ityprices.Amegawatt-hourcouldcost$300,$30,or$5,dependingondemandandtimeofdayornight.TheICETECsoftwaretellsuswhentoproducemoreorless,whetherit’scheapertomakechilledwaterforairconditioningusingsteamorelectricity.Ifelectricitypricesarehigh,werunallsteam.Itsetsupakindofbattingorderforthechillers,soweusethemostcost-effectiveunitfirst,andsoon.”

“Becauseittellsuswhichunitismostefficienttorun,thesystemsavesMITenergyaswellasmoney,”hesaid.

ICETEC’sreal-timemonitoringofenergypricesandloadlevelsoncampusandintheregionhelpsdictatewhenMITshouldrunthecogenerationplantandwhentobuypowerfromthegridformaximumefficiency.Thenumbersarenotyetin,butthecollaborationlookspromising.”Weknewhistoricallywhatwewouldhavedoneinaparticularmonth.RoughnumbersareshowingsignificantsavingssincewepartneredwithICETEC,”Kindermansaid.

Partnering globally

Movingbeyondcampus,MIThassignedontopilotanewpublic-privatepartnershipaimedatcuttingenergyuseandgreenhousegasemissionsatindustrialandcommercialfacilities—includingacademicinstitutions—aroundtheworld.

Initially,MITwilljoineightcompaniestopilottheprogram,whichemergedfromtheCleanEnergyMinisterialpublicforumheldinWashington,DC,inJulyhostedbyUSDepartmentofEnergySecretaryStevenChu.Corporateleadersandmorethan26energyministersandsecretariesofenergyfromaroundtheworldattended,andmanyspoke

attheevent,whichlaunchedthepartner-shipcalledtheGlobalSuperiorEnergyPerformance(GSEP)Partnership.

ThroughGSEP,institutionssuchasMITcanwinglobalcertificationandrecognitionbyadoptingapprovedenergymanagementsystems.Thegoalistoachievesignificantandindependentlyvalidatedefficiencyimprovementsovertime.

GSEPcertificationwillbepilotedincommercialbuildingsbyClevelandClinic,Grubb&EllisCo.,MarriottInternationalInc.,Target,andWalmart;inindustrialfacilitiesby3MCo.,Nissan,andDowChemical;inpublicbuildingsbytheUnitedStatesandCanada;andinaneducationalsettingbyMIT.

“Toachievecertification,institutionsandindustrymustimplementanenergymanagementstandardtoidentifypathwaystoreduceenergyuse,”saidHenry.GSEP-certifiedfacilitiesalsoneedtodemonstratealevelofenergyperformanceimprovementthatexceedsbusiness-as-usuallevels.What’smore,reachingtheirtargetswillneedtobevalidatedbyanaccreditedthirdparty.

“MIT’sbeingselectedbySecretaryChuandtheDepartmentofEnergyastheonlyuniversityinvitedtohelpdevelopthisnewinternationalenergyperformancestandard,aswellasourpartnershipwithNSTAR,speaksvolumesabouttheleadershippositionMITisestablishingincampusenergymanagement,”saidLanou.“Itisourgoaltoshareourexperiencethroughthisprogramandourotheractivitiestoshowotheruniversitieswhatispossible.”

• • •

By Deborah Halber, MITEI correspondent

Autumn 2010 | MIT Energy Initiative | Energy Futures | 31

MIT study confirms natural gas as bridge to low-carbon future

o u t r e a c h

Naturalgaswillplayaleadingroleinreducinggreenhousegasemissionsoverthenextseveraldecades,largelybyreplacingolder,inefficientcoalplantswithhighlyefficientcombined-cyclegasgeneration.That’stheconclusionreachedbyacomprehensivestudyofthefutureofnaturalgasconductedbyanMITstudygroupcomposedof30MITfacultymembers,researchers,andgraduatestudents.Thefindings,summarizedinan83-pagereport,werepresentedtolawmakersandsenioradministrationofficialsinWashingtoninlateJune.

Thetwo-yearstudy,managedbytheMITEnergyInitiative(MITEI),examinedthescaleofUSnaturalgasresourcesandthepotentialofthisfueltoreducegreenhousegas(GHG)emissions.Basedontheworkofthemultidisci-plinaryteam,withadvicefromaboardof16leadersfromindustry,govern-ment,andenvironmentalgroups,thereportexaminesthefutureofnaturalgasthrough2050fromtheperspectivesoftechnology,economics,politics,nationalsecurity,andtheenvironment.

Thereportincludesasetofspecificproposalsforlegislativeandregulatorypolicies,aswellasrecommendationsforactionsthattheenergyindustrycanpursueonitsown,tomaximizethefuel’simpactonmitigatingGHGs.Thestudyalsoexaminedwaystocontroltheenvironmentalimpactsthatcouldresultfromasignificantexpansionintheproductionanduseofnaturalgas—especiallyinelectricpowerproduction.

“Muchhasbeensaidaboutnaturalgasasabridgetoalow-carbonfuture,withlittleunderlyinganalysistobackupthiscontention.Theanalysisinthisstudyprovidestheconfirmation—naturalgastrulyisabridgetoalow-carbonfuture,”

saidMITEIDirectorErnestJ.Monizinintroducingthereport.

