fbic global retail tech overview on mems feb. 5 …...title microsoft word - fbic global retail tech...

11
February 5, 2015 February 5, 2015 DEBORAH WEINSWIG Executive Director–Head Global Retail & Technology Fung Business Intelligence Centre [email protected] New york: 646.839.7017 MEMS The Little Engines That Can Enable Wearable Technology and the Internet of Things MEMS stands for microelectromechanical systems. They are tiny machines that can serve as sensors or actuators powered by an electrical signal The devices follow Moore’s Law in that their price and performance improve over time, offering new applications and huge benefits for consumers We use MEMS every time we drive an automobile that has an airbag, use a smartphone, print a document on an inkjet printer, or watch a movie on a projection TV The low cost and high performance of MEMS make them an enabler of wearable technology and the Internet of Things

Upload: others

Post on 27-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  1

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

February 5, 2015

D E B O R A H W E I N S W I G E x e c u t i v e D i r e c t o r – H e a d G l o b a l R e t a i l & T e c h n o l o g y F u n g B u s i n e s s I n t e l l i g e n c e C e n t r e d e b o r a h w e i n s w i g @ f u n g 1 9 3 7 . c o m N e w y o r k : 6 4 6 . 8 3 9 . 7 0 1 7

MEMS The Little Engines That Can Enable Wearable Technology and the Internet of Things  •   MEMS  stands  for  microelectromechanical  systems.  They  are  tiny  

machines  that  can  serve  as  sensors  or  actuators  powered  by  an  electrical  signal  

•   The  devices  follow  Moore’s  Law  in  that  their  price  and  performance  improve  over  time,  offering  new  applications  and  huge  benefits  for  consumers  

•   We  use  MEMS  every  time  we  drive  an  automobile  that  has  an  airbag,  use  a  smartphone,  print  a  document  on  an  inkjet  printer,  or  watch  a  movie  on  a  projection  TV  

•   The  low  cost  and  high  performance  of  MEMS  make  them  an  enabler  of  wearable  technology  and  the  Internet  of  Things  

Page 2: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  2

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

MEMS: The Little Engines That Can Enable Wearable Technology and the Internet of Things

 

EXECUTIVE  SUMMARY  MEMS   are   tiny   machines   that   have   revolutionized   our   lives   and   will   enable   many  exciting  new  future  products.    They  are  tiny  devices  that  can  act  as  sensors  or  make  tiny  movements  when  activated  by  an  electrical  signal.    We  use  MEMS  every  time  we  drive  an   automobile   that   has   an   airbag,   use   a   smartphone,   print   a   document   on   an   inkjet  printer,  or  watch  a  movie  on  a  projection  TV.  Smartphones  contain  several  MEMS,  and  the  number  of  MEMS  per  phone  is  set  to  increase  further.      

MEMS   are   manufactured   using   yesterday’s   semiconductor   manufacturing   equipment,  which  initially  positions  them  at  a  low  cost  point,  and  their  price  and  performance  only  get  better  over  time,  due  to  continued  technical  innovation  and  Moore’s  Law,  which  we  interpret  to  mean  that  the  cost  of  semiconductors  halves  every  18  months.      

Semiconductor   economics   have   dramatically   reduced   the   cost   and   raised   the  performance  of  MEMS,  making  them  enablers  of  today’s  consumer  electronic  products  such   as   smartphones,   digital   cameras,   automobile   airbags,   inkjet   printers,   and  projection  TVs,  but  also  for  other  applications  such  as  microfluidic  labs-­‐on-­‐a-­‐chip,  which  are  used  for  chemical  and  biological  analysis.  

As  the  ever-­‐decreasing  cost  of  MEMS  drives  them  deeper  within  the  consumer  sphere,  they   will   enable   new   leading-­‐edge   applications   such   as   wearable   technology   and   the  Internet   of   Things.     In   addition,   engineers   are   exploring   using   MEMS   for   energy  harvesting,   in-­‐vitro   diagnostics,   and   wireless   sensor   networks.     Small   is   indeed  sometimes  beautiful.  

