final draft with edits - duke university

85
May 2013 Environmental Help Desk for Transportation and Warehousing Industries Joseph Chou, Taylor Gelsinger, Yilian Xie, Yuan Yuan Dr. Emily Klein, Advisor Masters project submitted in partial fulfillment of the requirements for the Master of Environmental Management degree in the Nicholas School of the Environment of Duke University.

Upload: others

Post on 28-Mar-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Microsoft Word - Final Draft with Edits.docxMay    2013  
Environmental  Help  Desk  for   Transportation  and  Warehousing   Industries   Joseph  Chou,  Taylor  Gelsinger,  Yilian  Xie,  Yuan  Yuan   Dr.  Emily  Klein,  Advisor         Masters  project  submitted  in  partial  fulfillment  of  the  requirements  for  the  Master  of   Environmental  Management  degree  in  the  Nicholas  School  of  the  Environment  of  Duke   University.  
  2  
Abstract  
Companies  today  face  a  variety  of  challenges  and  opportunities  when  considering  
investing  in  the  environmental  sustainability  of  their  businesses.  While  many  large  
companies  have  dedicated  sustainability  staff,  small  and  medium  sized  businesses  typically  
do  not  have  the  resources  to  research  affordable  environmental  investments  and  
behavioral  changes.  To  address  this  need,  Green  Plus  has  developed  the  online  
Environmental  Help  Desk  with  the  Green  Supply  Chain  Information  tool.  Companies  may  use  
this  information  to  guide  their  decisions  by  learning  what  the  industry  leaders  are  doing,  
the  major  issues  in  their  field,  the  resources  available,  applicable  regulations  and  
certifications,  the  costs  and  benefits  of  various  practices,  and  the  possible  sequence  of  
stages  to  make  progress  in  sustainability.  
The  focus  of  this  master’s  project  is  to  develop  the  Green  Supply  Chain  Information  
for  the  transportation  and  warehousing  industries.  In  conducting  research  into  the  air,  
train,  truck,  water  vessel  and  warehousing  sectors,  Duke  University  databases,  industry  
leaders’  annual  reports,  and  interviews  with  Green  Plus  members  and  Duke  alumni  were  
used.  The  information  and  data  gathered  was  then  analyzed  to  develop  recommendations  
for  the  steps  that  companies  can  take  towards  sustainability.  In  addition,  a  cost-­benefit  
analysis  of  the  monetary  investment,  payback  period,  and  greenhouse  gas  (GHG)  emission  
savings  was  conducted  for  the  suggested  investments  in  technology  and  behavioral  
changes  of  the  transportation  industry.  
We  found  each  industry  can  make  a  variety  of  behavioral  changes,  technological  
investments,  and  infrastructure  improvements  to  reduce  the  negative  environmental  
impacts  of  their  company,  while  still  seeing  a  quick  return  on  investment.  By  starting  out  
with  the  more  simple  steps  suggested  and  moving  forward,  small  to  medium  sized  
companies  may  become  more  sustainable  and  work  towards  the  advanced  sustainability  
level  of  industry  leaders.    
1  INTRODUCTION  .................................................................................................................................  5  
2  METHODS  .........................................................................................................................................  7   2.1  AIR  TRANSPORTATION  ............................................................................................................................  7   2.2  TRAIN  TRANSPORTATION  .........................................................................................................................  8   2.3  WATER  VESSEL  TRANSPORTATION  ............................................................................................................  9   2.4  TRUCK  TRANSPORTATION  ........................................................................................................................  9   2.5  WAREHOUSING  ...................................................................................................................................  10  
3  RESULTS  ..........................................................................................................................................  12   3.1  AIR  TRANSPORTATION  ..........................................................................................................................  12  
3.1.1  Major  Issues  .............................................................................................................................  12   3.1.2  Major  Players  ...........................................................................................................................  12   3.1.3  Key  Requirements  &  Certifications  ...........................................................................................  13   3.1.4  Sustainability  Practices  ............................................................................................................  13   3.1.5  Cost  Benefit  Analysis  ................................................................................................................  18  
3.2  TRAIN  TRANSPORTATION  .......................................................................................................................  20   3.2.1  Major  Issues  .............................................................................................................................  21   3.2.2  Major  Players  ...........................................................................................................................  21   3.2.3  Key  Awards  and  Certifications  ..................................................................................................  22   3.2.4  Sustainability  Practices  ............................................................................................................  23   3.2.5  Cost  Benefit  Analysis  ................................................................................................................  25  
3.3  WATER  VESSEL  TRANSPORTATION  ..........................................................................................................  27   3.3.1  Major  Issues  .............................................................................................................................  27   3.3.2  Major  Players  ...........................................................................................................................  28   3.3.3  Key  Regulations  and  Certifications  ...........................................................................................  28   3.3.4  Sustainability  Practices  ............................................................................................................  31   3.3.5  Cost  Benefit  Analysis  ................................................................................................................  34  
3.4  TRUCK  TRANSPORTATION  ......................................................................................................................  38   3.4.1  Major  Issues  .............................................................................................................................  38   3.4.2  Major  Players  ...........................................................................................................................  38   3.4.3  Requirements  &  Certifications  .................................................................................................  39   3.4.4  Sustainability  Practices  ............................................................................................................  39   3.4.5  Cost  Benefit  Analysis  ................................................................................................................  42  
3.5  WAREHOUSING  ...................................................................................................................................  45   3.5.1  Major  Issues  .............................................................................................................................  45   3.5.2  Major  Players  ...........................................................................................................................  46   3.5.3  Key  Certifications  ......................................................................................................................  46   3.5.4  Sustainability  Practices  ............................................................................................................  47  