Monizfurthernoted,“Intheverylongrun,verytightcarbonconstraintswilllikelyphaseoutnaturalgaspowergenerationinfavorofzero-carbonorextremelylow-carbonenergysourcessuchasrenewables,nuclearpower,ornaturalgasandcoalwithcarboncaptureandstorage.Forthenextseveraldecades,however,naturalgaswillplayacrucialroleinenablingverysubstantialreductionsincarbonemissions.”

Twomajorfactorsthatcanmakeasignificantdifferenceinthenearterminreducingcarbonemissionsareusinglessenergyandusinggasinsteadofcoal—especiallybyreplacingtheoldest,least-efficientcoalplantswiththemost-efficientmoderncombined-cyclegasplants,saidMoniz,whochairedthestudyalongwithco-chairsHenryJacoby,professorofmanagement,andTonyMeggs,MITEIvisitingengineer.

Thestudyfoundthattherearesignificantglobalsuppliesofconventionalgas.HowmuchofthisgasgetsproducedandusedandtheextentofitsimpactonGHGreductionsdependcriticallyonsomekeypoliticalandregulatorydecisions.

IntheUnitedStates,forexample,thereisasubstantialamountoflow-hangingfruitavailablebydisplacinginefficientpowergenerationwithmoreefficient,lowercarbondioxide(CO2)emittinggasplants.“Thatkindofsubstitutionalone,”Monizsaid,“reducesthosecarbonemissionsbyafactorofthree.Itdoes,however,raisecomplicatedregulatoryandpoliticalissuesthatwillhavetoberesolvedtotakeadvantageofthispotential.”

Some key findings

1. TheUnitedStateshasasignificantnaturalgasresourcebase,enoughtoequalabout91years’worthofsupplyatpresentdomesticconsumptionrates.Muchofitisfromunconventionalsources,includinggasshales.Whilethereissubstantialuncertaintysur-roundingtheproducibilityofthisgas,thereisasignificantamountofshalegasthatcanbeaffordablyproduced.

Globally,baselineestimatesshowthatrecoverablegasresourcesprobablyamountto16,200trillioncubicfeet(Tcf)—enoughtolastover160yearsatcurrentglobalconsumptionrates.Further,withtheexceptionoftheUSandCanada,thisglobalresourcefiguredoesnotincludeanyunconventionalgasresources,whicharelargelyuncharacterizedintherestoftheworld.TheMiddleEast,Russia,andtheUShavethehighestconcentrationofglobalgasreserves(seethefigureonpage32).

IntheUS,unconventionalgasresourcesarerapidlyovertakingconventionalresourcesastheprimarysourceofgasproduction.TheUScurrentlyconsumesaround22Tcfperyearandhasagasresourcebasenowthoughttoexceed2,000Tcf.

Tobringaboutthekindofsignificantexpansionintheuseofnaturalgasidentifiedinthisstudy,substantialadditionstotheexistingprocessing,delivery,andstoragefacilitieswillberequiredinordertohandlegreateramountsandthechangingpatternsofdistribution(suchasthedeliveryofgasfromnewlydevelopedsourcesintheMidwestandNortheast).

2. Environmentalissuesassociatedwithproducingunconventionalgasresourcesaremanageablebut

32 | Energy Futures | MIT Energy Initiative | Autumn 2010

o u t r e a c h

challenging.Risksincludeshallowfreshwateraquifercontaminationwithfracturefluids,surfacewatercontaminationbyreturnedfracturefluids,excessivedemandonlocalwatersupplyfromfracturingoperations,andsurfaceandlocalcommunitydisturbanceduetodrillingandfractur-ingactivities.

3. Naturalgasconsumptionwillincreasedramaticallyandwilllargelydisplacecoalinthepowergenerationsectorby2050(thetimehorizonofthestudy)underamodelingscenariowhere,throughcarbon-emissionspricing,industrializednationsreduceCO2emissionsby50%by2050andlargeemergingeconomies,e.g.,China,India,andBrazil,reduceCO2emissionsby50%by2070.Thisassumesincrementalreductionsinthecurrentpricestructuresofthealterna-tives,includingrenewables,nuclear,andcarboncaptureandsequestration.

4.Theintroductionoflargeintermittentpowergenerationfrom,forexample,windandsolarwillhavespecificshort-andlong-termeffectsonthemixofgenerationtechnologies.Theshort-termeffects(meaningdailydispatchpatternsofvariousfuels)oflargeamountsofwindgeneration,forexample,willreducegasgenerationsignificantlyandcouldforcebaseloadcoalplantstocycle,anoutcomethatishighlyunde-sirablefromanoperationalperspective.

Inthelongerterm,thereliabilityofasysteminwhichrenewablesassumeabaseloadroleinpowergenerationwillrequireadditionalflexiblenaturalgaspeakingcapacity,althoughthiscapacitymaybeutilizedforonlyshortperiodsoftime.Renewablesasbaseloadpower,firmedbynaturalgasgeneration,willrequirenewregulatorystructurestoensurereliabilityofthesystem

andincentivizethebuildingofflexiblegascapacity.

5.Theoverbuildingofnaturalgascombined-cycle(NGCC)plantsstartinginthemid-1990spresentsasignificantopportunityfornear-termreductionsinCO2emissionsfromthepowersector.ThecurrentfleetofNGCCunitshasanaveragecapacityfactorof41%,relativetoadesigncapacityfactorofupto85%.However,withnocarbonconstraints,coalgenerationisgenerallydispatchedtomeetdemandbeforeNGCCgenera-tionbecauseofitslowerfuelprice.

