fig. 8.16b

55
G EO LO G IC TIM E RELATIVE TIM E 1. Originalhorizontality 2. Superposition 3. C ross-cutting relationships 4. Correlation a. physicalsim ilarities b. use offossils index fossil= short-lived speciesthatled to a m ore evolved species, widely distributed and plentiful

Upload: slone

Post on 04-Jan-2016

31 views

Category:

Documents


0 download

DESCRIPTION

Fig. 8.16b. Fig. 8.16a. Fig. 8.16c. CO 8. Fig. 8.1. Fig. 8.2. Fig. 8.3. Fig. 8.4. Fig. 8.5. Fig. 8.6. Fig. 8.7. Table 8.1. Fig. 8.8. Fig. 8.9. Fig. 8.10. Fig. 8.11. Fig. 8.23. Fig. 8.12. Fig. 8.18. Fig. 8.13. Fig. 8.14a-d. 0069. 0070. Fig. 8.14e. Fig. 8.15a-f. Fig. 8.15g. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fig. 8.16b

GEOLOGIC TIME

RELATIVE TIME

1. Original horizontality 2. Superposition 3. Cross-cutting relationships 4. Correlation

a. physical similarities b. use of fossils

index fossil = short-lived species that led to a more evolved species, widely distributed and plentiful

Page 2: Fig. 8.16b

Fig. 8.16b

Page 3: Fig. 8.16b

Fig. 8.16a

Page 4: Fig. 8.16b

Fig. 8.16c

Page 5: Fig. 8.16b

CO 8

Page 6: Fig. 8.16b

Fig. 8.1

Page 7: Fig. 8.16b

Fig. 8.2

Page 8: Fig. 8.16b

Fig. 8.3

Page 9: Fig. 8.16b

Fig. 8.4

Page 10: Fig. 8.16b

Fig. 8.5

Page 11: Fig. 8.16b

Fig. 8.6

Page 12: Fig. 8.16b

Fig. 8.7

Page 13: Fig. 8.16b

Table 8.1

Page 14: Fig. 8.16b

Fig. 8.8

Page 15: Fig. 8.16b

Fig. 8.9

Page 16: Fig. 8.16b

Fig. 8.10

Page 17: Fig. 8.16b

Fig. 8.11

Page 18: Fig. 8.16b

Fig. 8.23

Page 19: Fig. 8.16b

Fig. 8.12

Page 20: Fig. 8.16b

UNCONFORMITY (missing time—rocks)

1. Dis-

3 and 4 missing

2. non-

3. angular

1 2 5 6

x x x x x x x x

x x x x

Page 21: Fig. 8.16b

Fig. 8.18

Page 22: Fig. 8.16b

Fig. 8.13

Page 23: Fig. 8.16b

Fig. 8.14a-d

Page 24: Fig. 8.16b

0069

Page 25: Fig. 8.16b

0070

Page 26: Fig. 8.16b

Fig. 8.14e

Page 27: Fig. 8.16b

Fig. 8.15a-f

Page 28: Fig. 8.16b

Fig. 8.15g

Page 29: Fig. 8.16b

0071

Page 30: Fig. 8.16b

0072

Page 31: Fig. 8.16b

0068

Page 32: Fig. 8.16b

0067

Page 33: Fig. 8.16b

Fig. 8.17

Page 34: Fig. 8.16b

Fig. 8.19

Page 35: Fig. 8.16b

ABSOLUTE TIME

1. Radiometric dating requirements a. must have a radioactive

element (parent-P) that decays to a daughter element (D)

b. there is not removal or introduction of P or D

c. disintegration rate must be known and assumed to be constant over time

d. the half-life of the parent must be long enough to allow for age determinations (half-life = time for ½ of the P to disintegrate)

Page 36: Fig. 8.16b

Fig. 8.20

Page 37: Fig. 8.16b

Fig. 8.21

Page 38: Fig. 8.16b

2. Examples of radioactivie methods

a. uranium decays to lead b. thorium decays to lead c. rubidium decays to

strontium

d. potassium decays to argon

e. carbon (14) decays to nitrogen

10 million to 4.6 billion years

500,000 to 4.6 billion years

100 to 70,000 years

Page 39: Fig. 8.16b

1. radioactive carbon is formed when cosmic rays bombard nitrogen in the atmosphere

2. can be used only for

dating material that was once living

Page 40: Fig. 8.16b

Example of dating method 1. assume that element

X has a half-life (t1/2) of 10 million years.

2. assume that

originally there was 100 million atoms of X present in a rock.

3. How old is the rock

if 6.25 million atoms of X is left?

Page 41: Fig. 8.16b

Fig. 8.22

Page 42: Fig. 8.16b

There are other absolute dating methods: 1. fission track dating 2. tree-ring dating 3. varve chronology

Page 43: Fig. 8.16b

Atoms x 1 million of X Time (m.y.)

100 0 50 10

25 10 12.5 10 6.25 10

40

Page 44: Fig. 8.16b

Age Era Period millions of years BP Cenozoic Quaternary 0.01 Tertiary 1.6 66.4 Mesozoic Cretaceous Jurassic Triassic 245 Paleozoic Permian Pennsylvanian Mississippian Devonian Silurian Ordovician Cambrian 570 Precambrian Proterozoic Archean 4600

Two eons—Precambrian and Phanerozoic

Page 45: Fig. 8.16b

Fig. 8.24

Page 46: Fig. 8.16b

Fig. 8.25

Page 47: Fig. 8.16b
Page 48: Fig. 8.16b
Page 49: Fig. 8.16b
Page 50: Fig. 8.16b
Page 51: Fig. 8.16b
Page 52: Fig. 8.16b
Page 53: Fig. 8.16b
Page 54: Fig. 8.16b
Page 55: Fig. 8.16b