 

WHAT  ARE  MEMS?  MEMS  stands  for  microelectromechanical  systems.    That’s  a  mouthful,  but  they  are  just  tiny  machines  that  are  actuated  with  electricity.      

We  use  MEMS  every  time  we  drive  an  automobile  that  has  an  airbag,  use  a  smartphone,  print  a  document  on  an  ink-­‐jet  printer,  or  watch  a  movie  on  a  projection  TV.  

What’s  different  from  ordinary  machines  is  that  MEMS  are  typically  manufactured  from  silicon  wafers  with   older-­‐generation   semiconductor-­‐processing   equipment.     This   helps  keep  costs  low  by  not  requiring  multibillion-­‐dollar  semiconductor  factories  (fabs),  which  can  easily  cost  a  couple  billion  dollars  for  a  leading-­‐edge  fab.  

 

 

Page 3: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  3

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

Figure  1.    Photo  of  a  MEMS  

 Source:  memx.com  

 

MEMS  generally  fall  within  two  categories:  

• Sensors  that  measure  characteristics  of  the  outside  world;  or    • Actuators  that  manipulate  characteristics  in  the  outside  world  

Applications  for  MEMS  include  the  following:  

• Inkjet  printers  • Accelerometers   in  automobile  airbags;   radio-­‐controlled  helicopters,  planes  or  

drones;  video-­‐game  controllers,  cellphones,  digital  cameras,  and  hard  drives  • Gyroscopes  in  automobiles  • Microphones  in  mobile  phones  and  portable  devices  • Displays,  such  as  DLP  (digital  light  processor)  projection  TVs  and  projectors  • Optical  switching  • Sensors   for   chemical   analysis   in   a   lab-­‐on-­‐a-­‐chip   for   chemical   analysis   or  

embedded  in  medical  devices  • Interferometric  displays  in  consumer  electronic  devices  • Fluid  acceleration  such  as  micro-­‐cooling  • Energy  harvesting;  and  • Ultrasound  transducers  

 

ENORMOUS  COST  SAVINGS  DUE  TO  MOORE’S  LAW  The  price  of  MEMS  continues  to  decline  exponentially  over  time  due  to  rising  volumes  and   the  economics  of  Moore’s   Law,  which   is   commonly  understood   to  mean   that   the  performance   of   integrated   circuits   doubles   every   18  months.    What   former   Intel   CEO  Gordon  Moore  really  observed  is  that  the  density  of  circuits  on  a  semiconductor  wafer  doubles  every  18  months.    Since  performance  is  roughly  proportional  to  the  number  of  transistors,   the   common  understanding  of   the   law   suffices.     The   corollary   is   that  with  more  chips  per  wafer,  the  price  per  chip  also  halves  every  18  months,  which  has  brought  enormous  cost  benefits  to  consumers.    Cost  savings  are  achieved  by  putting  more  chips  on  a  wafer  and  by  using  larger  wafers.  

 

Page 4: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  4

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

In   Figure   2,   we   see   these   benefits   in   action,   as   the   explosive   demand   for   MEMS  accelerometers  has  gone  hand-­‐in-­‐hand  with  price  reductions  over  time.  

Figure  2.  MEMS  Market  Evolution:  Accelerometers  for  Automotive  and  Consumer  

  1990   1996   2002   2007   2012  Market  Size  (M  units)  

0.5-­‐2.0   18   90   130   1,900  

Average  Selling  Price  (ASP)  

$5   $4   $2   $1.40   <  $1.00  

Average  Number  of  Accelerometers  

—   13  for  automotive  

8  for  automotive  

5  for  consumer  

8  for  automotive  

10  for  consumer  

Consumer  [activity]  is  very  strong  

Source:  Yole  Développement  

 