ModelingoftheERCOTregion(largelyTexas)suggeststhatCO2emissionscouldbereducedbyasmuchas22%withnoadditionalcapitalinvestmentandwithoutimpactingsystemreliabilitybyrequiringadispatchorderthatfavorsNGCCgenerationoverinefficientcoalgeneration;preliminarymodelingsuggeststhatnationwideCO2emissionswouldbereducedbymorethan10%.Atthesametime,thiswouldalsoreduceairpollutantssuchasoxidesofsulfurandnitrogen.

6.Inthetransportationsector,thestudyfoundasomewhatsmallerrolefornaturalgas.TheuseofcompressedorliquefiednaturalgasasafuelforvehiclescouldhelptodisplaceoilandreduceGHGemissionsbuttoalimitedextentbecauseofthehighcostofconvertingvehiclestousethesefuels.Bycontrast,makingmethanol,aliquidfuel,outofnaturalgasrequiresmuchlessup-frontconversioncostandcouldhaveanimpactonoilusageandthusimproveenergysecurity,butwouldnotreduceGHGs.

7. Aglobal“liquid”marketinnaturalgasinwhichsupplysourcesarediverseandgaspricesaretransparent,setbysupplyanddemandwithpricediffer-encesbasedontransportationcosts,isdesirableforUSconsumers.

Therearecurrentlythreeregionalgasmarkets—NorthAmerica,Europe,andAsia—whichhaveverylittleintegrationandrelyoncompletelydifferentpricingstructures.ModelingsuggeststhattheintegrationofthesemarketswouldresultinsubstantiallylowerpricesforUSconsumers.

Trillion cubic feet (Tcf) of gas 0 1,000 2,000 3,000 4,000 5,000 6,000

Middle East

Russia

United States

Africa

Rest of Europe and Central Asia

Canada

Rest of Americas

Europe

Dynamic Asia

Brazil

Rest of East Asia

Australia & Oceania

China

India

Mexico

0 1000 2000 3000 4000 5000 6000

0.0

0.2

0.4

0.6

0.8

1.0

Middle East

Russia

United States

AfricaCentral Asia and

Rest of Europe Canada

Rest of Americas

EU and Norway

Dynamic Asia

Brazil

Rest of East Asia

Australia & Oceania

China

Mexico

India

Reserve growth (mean)

Proved reserves

Yet-to-�nd resources (mean)

Unconventional resources (mean)P90RRR

P10RRR

Remaining recoverable natural gas resources(excludesunconventionalgasoutsideNorthAmerica)

definitions:“resource”referstothesumofallgasvolumesexpectedtoberecoverableinthefuture,givenspecifictechnologicalandeconomicconditions.resourceisdisaggregatedintothefollowingsubcategories:provedreserves,reservegrowth(viafurtherdevelopmentofknownfields),andyet-to-findresources(gasvolumesthatwillbediscoveredinthefutureviatheexplorationprocess).

uncertaintybars:thereisa90%chancethatthetruevalueofremainingrecoverableresources(rrr)isgreaterthanthelowerendoftheuncertaintybar(p90)anda10%chancethatitisgreaterthantheupperend(p10).

Autumn 2010 | MIT Energy Initiative | Energy Futures | 33

o u t r e a c h

Recommendations

Thestudymakesmanyrecommenda-tionsregardingtheroleofnaturalgasinacarbon-constrainedworld,suggestingthatpolicymakersshouldconsidersupportivepoliciesinthefollowingareas.

Supply• Requiredisclosureofallcomponents

ofhydraulicfracturefluids.

• Requireintegratedregionalwaterusage/disposalplansforunconven-tionalgasproduction.

• SupportarenewedDepartmentofEnergy(DOE)R&Dprogramweightedtowardbasicresearchandan“off-budget”industry-ledprogramweightedtowardtechnol-ogydevelopment,demonstration,andtransfer.Programsshouldbedesignedtooptimizegasresourcesandensurethattheyareproducedinenvironmentallysoundways.

Power generation• Pursuedisplacementofinefficientcoal

generationwithNGCCgeneration.

• Developpolicyandregulatorymea-surestofacilitatenaturalgasgenera-tioncapacityinvestmentsconcurrentwiththeintroductionoflargeintermit-tentrenewablegeneration.

Transportation• Removepolicyandregulatory

barrierstonaturalgasasatranspor-tationfuel.

Global markets• Supportpoliciestofosteraninte-

gratedglobalgasmarket,includingtheintegrationofnaturalgasissuesintotheforeignpolicyapparatus,withstronginvolvementoftheExecutiveOfficeofthePresidentsupportedbyastrengthenednaturalgaspolicyapparatusatDOE.

• ExportUSknowledgeinunconven-tionalgascharacterizationandproductiontonationsthatcanadvanceUSstrategicinterests.

WhilethenewreportemphasizesthegreatpotentialfornaturalgasasatransitionalfueltohelpcurbGHGemissionsanddependenceonoil,italsostressesthatitisimportantas

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0

Trillion cubic feet (Tcf) of gas

Brea

keve

n ga

s pr

ice*

($/m

illio

n Bt

u)

0 4,000 8,000 12,000 16,000 20,000

P90MeanP10

Sample LNG value chaincosts incurred during gas delivery**

$/million BtuLiquefaction $2.15Shipping $1.25Regasi�cation $0.70

Total $4.10

0

5000

10000

15000

20000

0.0

0.2

0.4

0.6

0.8

1.0

P9012,400

P1020,800

Volumetric uncertainty aroundmean of 16,200 Tcf

Lique�ed natural gas (LNG) manufacturing and transportation costs add to the breakeven gas price.

amatterofnationalpolicynottofavoranyonefuelorenergysourceinawaythatputsothersatadisadvantage.Themostusefulpolicies,theauthorssuggest,areonesthatproduceatruly“levelplayingfield”forallformsofenergysupplyandfordemandreduction,andthusletthemarketplaceandtheingenuityofthenation’sresearchersdeterminethebestoptions.