4  DISCUSSION  ....................................................................................................................................  49   4.1  AIR  TRANSPORTATION  ..........................................................................................................................  49  
4.1.1  Getting-­started  Steps  ...............................................................................................................  49  
  4  
4.1.2  Going-­further  Steps  ..................................................................................................................  50   4.1.3  Advanced  Steps  ........................................................................................................................  50   4.1.4  Summary  ..................................................................................................................................  52  
4.2  TRAIN  TRANSPORTATION  .......................................................................................................................  52   4.2.1  Getting-­started  Steps  ...............................................................................................................  53   4.2.2  Going-­further  Steps  ..................................................................................................................  53   4.2.3  Advanced  Steps  ........................................................................................................................  54   4.2.4  Summary  ..................................................................................................................................  54  
4.3  WATER  VESSEL  TRANSPORTATION  ..........................................................................................................  55   4.3.1  Getting-­started  Steps  ...............................................................................................................  55   4.3.2  Going-­further  Steps  ..................................................................................................................  56   4.3.3  Advanced  Steps  ........................................................................................................................  56   4.3.4  Summary  ..................................................................................................................................  57  
4.4  TRUCK  TRANSPORTATION  ......................................................................................................................  57   4.4.1  Getting-­started  Steps  ...............................................................................................................  58   4.4.2  Going-­further  Steps  ..................................................................................................................  58   4.4.3  Advanced  Steps  ........................................................................................................................  59   4.4.4  Summary  ..................................................................................................................................  59  
4.5  WAREHOUSING  ...................................................................................................................................  60   4.5.1  Getting-­started  Steps  ...............................................................................................................  60   4.5.2  Going-­further  Steps  ..................................................................................................................  61   4.5.3  Advanced  Steps  ........................................................................................................................  62   4.5.4  Summary  ..................................................................................................................................  62  
5  CONCLUSION  ...................................................................................................................................  64  
6  LITERATURE  CITATION  .....................................................................................................................  65  
     
Small  and  medium  sized  businesses  seeking  to  implement  more  environmentally  
sustainable  practices  do  not  have  the  same  buying  power  or  resources  as  those  of  large  
companies.  Green  Plus,  a  Durham-­based  nonprofit  organization,  is  developing  an  online  
Environmental  Help  Desk  that  enables  smaller  enterprises  with  lower  budgets  obtain  high-­
quality  information  with  regard  to  sustainable  practices.    
 
About Green Plus Green  Plus  is  a  9-­year-­old  program  that  provides  practical,  affordable,  triple-­
bottom-­line  sustainability  expertise.    Developed  by  the  Institute  for  Sustainable  
Development,  Green  Plus  also  provides  education,  networking  and  green  recognition.  
Education  consists  of  web-­based  tools,  student  training,  and  connecting  industry  sector  
peers  from  different  regions.  Green  Plus  is  acknowledged  as  a  university  supported,  third-­
party  certification  program.  In  some  states,  the  Institute  for  Sustainable  Development  
offers  financial  support  for  energy  audits  through  scholarships  or  micro  loans.    For  
example,  Green  Plus  works  in  partnership  with  the  Council  of  Small  Enterprises  in  Ohio  and  
the  North  Carolina  Rural  Economic  Development  Center  in  North  Carolina.  Green  Plus  
educates,  inspires,  and  recognizes  smaller  companies  for  their  efforts  towards  becoming  
more  sustainable.  Since  its  founding,  Green  Plus  has  been  providing  solid,  tangible,  
pragmatic  advise  and  expertise  in  sustainability  (Green  Plus,  2013).  
 
About the Environmental Help Desk As  part  of  Green  Plus’s  offerings,  the  Environmental  Help  Desk  assists  businesses  to  
understand  green  development  requirements,  thus  identifying  and  undertaking  cost-­
effective  sustainable  changes.  The  Help  Desk  developed  as  a  collaborative  effort  between  
the  U.S.  Chamber  of  Commerce’s  Business  Civic  Leadership  Center  and  the  Institute  for  
Sustainable  Development’s  Green  Plus  Program.  The  Help  Desk  provides  information  and  
resources  regarding  best  environmental  practices,  innovative  ideas,  certifications,  
  6  
environmental  standards,  and  steps  for  businesses  to  be  more  sustainable  while  reducing  
operation  costs  (Green  Plus,  2013).  
To  assist  Green  Plus  with  the  Help  Desk,  our  team  conducted  research  in  the  
transportation  and  warehousing  industries;  interviewed  experienced  professionals;  
collected  information  on  successful  sustainability  practices  adopted  by  peer  companies;  
and  evaluated  such  practices  with  a  cost  benefit  analysis.  The  transportation  industry  was  
divided  into  four  sectors:  air  transportation,  train  transportation,  water  vessel  
transportation,  and  truck  transportation,  undertaken  by  Yilin  Xie,  Joseph  Chou,  Yuan  Yuan,  
and  Taylor  Gelsinger,  respectively.    
We  believe  this  report  will  be  an  informative  and  supportive  resource  to  help  
motivated  transportation  and  warehousing  companies  learn  of  cost-­effective  sustainable  
development.  In  this  report,  we  identify  win-­win  situations  to  achieve  the  reductions  in  
both  greenhouse  gas  emissions  and  fuel  consumption.  Additionally,  business  concepts  such  
as  initial  cost  and  payback  period  have  been  incorporated  in  our  discussion  to  better  serve  
decision-­making  within  of  transportation  and  warehousing  companies.    
 
Our  overall  data  collection  approach  involved  literature  reviews  and  interviews  
with  industry  professionals.    Additional  data  collection  approaches  were  adopted  when  
needed  for  specific  sectors.    
Much  of  the  relevant  literature  is  on-­line,  including,  but  not  limited  to,  journal  
articles,  websites  of  relevant  government  or  non-­government  organizations,  websites  and  
annual  reports  of  industry  leaders,  and  Duke  University  databases.  This  body  of  literature  
provided  us  with  preliminary  understanding  and  original  data  of  the  capital  costs  and  
financial/environmental  benefits  of  implementing  selected  sustainability  initiatives.    