WHY  ARE  MEMS  IMPORTANT?  MEMS   are   instrumental   in   today’s   smartphones,   in   wearable   technology,   and   in   the  Internet  of  Things.    For  example,  the  iPhone  6  contains  several  MEMS,  including  a  three  axis   accelerometer   (which   measures   acceleration)   and   a   six-­‐axis   gyroscope/  accelerometer  (which  measures  movement  and  acceleration.)  The  iPhone  5S  contained  a  MEMS  microphone,  however   its  presence  has  not  yet  been  verified   in   the   iPhone  6.    Looking  ahead,  Apple  has  received  a  patent  for  a  MEMS  autofocus  camera  actuator,  so  the  number  of  MEMS  used  in  Apple  smartphones  is  likely  to  increase  further.    

The  smartphone  of  the  future  could  include  nine  different  MEMS  (depicted  in  red):  

• A  nine-­‐axis  combo  accelerometer/gyroscope  

• A  combo  pressure,  humidity,  and  temperature  sensor  

• Several  microphones  

• Silicon  timing  for  oscillators  and  clocks  

• Antenna  switching    

• Gas/biochemical  sensors    

• Autofocus  

• Mirrors  

• Microspeakers  

• A  touchscreen  

• An  infrared  (IR)  sensor  

The   smartphone   of   the   future   could   have   several   additional   functions   performed   by  MEMS,  including:  

• Energy  harvesting  

• An  ultraviolet  (UV)  sensor  

• Light  detection  and  ranging  (LIDAR)  

• An  ultrasonic  sensor    

• A  radiation  sensor,  and    

• A  joystick  

 

 

 

 

 

Page 5: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  5

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

Figure  3.  Tomorrow’s  Smartphone  Could  Use  9  Different  MEMS  (in  Red)  

 Source:  Yole  Développement  –  MEMS  for  Cell  Phones  &  Tablets,  July  2013  

 

ENABLING  FUTURE  PRODUCTS  Due  to  their  small  size,  high  functionality,  and   low  cost,  MEMS  are  an  excellent  choice  for  the  sensors  in  wearable  technology.    The  Figure  4  shows  places  that  wearables  and  MEMS  can  be  deployed.  

Figure  4.  Locations  for  Integrated  Wearable  Electronics  with  Clothing  

 Source:  electronicdesign.com  

 

Page 6: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  6

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

Figure   5   depicts   a   forecast   for   shipments   of  MEMS   for  wearable   electronics,  with   the  market  representing  approximately  180  million  units  this  year,  growing  at  a  27%  CAGR  through  2019.    This  growth  rate  is  approximately  twice  the  growth  rate  of  the  aggregate  MEMS  market  (see  markets  section).  

Figure  5.  Explosive  Growth  in  MEMS  Shipments  for  Wearables  (Mil.  Units)  

 

Source:  IHS  MEMS  &  Sensors  for  Wearables  Report  -­‐  2014  

From   the   graph,   we   can   draw   the   following   conclusions:   Between   2015   and   2017,  Smartwatches   are   clearly   expected   to   be   the   largest   product   category.   The   second-­‐largest   category   in  2017   is  expected   to  be  Smart  Glasses,   followed  by  Fitness  &  Heart  Rate  Monitors.  

ENABLING  NEW  TECHNOLOGIES  Energy  Harvesting  

Energy   harvesting   (or   scavenging)   refers   to   energy   from   the   environment   being  captured   or   stored   by   a   device.   There   are   many   sources   of   this   energy,   including  machine  vibrations,  body  heat,  solar,  ocean  tides,  etc.  The  amount  of  energy  that  can  be  harvested  is  quite  low  (5  to  200  Watts  per  cubic  centimeter);  however,  this  trickle  could  be   sufficient   for   some   sensors   and   wearable   devices.   The   graph   below   shows   the  amount  of  energy  available  from  various  sources.  