Illustratingtheroleofnaturalgasasabridgetoalow-carbonfuture,thestudy’sauthorsstressthatitwouldbeamistaketoletnaturalgascrowdoutresearchonotherlow-orno-carbonenergysources,butitwouldalsobeamistaketoletinvestmentsinsuchalternativescrowdouttheexpansionofnaturalgasresourcesinthenearterm,particularlyforthepurposesofCO2emissionsmitigation.

“Inacarbon-constrainedworld,naturalgaswillbecomealargerpartoftheenergymix,”Monizsaid.Butinthelongerterm,itwillbenecessarytoshiftto“essentiallyzero-carbon”sources,so“webetternotgetmesmerizedbygaseither.Weneedtodothehardworkofgettingthosealternativetechnologiesreadytotakeover.”

• • •

By Melanie A. Kenderdine, MITEI, and David L. Chandler, MIT News Office

This study received support from the American Clean Skies Foundation, Hess Corporation, Agencia Nacional de Hidrocarburos of Colombia, and the Energy Futures Coalition and the MIT Energy Initiative. The report issued is a preliminary overview of a more detailed report that will be released later this year. To download a pdf of the interim report, go to web.mit.edu/mitei/research/studies/naturalgas.html.

Global gas supply curve(excludesunconventionalgasoutsideNorthAmerica)

*2007costbase.northamericanbreakevenpricesarecalculatedatthewellhead;forregionsoutsidenorthamerica,breakevenpricesarecalculatedatthepointofexport.breakevenpricescalculatedusing10%realdiscountrateandicfhydrocarbonsupplymodel.

**assumestwo4millionmetrictonlngtrainswithabout6,000-mileone-waydeliveryruns,perJensenandassociates.excludescostofthegas.

34 | Energy Futures | MIT Energy Initiative | Autumn 2010

MITEI releases report on critical elements for new energy technologies

o u t r e a c h

Thestrategicimportanceofrareearthelementswasoneofseveralissueshighlightedinarecentreport, Critical Elements for New Energy Technologies,releasedbytheMITEnergyInitiative(MITEI)anditsco-sponsors,theAmericanPhysicalSociety’sPanelonPublicAffairsandtheMaterialsResearchSociety.Thereportsumma-rizesthesixcommissionedwhitepapers,presentations,anddiscussionsattheApril29workshopheldatMITEIheadquartersontheMITcampus.

Rareelementsarecriticalforadvancedmanufacturingof,forexample,photovoltaics,superconductors,high-performancepermanentmagnets,batteries,keycatalysts,hybridcarcomponents,andcompactfluorescentlights.Elementssuchasgallium,indium,lanthanum,lithium,neodym-ium,tellurium,andterbiumarenowroutinelypartofthediscussionaboutnovelenergytechnologies,butmanyoftheseelementsarenotatpresentmined,refined,ortradedinlargequantitiesandcouldpresentscale-upchallenges.

Theworkshop,co-chairedbyRobertJaffe,theMorningstarProfessorofPhysicsatMIT,andJonathanPrice,thestategeologistofNevadaandprofessorattheUniversityofNevada,Reno,examinedhowgeologic,technical,socioeconomic,political,andeconomicfactorsmightlimitconsumeraccesstothesemineralsandtheimplicationsforthemanufacturinganddeploymentofnewenergytechnologies.

Someoftheconclusionsinthereportare:

• Manynoveltechnologiesaremateri-alsintensiveandifwidelydeployedwillcompetewithotherusesofrareelements.

• Chinahasemergedasaprimaryproducerofenergy-criticalelementsandhaslessstringentenvironmentalrequirementsformining/production.Thereareconcernsaboutmonopolyandaccessrestrictions,especiallybecausesubstitutionopportunitiesforrareearthsinenergy-criticalapplicationsarelimited.Chinanowmeetsmorethan95%oftheworld’sdemandforrareearths.

• Therearenewpotentialsourcesofrareelements,buttheyareusuallyexpensiveandtechnicallychallengingtodevelopandproduce.Researchanddevelopmentisneeded.

• Thelongleadtimesof5to15yearsfornewminingventurescouldleadtoshortagesandpricespikes.

• Thecadmiumtelluridephotovoltaicindustrycurrentlyhasanannualgrowthrategreaterthan100%.Ifsuppliesoftelluriumobtainedasby-productsofcopperproductionproveinsufficient,othersourcescanbebroughtintoplay,buttheassociatedtimeconstantsarehardtopredict.

• TheUnitedStatesneedstransparent,accuratedataonproduction,reserves,andreservebasesforenergy-criticalelements.TheUSGeologicalSurveyshouldberesourcedtoconductacomprehen-siveestimateofthereservebasesforthoseelements.

• Thepublicandpolicymakersnowhavelimitedawarenessofthemineralfootprint,similartotheearlieststagesoftheenvironmentalmovement.RaisingawarenessisimportantfortheconservationoftheserarematerialsaswellasfortheassociatedrecyclingandR&Dthatareneededtomeetgrowingdemand.