Delving  deeper  and  adopting  logical  assumptions,  we  were  able  to  perform  a  cost-­benefit  
analyses  with  respect  to  researched  sustainability  practices  and  therefore  propose  
customized  suggestions  to  businesses  that  would  like  to  pursue  sustainable  transportation  
and/or  warehousing.  
In  addition,  using  Duke  University  alumni  and  Green  Plus  members  and  their  
referrals,  we  identified  and  conducted  interviews  with  six  industry  professionals  covering  
each  of  the  researched  topics:  air  transportation,  water  shipping,  rail,  trucking,  and  
warehousing.  By  detailing  their  sustainable  strategies  and  programs,  political  and/or  
economic  incentives,  and  relevant  certificates,  the  interviewees  assisted  us  in  identifying  
ways  to  achieve  sustainability  in  practice.  The  information  from  interviews  provided  an  
understanding  of  the  most  up-­to-­date  sustainability  initiatives,  which  would  otherwise  not  
be  available  from  literature  reviews.    In  the  following  sections  each  of  the  five  topics  will  
describe  its  specific  methodology  and  resources.  
2.1  Air  Transportation Research  focusing  on  air  transportation  was  performed  as  follows.  First,  relevant  
news,  comments  and  industrial  reports  published  by  federal  government  and  influential  
aviation  coalitions  were  reviewed  to  identify  the  major  issues,  major  players,  and  essential  
certificates/standards.  Influential  organizations  included  the  Federal  Aviation  
Administration  (FAA),  International  Air  Transport  Association  (IATA),  Sustainable  Aviation  
  8  
Fuel  Users  Group  (SAFUG),  the  Sustainable  Aviation  Guidance  Alliance  (SAGA),  Sustainable  
Aviation  Fuels  Northwest  (SAFN),  and  the  American  Society  for  Testing  and  Materials  
(ASTM).  
Second,  annual  reports,  posted  on  major  players’  websites,  were  studied  to  
understand  prevalent  sustainability  practices  in  the  aviation  sector,  as  well  as  their  
financial  costs  and  environmental  benefits.  Additionally,  some  websites  and  forums,  such  
as  Bloomberg,  Airliners,  and  Wikipedia,  occasionally  provided  information  or  references  
with  regard  to  the  costs  and  benefits.  Further  more,  Ms.  Julie  Wilsey,  Deputy  Airport  
Director  of  the  Wilmington,  NC  Airport  and  Green  Plus  member  disclosed  her  views  on  how  
sustainability  could  be  implemented  in  a  local  airport.  Together,  these  sources  provided  an  
overall  picture  of  the  current  situation  of  sustainable  air  transportation.  
Lastly,  a  cost-­benefit  analysis  was  conducted  based  on  collected  information,  to  gain  
a  deeper  understanding  with  regard  to  the  cost-­effectiveness  of  prevalent  sustainability  
practices.  Based  on  evaluations  from  the  cost  benefit  analysis,  businesses  in  the  air  
transportation  sector  at  various  stages  of  sustainable  progress  would  receive  valuable  
suggestions  to  assist  them  in  achieving  profitable  sustainability.  
2.2  Train  Transportation   A  variety  of  methods  were  employed  to  garner  information  about  sustainability  
practices  in  the  freight  rail  industry.  For  instance,  interviews  with  Megan  Garry,  Norfolk  
Southern’s  Corporate  Sustainability  Manager,  and  Meaghan  Atkinson,  CSX’s  Environmental  
Programs  and  Sustainability  Manager,  were  both  invaluable  in  providing  unique  
perspectives  into  the  rail  industry.  They  detailed  how  their  companies  are  working  to  
improve  their  role  as  environmental  stewards.  A  few  leading  companies  put  out  extensive  
sustainability  reports  describing  their  sustainability  efforts  to  reduce  negative  
environmental  impact.  Norfolk  Southern,  CSX,  and  Union  Pacific  stood  out  in  particular.  
Public  institutional  resources  included  Environmental  Protection  Agency’s  (EPA)  
SmartWay,  Association  of  American  Railroads  (AAR),  Federal  Railroad  Administration  
(FRA),  and  European  Union  (EU).  Several  transportation  focused  magazines  and  news  
sources  also  contributed  significantly  to  research  findings,  including  Inbound  Logistics,  
Trains,  and  Railway  Age.  
  9  
  The  cost-­benefit  analysis  conducted  compares  the  initial  capital  costs  versus  
greenhouse  gas  emissions  reduction,  the  financial  cost  savings,  and  decline  in  fuel  
consumption.  Where  reliable  data  were  unavailable,  calculated  estimates  were  found  using  
averages  on  locomotive  operating  lifespan,  locomotive  fuel  efficiency,  vehicle  miles  
traveled,  and  greenhouse  gas  intensity  of  diesel  fuel.  
2.3  Water  Vessel  Transportation   The  materials  and  information  sources  researched  in  the  vessel  shipping  industry  
include  academic  publications,  sustainable  business  websites,  and  interviews  with  shipping  
industry  professionals.  More  specific  information  on  the  pertinent  rules,  standards  and  
guidelines  was  obtained  through  policy  papers  and  government  documents,  provided  by  
the  US  Environmental  Protection  Agency  and  European  Union  reports.  Non-­government  
reports  from  the  Environmental  Defense  Fund  and  Business  for  Social  Responsibility  were  
also  reviewed.  Moreover,  sustainability  reports  and  plans  established  by  green  business  
pursuers,  accessed  through  their  official  websites,  furthered  our  understanding  of  the  real-­
world  practices  and  enabled  us  to  outline  optimal  paths  for  a  motivated  company  to  go  
toward  sustainability.    