Figure  6.    Power  by  Technology  

 

Source:  Yole  Développement  and  Holst  Centre  

Page 7: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  7

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

Medical  

MEMS   are   already   being   used   in   tiny   pumps   and   valves   in   microfluidic   lab-­‐on-­‐a-­‐chip  applications.   The   technology   is   poised   to   advance   the   huge   in-­‐vitro   diagnostics   (IvD)  market,  where  the  annual  market  is  estimated  will  grow  to  $70  billion  in  2017  from  $50  billion   in   2012,   a   7%   CAGR,   according   to   Research   and  Markets.     The   drivers   of   this  growth   are:   (1)   the  move   to   point-­‐of-­‐care   testing—patients   increasingly   prefer   to   get  tested   in   a   doctor’s   office,   rather   than   in   a   hospital;   (2)   the   need   to   receive   results  faster;  (3)  the  demand  for  lower-­‐cost  tests  in  developing  countries;  and  (4)  the  need  for  new  tests  suited  for  an  aging  population.  

Figure  7.  A  Microfluidics  Lab-­‐on-­‐a-­‐Chip  

 Source:  Agilent  Technologies  

 

Wireless  Sensor  Networks  (WSNs)  

The   low   cost   and   small   size   of   MEMS   sensors   makes   them   ideal   for   use   in   nodes   in  wireless  sensor  networks,  which  are  comprised  of  a  large  number  of  small  sensor  nodes  with  limited  computing  capacity,  limited  memory,  limited  power  availability,  and  short-­‐range   radio   communications   capability,   according   to   enroutefiltering.blogspot.com.  WSNs   can   cooperatively   monitor   physical   or   environmental   conditions,   such   as  temperature,  sound,  and  vibration  at  different  locations,  according  to  Yole.  

Figure  8.  Wireless  Sensor  Network  

 Source:  enroutefiltering.blogspot.com  

Small,   lower-­‐power  modules  with   computational   and   communications   capabilities   are  generally  considered  nodes  in  the  Internet  of  Things  (IoT).  

Page 8: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  8

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

THE  MEMS  MARKET  The   MEMS   market   is   worth   approximately   $15.6   billion   this   year,   growing   at   a   13%  CAGR  through  2018.      

Figure  9.  MEMS  Market  by  Type  ($Mil.)  

 

Source:  Yole  Développement  –  Status  of  the  MEMS  Industry,  July  2013  

 

In   Figure   10,   which   forecasts   the   2017   MEMS   market   breakdown,   we   see   that   the  largest  categories  are  expected  to  be  microfluidics  (for  chemical  and  biological  analysis),  optical   MEMS   (for   optical   communications   networks),   pressure   sensors,   and   inkjet  printer  heads.  This   forecast  precedes  Hewlett-­‐Packard’s  announcement  of  a  consumer  3D  printer  that  uses  its  inkjet  technology,  and  therefore  this  category  could  turn  out  to  be  much  larger.  

 

 

 

 

 

 

 

 

 

 

 

Page 9: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  9

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

Figure  10.  Expected  2017  MEMS  Market  Breakdown  

 

Note:  Forecast  as  of  2012  Source:  Yole  Développement  –  Status  of  the  MEMS  Industry,  July  2013  

 

HOW  ARE  MEMS  MADE?  MEMS  are  manufactured  using  ordinary  semiconductor  processing  equipment  for  silicon  integrated  circuits,  as  illustrated  in  Figure  11.  

Figure  11.  Illustration  of  MEMS  Manufacturing  

 

InkJet  Heads  9%  

Pressure  Sensors  11%  

Microphones  4%  

Accelerometers  8%  

Gyroscopes  7%  

Compasses  2%  Combos  

8%  Uncooled  IR  3%  

Micro  Displays  1%  

Opical  MEMS  12%  

Microfluidics  23%  

RF  MEMS  5%  

Oscillators    2%  

Others    5%  

Silicon  Ingot Factory(Fab)

ProcessedWafer

Dicing,  Packaging,and  Assembly  &  Test

FinishedMEMS  Chips

Page 10: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  10

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

 