Todownloadacopyofthereport,pleasegotoweb.mit.edu/mitei/research/energy-studies.html.

• • •

By Melanie A. Kenderdine, MITEI

Autumn 2010 | MIT Energy Initiative | Energy Futures | 35

MITEI seminars and colloquia

o u t r e a c h

MITEI Seminar Series, 2010–2011

October 12, 2010Mitigating manhole events in ManhattanCynthiaRudin,AssistantProfessorofStatistics,MITSloanSchoolofManagement

November 9, 2010 Solar photovoltaic materials, processes, and devicesTonioBuonassisi,AssistantProfessor,MechanicalEngineering,MIT

December 14, 2010Response to the Gulf oil spill and the larger issue of energy and national securityJulietteKayyem,AssistantSecretaryforIntergovernmentalAffairs,USDepartmentofHomelandSecurity

February 8, 2011Decision making in electricity markets and control problems of large energy systemsMarijaIlic,Professor,ElectricalandComputerEngineering,CarnegieMellonUniversity

March 8, 2011 Organic semiconductors, nanostructures, and solar cellsMichaelMcGehee,AssociateProfessor,MaterialsScienceandEngineering,StanfordUniversity

April 12, 2011Catalysis for hydrogen productionClausHviidChristensen,LindoeOffshoreRenewablesCenter,Denmark

May 10, 2011Catalysis and surface chemistryMarcKoper,Professor,Chemistry,LeidenUniversity,TheNetherlands

onoctober15,georgep.shultzphd’49,chairofmitei’sexternaladvisoryboard,discussednucleardisarmamentafterascreeningofthedocumentaryfilmNuclear Tipping Point.inthefilm,formersecretariesofstateshultzandhenryKissinger,formersecretaryofdefensewilliamperry,andformersenatorsamnunncallforthecompletedisarmamentoftheworld’snucleararsenals—astancemotivatedbytheriseofterrorismcombinedwiththeanticipatedspreadofweaponsmaterials,whichcouldbewidelyproducedthroughtheinternationalreprocessingofnuclearreactorspentfuel.theeventwasco-sponsoredbymiteiandthemitcenterforinternationalstudies.

duringamiteicolloquiumonoctober13,arunmajumdar,directoroftheusdepartmentofenergy’sadvancedresearchprojectsagency-energy(arpa-e),discussedtheglobalenergychallengeandtherolehisagencyplaysintryingtofostertransformationalenergyresearchanddevelopment.majumdar’spresentationtoastanding-room-onlycrowdservedasbothawake-upcallandasourceofinspiration.henotedthattheusspendsmoreondogfoodr&dthanonelectricalpowerr&d.healsodiscussedsomeoftheveryrealandexcitingenergyprojectshisagencyisfunding,includingseveralatmit.

Phot

os: J

ustin

Kni

ght

36 | Energy Futures | MIT Energy Initiative | Autumn 2010

Martin Fellows explore the changing coastal environment

l f e e • laboratoryforenergyandtheenvironment

InSeptember2010,MartinFellowsforSustainabilityspentaweekendretreatatPlumIsland,an11-mile-longbarrierislandofftheshoreofNewburyport,Massachusetts.TheislandishometotheParkerRiverNationalWildlifeRefuge,a4,662-acresanctuarythatprovidesfeeding,resting,andnestinghabitatformigratorybirds.Thefellowslearnedaboutbirdmigrationstrategiesandhowtheyareimpactedbychangingenvironmentalconditions.MassachusettsAudubonSociety’sJoppaFlatsEducationCenterstaffandvolunteersledtheweekend’sactivities.

left:retreatattendeesspottedgreatblueheronsandotherwildlifeduringarivercruisethatmeanderedthroughmilesoftherefuge’sgreatmarsh.

below:birdscaughtattheJoppaflatsbandingstationaretaggedwiththeselightweightanklebracelets.aftergatheringdata(species,weight,age,gender)andbandingthebirds,thevolunteersreleasethemtocontinuetheirjourneys.

benflemer,manageroftheeducationcenter’sbirdbandingstation,holdsaplainswarbler.behindhimisalistofwarblerspeciesthatwerebandedatthestationinearlyfall2010.

anitaganesan,a2010martinfellowinearth,atmospheric,andplanetarysciences,looksthroughatelescopeasJoppaflatssanctuarydirectorbillgettedescribesthehabitat.

massaudubonvolunteerJohnhalleran(center)demonstrateshowtomeasuretheturbidityofriverwatertomartinfellows(fromleft)Kathyaraujo(2009),lilysong(2010),isabelleanguelovski(2008),andmadhudutta-Koehler(2010),allofurbanstudiesandplanning.

here,flemerblowsgentlytoseparateatowhee’sfeathersasmartinfellowslookon.thepinknessoftheunderlyingskinindicatesthebird’sleveloffat,whichmustsustainthemigrantasittravelshundredsorthousandsofmiles.

Phot

o: J

enni

fer D

iMas

e, M

ITEI

Phot

o: J

enni

fer D

iMas

e, M

ITEI

Phot

o: J

ustin

Kni

ght

Phot

o: M

itul L

uhar

, MIT

Phot

o: M

itul L

uhar

, MIT

Autumn 2010 | MIT Energy Initiative | Energy Futures | 37

Deutch named to Secretary of Energy Advisory Board

Herzog receives international award

o t h e r n e w s

InstituteProfessorJohnM.DeutchhasbeennamedtotheSecretaryofEnergyAdvisoryBoard(SEAB),whichwillserveasanindependentadvisorycommitteetoUSSecretaryofEnergyStevenChu,theUSDepart-mentofEnergy(DOE)announcedonAugust10,2010.