Practical  sustainability  practices  have  been  categorized  based  on  their  costs,  
benefits  and  payback  periods.  Furthermore,  the  research  in  vessel  shipping  industry  
benefitted  from  the  information  provided  by  Duke  alumni,  Domenic  Carlucci,  who  is  
working  for  the  American  Shipping  Bureau.  He  shared  his  insights  regarding  business  
strategies,  green  programs,  policy  and  financial  incentives,  and  relevant  certifications.  This  
allowed  us  to  integrate  first-­hand  experiences,  achievements  and  previous  attempts  in  the  
vessel  shipping  industry  into  our  research.  
Summaries  of  information,  cost-­benefit  analyses,  and  data  visualization,  were  used  
to  organize  and  structure  our  findings.  The  cost-­benefit  analysis  and  evaluation  of  current  
green  technologies  and  practices  will  bring  businesses  in  the  water  vessel  transportation  
sector  a  clearer  understanding  of  feasible  practices  and  the  benefits  to  be  gained.  
2.4  Truck  Transportation    
interviews  with  trucking  professionals,  Duke  University  databases,  industry  leaders’  
annual  reports,  the  EPA  SmartWay  website,  and  technology  websites.  The  information  
found  was  then  converted  into  an  overview  document  for  Green  Plus.  Data  was  transferred  
into  a  spreadsheet  to  conduct  a  cost-­benefit  analysis  of  the  technology  investments  and  
behavioral  changes  available  in  the  trucking  industry.  All  data  was  normalized  to  extract  
how  many  gallons  of  diesel  were  saved  per  year,  CO2e  savings  per  year,  investment  cost,  
and  cost  savings  per  year  in  use.  
The  initial  literature  review  and  interview  with  Joe  Monfort,  Sustainability  
Communications  at  UPS,  directed  the  trucking  research.  This  information-­gathering  phase  
revealed  the  importance  of  data  collection  and  the  need  to  determine  increasing  levels  in  
effort  and  investment  that  small-­medium  sized  trucking  companies  can  make  (Monfort,  
2012).  This  research  also  identified  environmental  issues  surrounding  fuel  efficiency  to  be  
the  main  cause  of  negative  environmental  impacts,  particularly  greenhouse  gas  emissions  
(American  Trucking  Association).  
Industry  leaders’  websites  and  annual  reports  provided  information  regarding  the  
investment  in  technology  being  made  to  increase  their  fleet  fuel  efficiency.  Industry  leaders  
researched  include:  J.B.  Hunt,  UPS,  Nussbaum,  U-­Haul,  FedEx,  DHL,  C&K  Trucking,  and  Con-­
Way.  After  a  review  of  technology  changes  companies  are  investing  in,  measures  were  
selected  to  determine  the  initial  cost  and  the  benefit  received  from  reductions  in  fuel  use.  
A  cost-­benefit  analysis  was  created  through  assessing  the  initial  investment  needed,  
diesel  fuel  use  reduction,  savings  associated  with  reduced  use  of  diesel  fuel,  greenhouse  gas  
emissions  saved,  and  time  needed  to  see  a  positive  financial  return  on  investment.  This  
helped  to  better  determine  which  changes  and  investments  would  be  practical  for  a  small-­
to-­medium  size  trucking  company.  A  cost-­benefit  analysis  was  not  conducted  for  all  
measures  suggested.  Some  limiting  factors  include  lack  of  reliable  data  or  an  environmental  
indicator,  such  as  water  pollution,  not  associated  with  a  change  in  greenhouse  gas  
emissions.    
  11  
Several  sources  were  explored  to  collect  data  on  green  warehousing  and  logistics  
practices.  Some  government  and  nonprofit  resources  supplied  knowledge  concerning  
warehousing  and  logistics  management,  such  as  EPA’s  SmartWay,  Warehousing  Education  
and  Research  Council,  and  Department  of  Energy’s  Energy  Star.  A  number  of  warehousing  
and  logistics-­related  literature  sources  also  provided  valuable  information,  such  as  
Inbound  Logistics,  Modern  Materials  Handling,  Supply  Chain  Brain,  and  Environmental  
Leader.  Lastly,  an  interview  with  Chris  Bingham  at  Riley  Life  Logistics  gave  insight  into  
what  it  was  like  to  operate  a  small,  certified  Benefit  Corporation  or  B-­corps  in  logistics  
management.  B-­corps  are  certified  after  fulfilling  strict  social  and  environmental  criteria.  
  12  
3  Results  
For  the  transportation  and  warehousing  industries,  there  are  a  variety  of  
investments  available  to  replace  outdated  fleets,  utilize  resources  more  efficiently,  change  
behaviors,  and  support  future  innovation.    All  of  these  investments  lead  to  a  reduction  in  
environmental  impacts,  as  revealed  in  lower  GHG  emissions,  increased  recycling  rates,  
reduced  water  contamination,  reduced  fuel  consumption,  reduced  volatile  organic  
compound  (VOC)  emissions,  and  overall  reduced  materials  consumption.  The  following  
sections  provide  detailed  information  regarding  monetary  investments,  CO2e  savings,  and  
payback  periods  by  industry.    
3.1  Air  Transportation  
3.1.1 Major Issues
Currently,  the  largest  environmental  issue  facing  the  aviation  sector  comes  from  the  
huge  amounts  of  energy  used  for  the  regular  operation  of  the  air  fleet  and  airports.  Other  
major  environmental  issues  include  high  noise  level  at  and  near  airports  during  aircraft  
takeoff  and  landing,  the  emissions  of  VOCs  and  GHGs  other  than  CO2,  such  as  NOx,  during  
the  flights.  
