exercise 4 - stability analysis - telemark university...

8
EE4107 Cybernetics Advanced Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01 Exercise 4: Stability Analysis A dynamic system has one of the following stability properties: Asymptotically stable system Marginally stable system Unstable system Below we see the behavior of these 3 different systems after an impulse: Asymptotically stable system: lim !! = 0 Marginally stable system: 0 < lim !! < Unstable system: lim !! =

Upload: duongtu

Post on 22-May-2018

218 views

Category:

Documents


3 download

TRANSCRIPT

EE4107  -­‐  Cybernetics  Advanced  

 

Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 01

 

Exercise  4:  Stability  Analysis  A  dynamic  system  has  one  of  the  following  stability  properties:  

• Asymptotically  stable  system  • Marginally  stable  system  • Unstable  system  

 

Below  we  see  the  behavior  of  these  3  different  systems  after  an  impulse:  

Asymptotically  stable  system:  

 

lim!→!

ℎ 𝑡 = 0  

Marginally  stable  system:  

 

0< lim!→!

ℎ 𝑡 < ∞  

Unstable  system:  

 

lim!→!

ℎ 𝑡 = ∞  

 

2  

EE4107  -­‐  Cybernetics  Advanced  

 

Poles  

The  poles  is  important  when  analysis  the  stability  of  a  system.  The  figure  below  gives  an  overview  of  the  poles  impact  on  the  stability  of  a  system:  

 

Thus,  we  have  the  following:  

Asymptotically  stable  system:  

 

Each  of  the  poles  of  the  transfer  function  lies  strictly  in  the  left  half  plane  (has  strictly  negative  real  part).    

Marginally  stable  system:  

 

One  or  more  poles  lies  on  the  imaginary  axis  (have  real  part  equal  to  zero),  and  all  these  poles  are  distinct.  Besides,  no  poles  lie  in  the  right  half  plane.    

Unstable  system:    

 

At  least  one  pole  lies  in  the  right  half  plane  (has  real  part  greater  than  zero).      

 

Or:  There  are  multiple  and  coincident  poles  on  the  imaginary  axis.    Example:  double  integrator  𝐻(𝑠) = !

!!  

3  

EE4107  -­‐  Cybernetics  Advanced  

 

Feedback  Systems  

Below  we  see  a  typical  feedback  system:  

   

Where  we  have  the  following  transfer  functions:  

 

Where  

𝐻!(𝑠)  is  the  Controller  transfer  function  

𝐻!(𝑠)  is  the  Process  transfer  function  

𝐻!(𝑠)  is  the  Measurement  (sensor)  transfer  function  

 

Here  are  some  important  transfer  functions  to  determine  the  stability  of  a  feedback  system:  

Loop  Transfer  function  

The  Loop  transfer  function  𝐿(𝑠)  (Norwegian:  “Sløyfetransferfunksjonen”)  is  defined  as  follows:  

𝐿 𝑠 = 𝐻! 𝑠 𝐻!(𝑠)𝐻!(𝑠)  

Tracking  transfer  function  

The  Tracking  transfer  function  𝑇(𝑠)  (Norwegian:  “Følgeforholdet”)  is  defined  as  follows:  

4  

EE4107  -­‐  Cybernetics  Advanced  

 

𝑇 𝑠 =𝑦(𝑠)𝑟(𝑠)

=𝐻!𝐻!𝐻!

1 + 𝐻!𝐻!𝐻!=

𝐿(𝑠)1 + 𝐿(𝑠)

= 1 − 𝑆(𝑠)  

Sensitivity  transfer  function  

The  Sensitivity  transfer  function  𝑆(𝑠)  (Norwegian:  “Sensitivitetsfunksjonen/avviksforholdet”)  is  defined  as  follows:  

𝑆 𝑠 =𝑒(𝑠)𝑟(𝑠)

=1

1 + 𝐿(𝑠)= 1 − 𝑇(𝑠)  

Characteristic  Polynomial  

We  have  that:  

𝐿 𝑠 =𝑛!(𝑠)𝑑!(𝑠)

 

And:  

𝑇 𝑠 =𝑦(𝑠)𝑟(𝑠)

=𝐿(𝑠)

1 + 𝐿(𝑠)=

𝑛!(𝑠)𝑑!(𝑠)

1 + 𝑛!(𝑠)𝑑!(𝑠)

=𝑛!(𝑠)

𝑑! 𝑠 + 𝑛! 𝑠  

Where  𝑛!(𝑠)  and  𝑑! 𝑠  numerator  and  the  denominator  of  the  Loop  transfer  function  𝐿(𝑠).  