DeutchhasservedinanumberofpositionsforDOE,includingdirectorofenergyresearchandundersecretaryofthedepartment.Heservedasdirectorofcentralintelligencefrom1995to1996anddeputysecretaryofdefensefrom1994to1995.

HowardHerzog,seniorresearchengineerattheMITEnergyInitiative,hasbeenpresentedthe2010GreenmanAwardbytheInternationalEnergyAgencyGreenhouseGasR&DProgramme(IEAGHG)inrecognitionofhislongstandingnationalandinternationalcommitmenttocarboncaptureandstorage(CCS)researchanddevelopment.

AnMITstaffmembersince1989,Herzoghasfocusedhisresearchonenergyandtheenvironment,withanemphasisongreenhousegasmitigationtechnologies.In2000,hefoundedtheMITCarbonSequestrationInitiative,anindustrialconsortiumdedicatedtoinvestigatingCCStechnologies.Theinitiativenowhas18members.

AmemberoftheMITfacultysince1970,Deutchhasservedonthesix-memberMITEnergyCouncilsinceitwasformedinNovember2006tohelpguidedevel-opmentofthenewlycreatedInstitute-wideMITEnergyInitiative.AtMIT,DeutchhasalsoservedasheadoftheDepartmentofChemistry,deanofscience,andprovost.

The12-memberSEAB—consistingofscientists,businessexecutives,academics,andformergovernmentofficials—willprovideadviceandrecommendationstoSecretaryChuonDOE’sbasicandappliedresearchanddevelopmentactivities,economicandnationalsecuritypolicy,educationalissues,operationalissues,andotheractivitiesasdirectedbythesecretary.

HerzogwasacoordinatingleadauthorontheIPCC Special Report on Carbon Dioxide Capture and Storage(releasedSeptember2005),aco-authoronThe Future of Coal: An Interdisciplinary MIT Study(releasedMarch2007),andaUSdelegatetotheCarbonSequestra-tionLeadershipForum’sTechnicalGroup(June2003–September2007).

KellyThambimuthu,chairmanoftheIEAGHG,presentedtheawardtoHerzogonSeptember23,2010,duringtheInternationalConferenceonGreenhouseGasControlTechnologies(GHGT-10)inAmsterdam.Theweeklongconference,oneofthemostsignificantinthefieldofgreenhousegasemissionsreduction,attractedmorethan1,500delegatesthisyear.

Phot

o: M

ary

Galla

gher

, MIT

EIPh

oto:

cou

rtesy

of J

ohn

M. D

eutc

h, M

IT

38 | Energy Futures | MIT Energy Initiative | Autumn 2010

o t h e r n e w s

MITEI External Advisory Board meets

TheMITEnergyInitiative’sExternalAdvisoryBoardmetonOctober14–15,2010.Theboard,chairedbyGeorgeP.ShultzPhD’49,formerMITfacultymemberandsecretaryofstateintheReaganadministration,meetsannuallytoprovidehigh-levelstrategicdirectionfortheinitiativeandtoreviewMIT’sprogressinenergyfields.In2010,MITEIwelcomedsevennewEABmembers:SusanEisenhower,WalterB.Hewlett,FrankE.Mars,ThomasF.McLartyIII,GülerSabanci,GeraldSchotman,andRatanN.Tata.Inaddition,MITEIwelcomedLamarMcKayrepresentingBPAmerica,Inc.,andPaoloScaronirepresentingEniS.p.A.Specialcampus-wideeventsassociatedwiththeboardmeetingfeaturedShultzandArunMajumdar,directoroftheDepartmentofEnergy’sAdvancedResearchProjectsAgency-Energy(seepage35).

Members as of November 2010

Sultan Ahmed Al Jaber ChiefExecutiveOfficer,AbuDhabiFutureEnergyCompany

Stephen D. Bechtel, Jr. Chairman,SDBechtel,Jr.FoundationandStephenBechtelFund

Frances Beinecke President,NaturalResourcesDefenseCouncil

Denis A. Bovin Co-ChairmanandCo-ChiefExecutiveOfficer,StoneKeyPartnersLLC

Rafael del Pino Chairman,GrupoFerrovialSA

Susan Eisenhower ChairmanEmeritus,EisenhowerInstitute

Arthur L. Goldstein RetiredChairmanandChiefExecutiveOfficer,IonicsIncorporated

Walter B. Hewlett Chairman,TheWilliamandFloraHewlettFoundation

Baba N. Kalyani ChairmanandManagingDirector,BharatForgeCompanyLimited

Anne Lauvergeon ChiefExecutiveOfficer,AREVA

Lawrence H. Linden FounderandTrustee,LindenTrustforConservation

Frank E. Mars President,MarsSymbioscience

Lamar McKay ChairmanandPresident,BPAmerica,Inc.