3.1.2 Major Players
The  aviation  sector  can  be  divided  into  passenger  travel  and  cargo  transport,  both  of  
which  should  be  considered  in  identifying  major  players  in  this  sector.  International  
airlines,  mainly  Chinese  airlines,  were  excluded  despite  their  large  participation  in  the  US  
aviation  market.  This  is  due  to  different  economic  development,  technical  development,  
and  environmental  concerns,  which  often  lead  to  varying  sustainability  practices  between  
international  and  US  airlines.  Through  synthesizing  the  data  relevant  to  the  number  of  
enplaned  passengers  and  the  cargo  tonnages,  FedEx,  UPS,  Delta  Airlines,  United  Airlines,  
and  American  Airlines  were  chosen  as  the  major  players  in  US  aviation  sector  (Wikipedia,  
2013)  (Air  Cargo  World,  2011).  
  13  
The  Federal  Aviation  Administration  (FAA)  provides  a  series  of  environmental  
regulations  for  airplane  and  airport  operations.  These  regulations  cover  issues  ranging  
from  water  and  air  quality  to  socio-­economic  factors  (FAA,  2012).  One  issue  that  frequently  
receives  a  great  deal  of  attention  is  noise  compatibility  planning,  which  provides  
suggestions  for  airports  to  comply  with  FAA  noise  regulations.  Another  issue  regards  
reducing  ground-­level  emissions,  facilitated  through  the  Voluntary  Airport  Low  Emissions  
Program  (VALE)  (FAA,  2012)  (FAA,  2013).  
B. Certifications The  International  Civil  Aviation  Organization  (ICAO)  provides  standards  and  
certifications  with  respect  to  aircraft  noise  and  aircraft  engine  emission  (ICAO,  2013).  In  
addition,  U.S.  Green  Building  Council  (USGBC)  provides  the  Leadership  in  Energy  and  
Environmental  Design  (LEED)  Certification  to  assess  and  rate  the  sustainability  of  
buildings,  including  airports.  For  example,  United  Airlines’s,  headquarters  in  downtown  
Chicago,  has  been  approved  for  LEED  certification  due  to  the  use  of  automated  lighting  and  
energy-­efficient  mechanical  systems  (United  Airlines,  2011).  
3.1.4 Sustainability Practices
The  sustainability  practices  currently  adopted  by  major  players  in  air  transportation  
are  classified  into  four  major  categories:  enhancing  fuel  economy,  developing  alternative  
aviation  fuels,  promoting  recycling,  and  supporting  carbon  neutral  programs.  Enhancing  
fuel  economy  is  further  divided  into:  replacing  aircraft  fleet,  adopting  energy-­efficient  
technologies,  and  behavior  changes.  The  following  provide  detailed  information  for  each  of  
these  categories.  
A. Enhance Fuel Economy a) Aircraft Fleet Replacement
In  recent  years,  The  Boeing  Company  has  devoted  efforts  to  develop  a  more  energy-­
efficient  aircraft.  For  example,  it  is  estimated  the  newest  generation  of  Boeing  aircraft,  the  
Boeing  787,  uses  20  percent  less  fuel  than  other  airplanes  of  similar  size  (The  Boeing  
  14  
Company,  2013).  Therefore,  replacing  old  aircrafts  with  newer  models  can  significantly  
increase  the  average  energy  efficiency  of  a  company’s  whole  aircraft  fleet.  Table  1  shows  
recent  examples  among  the  major  players  in  renewing  their  aircraft  fleet  since  2005.  
  Table 1 Major Players’ Introduction of More Efficient Aircraft Since 2005  
Major Player Introduced Replaced Reference FedEx Boeing 757s Boeing 727s (FedEx, 2011) FedEx Boeing 777F MD-11F (FedEx, 2011) FedEx Boeing 767 / (FedEx, 2011) UPS Airbus 300-600 / (UPS, 2013) UPS Boeing 747-400 Boeing 747-200 (UPS, 2013)
United Airlines Boeing 787-9 / (United Airlines, 2011) Delta Airlines 737-900ER / (Delta Airlines, 2012)
American Airlines Airbus 320 / (American Airlines, 2013)
American Airlines Boeing 737-800 MD-80 (American Airlines, 2013)
Note: / in Replaced column means no airplanes were replaced.
b) Adoption of Energy-efficient Technologies
We  consider  separately  adopting  energy-­efficient  technologies  related  to  airports  
from  those  related  to  aircraft.  The  former  enhances  an  airport’s  overall  energy  efficiency  by  
introducing  advanced  management  systems  and  efficient  equipment.  The  latter  improves  
the  energy  performance  of  an  aircraft  during  a  flight  by  reducing  aircraft  weight  or  drag  
and  adopting  optimal  flight  routes.    
Airport  energy-­efficient  technologies  include  electric  ground  support  equipment  
(eGSE),  air  traffic  management  (ATM)  and  surface  management  system  (SMS).  The  aircraft  
energy-­efficient  technologies  include  Lufthansa  System’s  LIDO  Flight  Planning  System,  
winglet,  continuous  descent  arrival  (CDA),  carbon  brake,  The  Boeing  Company’s  777  
Performance  Improvement  Package  (PIP),  and  PreKote  environmental  friendly  paint.  
The  eGSE  contributes  to  reducing  GHG  emission  by  replacing  internal  combustion  
engine  models  with  electric  models.  Both  ATM  and  SMS  can  help  airports  manage  flight  
schedules  more  efficiently.  The  detailed  description  of  airport  energy-­efficient  technologies  
is  presented  in  Appendix  Table  A1.  