MEMS   feature   sizes   (the  width  of   the   lines  of   silicon)  are  quite   large   (0.1  µm,  or  one-­‐tenth   of   a  millionth   of   a  meter),   whereas   the   current   leading   edge   of   semiconductor  manufacturing   uses   20-­‐nanometer   (20   billionths   of   a   meter)   line   widths.     Thus,   the  MEMS   industry   is   able   to   use   semiconductor-­‐processing   equipment   that   is  technologically  no  longer  on  the  leading  edge,  offering  huge  cost  savings  to  consumers.  

Today,  approximately  one-­‐third  of  MEMS  manufacturing   is   fabless,   i.e.,  manufacturing  and   assembly   &   test   are   outsourced   to   a   foundry   and   contract   manufacturer,  respectively.     This   frees   the   manufacturer   from   bearing   the   fixed   cost   (including  substantial   depreciation)   of   a   multimillion   (or   billion)-­‐dollar   semiconductor   factory,  which  is  highly  uneconomical  when  underutilized.  

 

Figure  12.  MEMS—Fabless  Is  Increasingly  Fabulous  

 Source:  IHS  

 

WHO  MAKES  MEMS?  The  top  MEMS  makers  are  generally:  

• Large  semiconductor  makers  such  as  STMicroelectronics  and  Texas  Instruments  • Conglomerates  such  as  Panasonic  and  Canon  • Global  manufacturing  companies  such  as  Bosch  and  Honeywell,  and  also    • Specialty  sensor  makers  such  as  InvenSense  

The  top-­‐30  manufacturers’  revenues  are  depicted  in  the  graph  below.    Together,  the  top  30  manufacturers  accounted  for  nearly  73%  of  the  total  market  in  2012.  

0%  

10%  

20%  

30%  

40%  

50%  

60%  

70%  

80%  

90%  

100%  

2006   2007   2008   2009   2010   2011   2012  

Fabless   Integrated  Device  Manufacturer  (IDM)  

Page 11: FBIC Global Retail Tech Overview on MEMS Feb. 5 …...Title Microsoft Word - FBIC Global Retail Tech Overview on MEMS Feb. 5 FINAL.docx Author Lan Rosengard Created Date 2/6/2015 1:42:38

 

  11

February 5, 2015

Fung Business Intelligence Centre (FBIC) publication: MEMS Copyright © 2015 The Fung Group, All rights reserved.

Figure  13.  Sales  for  Top-­‐30  MEMS  Makers  in  2012  ($  Mil.)  

 

Source:  Yole  Développement  –  Status  of  the  MEMS  Industry,  July  2013  

   

 Deborah  Weinswig,  CPA  Executive  Director  –  Head  Global  Retail  and  Technology  Fung  Business  Intelligence  Centre  Global  (FBIC  Global)  New  York:  917.655.6790  Hong  Kong:  +852  6119  1779  [email protected]        Marie  Driscoll,  CFA  [email protected]    Christine  Haggerty  [email protected]    John  Harmon,  CFA  [email protected]    Amy  Hedrick    [email protected]    John  Mercer  [email protected]    Lan  Rosengard  [email protected]    Jing  Wang    [email protected]      

$0  

$200  

$400  

$600  

$800  

$1,000  

$1,200  

STMicro.  

Robe

rt  Bosch  

Texas  Inst.  

H-­‐P  

Know

les  E

lect.  

Panasonic  

Denso  

Cano

n  Av

ago  

Freescale  

Analog  Devices  

AKM  

Seiko  Ep

son  

Infin

eon  

InvenSen

se  

Murata  

Sensata  

Hone

ywell  

GE  Sen

sing  

Triquint  

Lexm

ark  

UTC

 Aerospace  

SONY  

FLIR  

Measuremen

t  Spe

c.  

Kion

ix  

AAC  

OMRO

N  

ULIS  

MEM

SIC