Thomas F. McLarty III President,McLartyAssociates

Robert M. Metcalfe GeneralPartner,PolarisVenturePartners

Robert B. Millard ManagingPartner,RealmPartnersLLC

Mario J. Molina Professor,UniversityofCalifornia,SanDiego

Sam Nunn Co-ChairmanandChiefExecutiveOfficer,NuclearThreatInitiative

Ngozi N. Okonjo-Iweala ManagingDirector,WorldBank

John S. Reed Chairman,MIT

Güler Sabanci ChairmanandManagingDirector,HaciOmerSabanciHoldingAS

Kenan E. Sahin PresidentandFounder,TIAXLLC

Arthur J. Samberg ChairmanandChiefExecutiveOfficer,PequotCapitalManagementIncorporated

Paolo Scaroni ChiefExecutiveOfficer,EniS.p.A.

Gerald Schotman ExecutiveVicePresidentInnovation/R&DandChiefTechnologyOfficer,RoyalDutchShellplc

Philip R. Sharp President,ResourcesfortheFuture

George P. Shultz (Chair)ThomasW.andSusanB.FordDistinguishedFellow,HooverInstitution

Robert M. Solow InstituteProfessorEmeritus,MIT

Ratan N. Tata Chairman,TataSonsLimited

James D. Wolfensohn ChairmanandChiefExecutiveOfficer,Wolfensohn&Company,L.L.C.

Daniel Yergin Chairman,IHSCambridgeEnergyResearchAssociates

Autumn 2010 | MIT Energy Initiative | Energy Futures | 39

New technologies unveiled at Eni-MIT press briefing

MIT Energy Fellows Symposium

m i t e i m e m b e r s

NewMITinnovationssuchasimprint-ingsolarcellsonpaperandamaterialthatcouldhelpcleanupoilspillswereunveiledOctober18atapressbriefingledbyMITPresidentSusanHockfieldandPaoloScaroni,CEOoftheItalianenergycompanyEniS.p.A.,afoundingmemberoftheMITEnergyInitiative.

Theeventhighlightednewjointtech-nologiescomingoutoftheEni-MITAlliance,afive-yearresearchprogramfocusingonadvancedsolarresearchandotherstrategicresearchcentraltoEni’scorebusiness,includingoilandgasproduction.

HockfieldcreditedEniwith“makingfar-sightedinvestmentsthatcouldtransformthelong-termenergyequation,”andnotedthatthealliance—formedin2008—hasresultedin18publishedstudiesandfivepatentfilingstodate.

Atthebriefing,ProfessorKarenGleasonofchemicalengineeringandassociatedeanofengineeringforresearch,reportedonarevolutionarywaytoproduceultra-lightweight,inexpensive,flexiblesolarcells.Shedemonstratedhowanindex-card-sizedsquareofordinarytracingpaperimprintedwiththesecellscouldpoweranLEDclock.“Youreallycanmakesolarcellsonpaperthatareusableandthatpoweradevice,”saidGleason.

Thenewapproach,developedbyGleasonincollaborationwithProfessorVladimirBulovicofelectricalengineer-ingandcomputerscienceandhisteam,involvesrapidlydepositingmaterialsatroomtemperatureusingonlyenviron-mentallyfriendlymethods.Withthistechnique,solarcellscouldbelayeredonrooftiles,windowblinds,orlaptops.

ProfessorPhilGschwendofcivilandenvironmentalengineeringpresented

TheMITEnergyInitiativehostedtheannualMITEnergyFellowsSymposiumatthenewMediaLaboratorybuildingonOctober27,2010.Facultypresentedresearchinsolarenergytofellowsfromthepastthreeyearsandrepresen-tativesfromtheirsponsoringcompanies.Apostersessionfollowed.

ananotech-basedmaterial—developedbyhiscollaboratorProfessorFrancescoStellacciofmaterialsscienceandengineering—thatrepelswaterbutallowsoiltopass.“It’spossiblewecancreatedevicesthat,whenoilisescaping,canrecaptureandaccumulateitsoitcanthenbepumpedintoatanker,”hesaid.

Heshowedavideoofaconeofthematerialsubmergedinabeakerofoilandwatersimulatinganoilspill.Oilpooledinthedeviceandwasremovedwithnowaterinthemixture.Gschwendsaidsuchoil-collectingdevicescouldonedaybepermanently“oncall”foremergencyuseinareassuchastheGulfofMexico.

ScaronisaidhewasimpressedwithMIT’sresearchresultsandemphasizedtheurgencyofmakingproductssuchastheoil-collectingdeviceavail-abletoaddresscatastrophessuchastheBPspillintheGulfofMexico.Thatincident“haspushedustoworkintwofields—preventionandsolutions—toprovideanswerstowhathappensifwehaveanaccident,”Scaronisaid.

• • •

By Deborah Halber, MITEI correspondent

mitprofessorKarengleason(center),withmitpresidentsusanhockfield(left),demon-strateseni-supportedresearchon“paper-thinphotovoltaics”foreniceopaoloscaroni.

evelynwang,theestherandharolde.edgertonassistantprofessorofmechanicalengineering,describesnanoengineeringofhydrophobicsurfacesforsolarthermalenergyapplications.

gaudenziomariotti,headofnuclearenergy,energyandinnovationdivision,enelproduzionespa,conferswithgiancarlolenci,2010–2011enel-mitenergyfellowinnuclearscienceandengineering.

studentsandrepresentativesofmiteimembercompaniesdiscussenergyresearchatapostersessionfeaturingprojectsfromthemiteienergyresearchseedfundprogram.

Phot

o: ©

Ric

k Fr

iedm

an

Phot

os: J

ustin

Kni

ght

40 | Energy Futures | MIT Energy Initiative | Autumn 2010

m i t e i m e m b e r s

Latest seed grant projects supported by MITEI members

Recipients of MITEI seed grants, Spring 2010

For more information, see the article on page 21.