  15  
The  LIDO  Flight  Planning  System  shows  the  most  efficient  flight  routes  for  an  
aircraft,  thus  reducing  its  jet  fuel  consumption.  Winglets  enhance  the  fuel  economy  of  an  
aircraft  by  adding  wingtip  extensions  to  aircraft  wings,  reducing  drag.  CDA  enables  
aircrafts  to  use  idle  power  and  descend  at  a  constant  3-­degree  angle,  rather  than  traditional  
step-­down  descending,  thus  reducing  noise  and  jet  fuel  consumption.  Carbon  brakes  help  
to  reduce  aircraft  weight  by  up  to  976  pounds,  compared  to  steel  brakes.  The  777  PIP  
enhances  the  fuel  economy  of  older  Boeing  777  models  by  introducing  improved  aircraft  
equipment.  The  PreKote  environmental  friendly  paint  reduces  aircraft  weight  and  
hazardous  chemical  emissions  attributed  to  painting  through  adopting  a  specialized  
pretreatment  called  “PreKote”.  Detailed  descriptions  and  references  of  aircraft  energy-­
efficient  technologies  are  provided  in  Appendix  Table  A2.  
c) Behavioral Changes
Behavioral  changes  can  also  produce  significant  savings  in  fuel  consumption.  
Washing  engines  frequently  can  reduce  aircraft  engine  drag.  Reducing  auxiliary  power  
usage,  by  relying  on  available  ground  power  and  pre-­cooled  air  equipment,  helps  to  reduce  
jet  fuel  consumption.  Using  iPads  for  the  pilot’s  flight  manual  and  passenger’s  
entertainment  system  has  been  implemented  on  international  flights  to  reduce  aircraft  
weight.  Using  one  engine  during  the  ground  taxiing  or  tugging  an  aircraft  with  a  ground  
vehicle  contributes  to  savings  in  jet  fuel  consumption  during  ground  movement.  Adopting  
the  contraflow  approach  allows  aircrafts  to  fly  over  less  populated  urban  areas,  reducing  
the  overall  noise  level.  Reducing  aircraft  speed  to  extend  domestic  flights  by  2-­11  minutes  
per  trip  can  reduce  some  jet  fuel  consumption.  Adopting  polar  routes  for  international  
flights  directly  reduces  flight  distance  and  results  in  jet  fuel  savings.  Using  a  polycarbonate  
air  cargo  container  or  installing  an  internal  floating  roof  can  reduce  air  pollution.  Detailed  
descriptions  and  references  of  behavioral  changes  are  provided  in  Appendix  Table  A3.  
B. Alternative Aviation Fuels With  the  increasing  price  of  jet  fuels,  such  as  jet  A,  jet  A-­1,  and  jet  B,  research  into  
alternative  aviation  fuels  is  increasing.  Developing  alternative  aviation  fuels  results  in  both  
economic  and  environmental  benefits.  Alternative  aviation  fuels,  if  successfully  
commercialized,  can  substantially  reduce  the  dependence  on  conventional  jet  fuels  and  
  16  
thus  mitigate  the  effects  of  price  fluctuations  of  conventional  jet  fuels.  In  addition,  the  life-­
cycle  GHG  emissions  attributed  to  alternative  aviation  fuels  are  significantly  less  than  their  
conventional  counterparts,  contributing  to  climate  change  mitigation.  
Due  to  these  benefits,  a  number  of  businesses  have  undertaken  research,  
development,  and  testing  of  alternative  aviation  fuels.  For  example,  United  Airlines  is  
collaborating  with  various  companies,  including  Solazyme,  Solena,  Alt  Air,  Gevo  and  
Rentech,  to  produce  and  evaluate  aviation  biodiesels  from  multiple  feedstocks.  These  
feedstocks  include  algae,  recycled  agricultural  waste,  urban  waste,  camelina  oil.  In  2011,  
United  Airlines  conducted  test  flights  of  alternative  aviation  fuel,  using  a  mixture  of  40  
percent  biodiesel  and  60  percent  conventional  fuel  (United  Airlines,  2011).  Likewise,  
American  Airlines  has  signed  with  Solena  Fuels,  a  leading  bioenergy  company,  to  promote  
the  commercial  use  of  alternative  aviation  fuels  at  airports  located  in  the  San  Francisco  Bay  
Area.  Such  fuels  are  derived  from  blending  Solena  biodiesel,  generated  from  recycled  
agricultural  and  urban  waste,  with  conventional  jet  fuel.  (American  Airlines,  2013).    
However,  despite  significant  investments  in  developing  alternative  aviation  fuels,  
the  International  Energy  Agency  estimates  that  the  deployment  of  aviation  biodiesel  will  
require  5-­10  years  of  additional  work  (International  Energy  Agency,  2009).  In  addition,  the  
commercialization  of  alternative  aviation  fuels  requires  not  only  sufficiently  competitive  
price  levels,  but  other  considerations  as  well.    These  include  adjustments  of  current  engine  
systems  or  even  new  engine  designs,  and  the  establishment  of  new  or  modified  distribution  
and  refueling  systems.  
While  alternative  aviation  fuels  require  continued  development,  biodiesel  can  be  
used  in  ground  equipment  at  the  airport  to  effectively  save  conventional  fuel  consumption  
and  reduce  total  GHG  emissions.  For  example,  UPS  has  decided  to  purchase  specialized  
fueling  vehicles,  fuel  storage  tanks,  and  computer  systems  to  utilize  a  5  percent  blend  of  
biodiesel  fuel  for  366  ground  vehicles  at  its  Worldport  Air  Hub  at  Louisville  International  
Airport  (UPS,  2013).  
C. Promote Recycling For  aviation  businesses,  recycling  can  be  promoted  through  enhancing  airport  
recycling  and  inflight  recycling,  as  well  as  increasing  the  recycled  percentage  of  paper  
  17  
products.  Airport  recycling  seeks  to  minimize  waste  generated  through  various  activities  in  
an  airport,  especially  for  mixed  paper,  aluminum,  plastic  bottles,  oil,  paint,  pallets,  plastic  
sheeting,  cardboard,  scrap  metal  and  cooking  oil  (United  Airlines,  2011).  Aside  from  the  
application  of  mobile/electronic  boarding  passes  to  achieve  paperless  boarding,  airport  
recycling  greatly  relies  on  labor.  