The  characteristic  polynomial  for  the  control  system  (tracking  function)  is  defined  as:  

𝑐 𝑠 = 𝑑! 𝑠 + 𝑛! 𝑠  

The  stability  of  the  control  system  is  determined  by  the  placement  of  the  roots  of  the  characteristic  polynomial  in  the  complex  plane.  

Task  1:  Stability  Analysis  

Given  the  following  transfer  functions:  

𝐻 𝑠 =1

𝑠 + 1  

𝐻 𝑠 =1𝑠  

𝐻 𝑠 =1𝑠!  

𝐻 𝑠 =1

𝑠 − 1  

5  

EE4107  -­‐  Cybernetics  Advanced  

 

Task  1.1  

Pen  and  paper:  What  are  the  poles  for  the  different  transfer  functions  above?  Plot  the  poles  in  the  imaginary  plane.  What  are  the  stability  properties  of  these  systems  (“asymptotically  stable  system”,  “marginally  stable  system”  or  “unstable  system”)?    

Discuss  the  results.    

Task  1.2  

Do  the  same  using  MathScript.  

Discuss  the  results.    

Tip!  Use  the  built-­‐in  functions  poles  and  pzgraph.  

Task  1.3  

Plot  the  impulse  responses  of  these  systems  using  MathScript.  Are  they  as  expected?.  

Tip!  Use  the  built-­‐in  function  impulse,  which  is  similar  to  the  step  function  we  have  used  before.  

Task  2:  Stability  Analysis  of  Feedback  systems  

Given  the  following  feedback  system:  

 

The  transfer  function  for  the  process  is:  

𝐻!(𝑠) =1

𝑠 + 1 !𝑠  

The  transfer  function  for  the  measurement/sensor  is:  

𝐻! 𝑠 = 𝐾! = 1  

The  transfer  function  for  the  controller  is:  

6  

EE4107  -­‐  Cybernetics  Advanced  

 

𝐻!(𝑠) = 𝐾!  

We  shall  use  3  different  values  for  𝐾!:  

𝐾! = 1  

𝐾! = 2  

𝐾! = 4  

Task  2.1  

Find  𝐿(𝑠),  𝑇(𝑠)  and  𝑆(𝑠)  for  the  system  (both  “pen  and  paper”  and  in  MathScript).  

Tip!  In  MathScript  we  can  use  the  series  and  feedback  functions  in  order  to  find  𝐿(𝑠)  and  𝑇(𝑠).  

Task  2.2  

Plot  the  step  response  for  the  feedback  system  (𝑇(𝑠)).  

Task  2.3  

Find  the  poles  and  plot  the  poles  in  the  imaginary  plane  for  the  feedback  system  (𝑇(𝑠)).  

Is  the  system  asymptotically  stable,  marginally  stable  system  or  unstable  (for  the  3  different  values  of  𝐾!)?    

Discuss  the  results.  

Task  3:  Control  System  

Given  the  following  control  system:  

 

The  transfer  functions  are  as  follows:  

7  

EE4107  -­‐  Cybernetics  Advanced  

 

𝐻! 𝑠 =𝐾!

𝑇!𝑠 + 1𝑒!!"  

𝐻! 𝑠 =𝐾!

𝑇!𝑠 + 1𝑒!!"  

𝐻! 𝑠 = 𝐾!  

𝐻! 𝑠 = 𝐾!𝑇!𝑠 + 1𝑇!𝑠

 

Task  3.1  

Find  the  loop  transfer  function  𝐿(𝑠),  the  tracking  transfer  function  𝑇(𝑠)  and  the  sensitivity  transfer  function    𝑆(𝑠)  for  the  system.  

Task  4:  Stability  of  Feedback  systems  

Given  the  following  control  system:  

 

The  transfer  function  for  the  process  (including  measurement)  is:  

𝐻!" =2𝑠  

Task  4.1  

Define  the  stability  properties  of  this  process  (is  the  process  stable  or  not?).  

Task  4.2  

The  transfer  function  for  the  controller  is:  

𝐻! = 𝐾!  

1. What  is  the  loop  transfer  function  𝐿(𝑠)?  2. What  is  the  tracking  transfer  function  𝑇(𝑠)?  3. What  is  the  characteristic  polynomial?  4. What  is  the  systems  pole(s)?  

Task  4.3  

8  

EE4107  -­‐  Cybernetics  Advanced  

 

For  which  values  of  𝐾!  is  the  system  

• Asymptotically  Stable  • Unstable  • Marginally  stable?  

Task  4.4  

Define  the  system  in  MathScript  and  find  the  step  response  for  the  system  for  different  values  of  𝐾!.  

Additional  Resources  

• http://home.hit.no/~hansha/?lab=mathscript

Here you will find tutorials, additional exercises, etc.