Energy-efficient desalination by shock electro-dialysis in porous media Martin Bazant Chemical Engineering

Energy-efficient algorithms Erik Demaine, Martin DemaineComputer Science and Artificial Intelligence Laboratory (CSAIL)

Solar energy conversion using the phenomenon of thermal transpiration Nicolas HadjiconstantinouMechanical Engineering

Synthesis of bimetallic nanoparticle structures as catalysts for fuel cellsKlavs JensenChemical Engineering

Advanced multi-core processor architectures for power electronics controls and simulation: enabling efficient integration of renewables into the smart grid John JoannopoulosPhysics Ivan CelanovicInstitute for Soldier Nanotechnologies Srini DevadasElectrical Engineering and Computer Science

Multi-functional self-assembled photonic crystal nanotexture for energy-efficient solid state lighting Lionel KimerlingMaterials Science and Engineering

Subsurface change detection for CO2 sequestration Alison Malcolm, Michael FehlerEarth, Atmospheric, and Planetary Sciences

Self-assembled polymer-enzyme nanostructures for low-temperature CO2 reduction Bradley OlsenChemical Engineering

A novel framework for electrical grid maintenance Cynthia Rudin Management

Novel bioprocess for complete conversion of carbon feedstocks to biofuels Gregory StephanopoulosChemical Engineering

Ultra-low drag hydrodynamics using engineered nanostructures for efficiency enhancements in energy, water, and transportation systems Kripa VaranasiMechanical Engineering

Nanofilm-based thermal manage-ment device for concentrated solar energy conversion systemsEvelyn Wang Mechanical Engineering

Experimental study of millimeter-wave rock ablation Paul Woskov PlasmaScienceandFusionCenter

Autumn 2010 | MIT Energy Initiative | Energy Futures | 41

M I T E I • r E s E a r C h

MITEI Founding and Sustaining members

MITEI Associate and Affiliate members

M I T E I M E M B E r s

MITEI’s Associate and Affiliate members support a range of MIT energy research, education, and campus activities that are of interest to them. Current members are now supporting various energy-related MIT centers, laboratories, and initia-tives; fellowships for graduate students; research opportunities for undergraduates; campus energy management projects; outreach activities including seminars and colloquia; and more.

Associate membersAgencia Nacional de Hidrocarburos (ANH)—Colombia CumminsDenbury Resources, Inc.EDFEntergyExelonFundació Barcelona Tecnológica (b_TEC)Hess

Affiliate membersAlbachiara Rinnovabili S.r.l.Alcatel-LucentAngeleno GroupAspen Technology, Inc.Beacon PowerBerkeley Investments, Inc.Marilyn G. BreslowBrownstein Hyatt Farber

Schreck, LLPConstellation EnergyEnerNOC, Inc.Forge Partners, LLCGabelli Capital PartnersGas Technology InstituteGravitas & Cie Int. SAGreengEnergyHarris InteractiveICF InternationalIHS Cambridge Energy

Research Associates (IHS CERA)

Paul MashikianMillennial Net, Inc.

Mohave Sun Power, LLC (Mitchell Dong)

Moore and Van AllenNew Energy FinanceNexant, Inc.NGP Energy Technology

Partners, LPNth power, LLCOrmat Technologies, Inc.

(inaugural member)Osaka Gas Co., Ltd.Palmer Labs, LLCPatriot RenewablesRedpoint VenturesPhilip Rettger

(inaugural member)Rockport Capital PartnersRopes and Gray, LLPS. Kinnie Smith, Jr.Steptoe & Johnson, LLPGeorge R. Thompson, Jr.The Tremont Group, LLCWestport Innovations, Inc.

F o u n d I n g M E M B E r s

BP (inaugural member)Eni S.p.A.Shell

F o u n d I n g P u B l I C M E M B E r

Masdar Institute

s u s T a I n I n g M E M B E r s

ABB Research Ltd.Robert Bosch GmbHChevron U.S.A. Inc.Enel Produzione SpAFerrovialLockheed MartinSaudi Aramco SchlumbergerSiemensTotalWeatherford International Ltd.

s u s T a I n I n g P u B l I C M E M B E r

Portuguese Science and Technology Foundation

Members as of December 1, 2010

MITEI’s Founding and Sustaining members support “flagship” energy research programs or individual research projects that help them meet their strategic energy objectives. They also provide seed funding for early-stage innovative research projects and support named Energy Fellows at MIT. To date, members have made possible 67 seed grant projects across the campus as well as fellowships for more than 100 graduate students in 20 MIT departments and divisions.

The sun’s rays can be highly destructive to materials, so some of the novel solar energy systems now being developed may get less efficient as they are used. Plants deal with that problem by continually disassembling and reassembling their light-gathering molecules so they’re in effect always brand new. MIT researchers have now been able to mimic that strategy. They start with a mixture of components suspended in a soapy solution (above). They then filter out one of the components, and those that remain assemble themselves into a highly ordered series of light-harvesting, electricity-producing structures (front cover). For more details on the diagram and the research, see page 4.

New photovoltaic technology

MIT Energy Initiative

Massachusetts Institute of Technology77 Massachusetts Avenue, E19-307Cambridge, MA 02139 -4307

Return service requested

Nonprofit OrganizationU.S. Postage

PAIDCambridge, MAPermit No. 54016