Inflight  recycling  involves  collecting  aluminum  cans,  plastic  beverage  cups,  plastic  
bottles,  newspapers,  magazines,  and  sometimes  aircraft  carpet.  A  large  number  of  airlines  
have  launched  their  inflight  recycling  programs,  obtaining  significant  benefits  in  materials  
saving.  For  example,  United  Airline  has  successfully  recycled  more  than  three  million  
pounds  of  cans  and  plastic  items,  generated  in-­flight,  during  the  last  five  years  (United  
Airlines,  2011).  In  most  cases,  the  carting  off  of  sorted  recycled  materials  is  freely  provided,  
making  initial  collection  labor  the  main  cost  to  improve  the  both  airport  and  inflight  
recycling.  
Identifying  reliable  sources  of  recycled  paper  and  increasing  the  percentages  of  
recycled  paper  products  also  contributes  to  significant  savings  in  trees,  landfill  waste  and  
CO2  emissions.  For  example,  in  2010  American  Airlines  switched  to  100  percent  recycled  
paper  for  its  Latitudes  inflight  magazine,  without  increasing  the  weight  of  the  magazine  
(American  Airlines,  2011).  This  sustainability  initiative  has  been  used  more  frequently  in  
freight  packages,  bringing  the  benefits  of  not  only  paper  usage  reduction,  but  also  
considerable  net  energy  savings.  For  example,  UPS  has  seen  a  12percent  reduction  in  
energy  use  by  recycling  used  packages,  compared  to  manufacturing  new  packages.  UPS  also  
reports  that  most  of  its  envelopes  and  boxes  contain  at  least  80  percent  and  30  percent  
post-­consumer  recycled  content  (UPS,  2013).  Likewise,  FedEx  indicates  that  currently  most   of  its  envelopes  and  boxes/packages  consist  of  100  percent  and  at  least  40  percent  recycled  
content,  respectively  (FedEx,  2011).    
D. Support Carbon Neutral Programs To  date,  there  have  been  several  successful  cases  where  some  aviation  corporations  
effectively  collaborate  with  environmental  organizations  to  neutralize  their  GHG  footprint  
through  investing  in  GHG  sequestration  projects.  For  example,  Delta  Airlines  has  made  
donations  and  offered  passengers  the  option  to  purchase  carbon  offsets.  Through  these  
  18  
efforts,  Delta  has  raised  $1  million  for  The  Nature  Conservancy’s  Tensas  River  Basin  Project,  
to  conserve  the  Lower  Mississippi  River  Valley  (The  Nature  Conservancy,  2012).  Likewise,  
FedEx  offsets  its  GHG  footprint  by  investing  in  projects  in  BP’s  Target  Neutral  program,  
such  as  recovering  the  degraded  grassland  in  Tanzania’s  Southern  Highlands  district  
(FedEx,  2013).  
3.1.5 Cost Benefit Analysis
The  costs  and  benefits  of  some  researched  sustainability  practices  can  be  quantified  
by  reviewing  relevant  case  studies.  Unfortunately,  due  to  the  lack  of  reliable  information,  
the  cost  and  benefits  of  some  measures  cannot  be  quantified;  these  include  some  of  the  
behavior  changes,  developing  alternative  aviation  fuels,  promoting  recycling,  and  
supporting  carbon  neutral  programs.  As  a  result,  qualitative  estimations  are  provided  in  
these  cases.  The  detailed  quantitative  data  or  qualitative  estimations  are  presented  in  
Appendix  Table  A4.  Figures  1-­3  show  the  characteristics  of  the  costs  and  benefits  of  the  
sustainability  practices.  
Figure 1 Cost Benefit Analysis for Aviation Sustainability Practices
Figure  1:    Cost  vs.  payback  period  of  each  sustainability  practice;  size  of  the  dot  indicates  
potential  to  reduce  GHG  emission  (ranging  from  34  to  36,319  metric  ton  CO2  equivalent  per  year)    
-20
0
20
40
60
80
100
120
Pa yb
ac k
Pe ri
ground  support  equipment  and  surface  manage  system  warrant  particular  attention.  As  
shown  in  Figure  1,  these  have  large  costs,  long  payback  periods,  and  considerable  potential  
of  GHG  emission  reduction.  In  contrast,  clustered  at  the  bottom-­left  corner  in  Figure  1,  
other  sustainability  practices,  including  aircraft  energy-­efficient  technologies  and  behavior  
changes,  require  substantially  less  initial  investments  and  can  achieve  short  payback  
periods.  Limiting  the  cost  and  payback  period  to  $5  million  and  5  years  respectively,  the  
clustered  region  is  enlarged  in  Figure  2.  
  Figure 2 Cost Benefit Analysis for Practices with Cost < $5 million and Payback Period < 5 Years
Figure  2:    Cost  vs.  payback  period  of  each  sustainability  practice;  size  of  the  dot  indicates  
potential  to  reduce  GHG  emission  (ranging  from  34  to  4,627  metric  ton  CO2  equivalent  per  year)      
Figure  2  shows  four  aircraft  energy-­efficient  technologies  and  one  behavior  change:  
LIDO  flight  planning  system,  winglets,  Boeing  777  Performance  Improvement  Package,  
carbon  brakes,  and  iPad  flight  manual  and  entertainment  system.  However,  there  are  still  
-0.5
0
0.5
1
1.5
2
2.5
3
3.5
Pa yb
ac k
Pe ri
  20  
some  practices  clustering  at  the  bottom-­left  corner  in  Figure  2.  If  the  cost  and  payback  
period  are  limited  to  $0.5  million  and  1  year  respectively,  this  clustered  region  is  enlarged  
to  obtain  Figure  3.  
  Figure 3 Cost Benefit Analysis for Practices with Cost < $0.5 million and Payback Period < 1 Year
Figure  3:    Cost  vs.  payback  period  of  each  sustainability  practice;  size  of  the  dot  indicates  
potential  to  reduce  GHG  emission  (ranging  from  34  to  371  metric  ton  CO2  equivalent  per  year)    
Except  for  the  iPad  flight  manual  and  entertainment  system,  Figure  3  shows  the  
remaining  one  aircraft  energy-­efficient  technology  and  the  three  behavior  changes:  
PreKote  environmental  friendly  paint,  one  engine  taxiing,  frequent  engine  washing,  and  
reduced  auxiliary  power  unit  usage.  Compared  to  their  counterparts,  the  practices  
displayed  in  Figure  3  have  extremely  small  investment  requirements  and  quick  payback  
periods,  but  their  GHG  savings  are  also  limited,  up  to  371  metric  ton  CO2  equivalent  per  
year.  Specifically,  one  engine  taxiing  has  no  cost,  thus  its  payback  period  equals  to  0.  
3.2  Train  Transportation  
-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Pa yb
ac k
Pe ri
3.2.1 Major Issues
Today,  the  freight  rail  system  moves  the  equivalent  of  40  tons  of  cargo  for  each  
person  in  the  United  States,  a  number  that  is  predicted  to  rise  35  percent  by  the  year  2050  
(FRA,  2010).  Freight  rail  companies  and  passenger  rail  companies  work  cooperatively  to  
ensure  the  safe  and  reliable  transport  of  both  goods  and  people  across  their  railroads.  In  
fact,  about  97  percent  of  Amtrak’s  operating  railroads  are  owned  and  maintained  by  freight  
rail  companies  (AAR,  2012).  This  makes  partnerships  between  freight  and  passenger  rail  
companies  vital  to  the  success  of  both  groups.  Bulk  goods,  such  as  grain  and  coal,  are  
shipped  in  rail  cars  while  consumer  goods  are  handled  via  intermodal  containers.  Freight  
rail  shipping  provides  environmental  benefits  such  as  reductions  in  fuel  consumption,  air  
pollution,  road  congestion,  highway  fatalities,  public  infrastructure  and  logistics  costs  (FRA,  
2012).  
While  rail  is  on  average  four  times  more  fuel  efficient  than  trucks,  it  still  consumes  a  
great  deal  of  diesel  fuel,  which  is  affected  by  stopping  behavior,  speed,  and  weight.  Further,  
rail  can  disrupt  local  ecosystems  because  its  infrastructure  may  destroy  habitat,  kill  
animals  crossing  the  tracks,  and  hinder  migration  patterns.  Trains  also  produce  high  levels  
of  noise,  which  can  be  stressful  and  damaging  to  the  well-­being  of  both  people  and  wildlife.  
3.2.2 Major Players Table 2 Class 1 Railroad Companies
Rank Company Website Headquarters Railroad (miles)
1 Union Pacific www.up.com Omaha, NE 32,000 2 Burlington Northern & Santa Fe www.bnsf.com Fort Worth, TX 32,000 3 CSX www.csx.com Jacksonville, FL 22,000 4 Norfolk Southern www.nscorp.com Norfolk, VA 21,200 5 Canadian National www.cn.ca Montreal, Quebec 19,200 6 Canadian Pacific www.cpr.ca Calgary, Alberta 13,600 7 Kansas City Southern www.kcsouthern.com Kansas City, MO 3,100
(Hattem, 2006, June 1)  
Class  1  railroad  companies  operate  70  percent  of  total  railroad  track  miles  in  the  
U.S.  and  are  defined  as  generating  revenues  of  $289.4  million  or  more  annually  (Hattem,  
  22  
2006,  June  1).  Today,  trains  transport  about  40  percent  of  all  US  freight,  measured  in  ton-­
miles,  across  a  140,000  mile  rail  network  (FRA,  2012).  
3.2.3 Key Awards and Certifications
A. Awards The  Association  of  American  Railroads  presents  the  John  H.  Chafee  Environmental  
Excellence  Award  to  railroad  employees.  This  acknowledges  an  individual  railroad  
employee  who  has  displayed  extraordinary  environmental  performance  through  their  
actions  in  environmental  awareness  and  responsibility  (AAR,  2012).    
The  Brunel  Awards  seeks  to  encourage  environmental  railway  design  as  part  of  its  
competition.  They  are  endorsed  by  the  Watford  Group  of  International  Railway  Designers,  
an  association  of  railway  professionals  throughout  Asia,  Europe,  and  the  Americas  
(Vantuono,  2012,  August  20).  The  competition  takes  place  every  three  years,  and  the  
responsibility  of  hosting  the  competition  is  shared  among  member  nations.    
The  EPA  has  a  Transportation  Efficiency  Innovations  Award  as  part  of  its  Clean  Air  
Excellence  Awards.  The  award  pertains  to  projects  that  work  on  improving  transportation  
system  efficiency  and  air  pollution.  Several  program  criteria  include  vehicle  trips,  reduced  
miles  traveled,  improved  travel  convenience,  and  reduced  travel  time  (EPA,  2011,  June  8).  
B. Certifications The  Leadership  in  Energy  and  Environmental  Design  (LEED)  green  building  
certification  program  promotes  the  use  of  sustainable  building  and  development.  LEED  
helps  support  and  provide  data  for  other  sustainability  initiatives;  increase  worker  
productivity;  and  yield  cost  savings  on  energy,  waste  disposal,  water,  and  operations  and  
maintenance  (Terry,  2011,  January).  Similarly,  the  Energy  Star  program  allows  businesses  
to  become  an  Energy  Star  Leader  for  demonstrating  certain  levels  of  portfolio-­side  energy  
efficiency  improvements  (D.  EPA,  2013).  
Rail  companies  can  become  SmartWay  Transport  Logistics  Partners  to  improve  
their  bottom  line  and  increase  customer  satisfaction.  Partners  do  so  by  using  SmartWay  to  
evaluate  their  environmental  performance  and  improve  supply  chain  efficiencies.  As  a  
SmartWay  Partner,  they  also  gai