finite elements in electromagnetics 1. introduction

28
Finite Elements in Electromagnetics 1. Introduction Oszkár Bíró IGTE, TU Graz Kopernikusgasse 24, Graz, Austria email: [email protected] graz.ac.at

Upload: kiele

Post on 25-Feb-2016

104 views

Category:

Documents


0 download

DESCRIPTION

Finite Elements in Electromagnetics 1. Introduction. Oszkár Bíró IGTE, TU Graz Kopernikusgasse 24, Graz, Austria email: [email protected]. Overview. Maxwell‘s equations Boundary value problems for potentials Nodal finite elements Edge finite elements. Maxwell‘s equations. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Finite Elements in Electromagnetics 1. Introduction

Finite Elements in Electromagnetics1. Introduction

Oszkár BíróIGTE, TU Graz

Kopernikusgasse 24, Graz, Austriaemail: [email protected]

Page 2: Finite Elements in Electromagnetics 1. Introduction

Overview

• Maxwell‘s equations• Boundary value problems for potentials• Nodal finite elements• Edge finite elements

Page 3: Finite Elements in Electromagnetics 1. Introduction

Maxwell‘s equations

DB

BE

DJH

divdiv

tcurl

tcurl

0

EDJEEJBHHB ;,;,

Page 4: Finite Elements in Electromagnetics 1. Introduction

Potentials

tVgrad

t

curl

AE

AB

• Continuous functions• Satisfy second order differential equations• Neumann and Dirichlet boundary conditions

E.g. magnetic vector and electric scalar potential (A,V formulation):

Page 5: Finite Elements in Electromagnetics 1. Introduction

Differential equations

:0DJH t

curl

0AAA

2

2

2

2

)(tVgrad

ttVgrad

tcurlcurl

:0)( t

div DJ

0)( 2

2

2

2

tVgrad

ttVgrad

tdiv AA

E

H

in a closed domain

Page 6: Finite Elements in Electromagnetics 1. Introduction

Dirichlet boundary conditions

AnnBnnAnE curltVgrad

t

,

Prescription of tangential E (and normal B) on E:

0

,VV 0anA

n is the outer unit normal at the boundary

E

H

nEB

Page 7: Finite Elements in Electromagnetics 1. Introduction

Neumann boundary conditions Prescription of tangential H (and normal J+JD) on H:

j)()(

,

2

2

2

2

nAnAKnA

tVgrad

ttVgrad

t

curl

nAnAnDJ

nAnH

)()()(

,

2

2

2

2

tVgrad

ttVgrad

tt

curl

E

H n

H

J+JD

Page 8: Finite Elements in Electromagnetics 1. Introduction

General boundary value problem

in 2

2

212 ftuL

tuLuL tt

Differential equation:

Boundary conditions:DDuL on 0

NNtNtN gtuL

tuLuL

on 2

2

21

Dirichlet BC

Neumann BC

D

N

ND

Page 9: Finite Elements in Electromagnetics 1. Introduction

Nonhomogeneous Dirichlet boundary conditions

uuu D DD uuL on 0

ithfunction wunknown new :uDDDD uuLu on that soarbitrary : 0

2

2

2122

2

212 tuL

tuLuLf

tuL

tuLuL D

tD

tDtt

2

2

212

2

21 tuL

tuLuLg

tuL

tuLuL D

NtD

NtDNNtNtN

DDuL on 0

Page 10: Finite Elements in Electromagnetics 1. Introduction

Formulation as an operator equation (1)

Characteristic function of a domain

. if ,0, if ,1

)(PP

P wwdw

,,

wwdw

,,

Dirac function of a surface

gradn

Scalar product for ordinary functions:

3

, uvdvu

Page 11: Finite Elements in Electromagnetics 1. Introduction

Formulation as an operator equation (2)

uLuLAu NN 2

gftuC

tuBAu

N

2

2

Define the operators A, B and C as

(with the definition set})on 0:{ DDABC uLuD

Equivalent operator equation:

uLuLCu Ntt N 22 uLuLBu Ntt N 11

Page 12: Finite Elements in Electromagnetics 1. Introduction

Formulation as an operator equation (3)Properties of the operators:

Symmetry: ,,, AwuwAu ,,, BwuwBu .,,,, ABCDwuCwuwCu

Positive property: ABCDuuAu ,0,

Page 13: Finite Elements in Electromagnetics 1. Introduction

Operators of the A,V formulation (1)

V

uA

000)( ncurlcurlcurl

A H

gradgraddivdivgrad

BHHnn

)()(

}on 0,:{ EA VV

D

0nAA

gradgraddivdivgrad

CHHnn

)()(

Page 14: Finite Elements in Electromagnetics 1. Introduction

A,V formulation: symmetry of A

w

w

u

u

VVA

AA,

3

)( dcurlcurlcurl wuu HAnAA

H

dcurldcurlcurl uwuw )()( nAAAA

dcurldcurlcurl uwuw nAAAA )(

H

dcurl uw )( nAA

Ew

E

dcurldcurlcurl uwuw

on since ,0

)(

0nA

AnAAA

dcurlcurl uw AA

Page 15: Finite Elements in Electromagnetics 1. Introduction

A,V formulation: positive property of A

dcurlcurl

VVA AA

AA,

02

dcurlA

Page 16: Finite Elements in Electromagnetics 1. Introduction

A,V formulation: symmetry of B and C

w

w

u

u

VVB

AA,

3 )())((

)(d

VgradVgradVdivgradV

wuuuu

wuu

HAnA

AA

dgradVdivVgradV uuwuuw )]([)( AAA

H

dgradVV uuw nA )(

dgradVgradVgradV uuwuuw )()( AAA

H

dgradVVdgradVV uuwuuw nAnA )()(

dgradVgradVgradVgradV uwuwuwuw AAAA

Ew

E

V

uuw dgradVV

on 0 since ,0

)( nA

dgradVgradVgradVgradV uwuwuwuw AAAA

Page 17: Finite Elements in Electromagnetics 1. Introduction

Weak form of the operator equation

ABCDwwgfwtuC

tuBAu

N

,,,2

2

Page 18: Finite Elements in Electromagnetics 1. Introduction

Galerkin’s method:discrete counterpart of the weak form

n

kkk

n ftuutu1

)( )()(),( rr ABCk Df

ABCk Dkf in set entirean forming functions basis: ,...2,1,

,,,2

)(2)()(

ii

nnn fgff

tuC

tuBAu

N

ni ..., 2, 1,

Set of ordinary differential equations

Page 19: Finite Elements in Electromagnetics 1. Introduction

Galerkin equations buCuBuA

kiikikikik aAfffAfaaA ,,,

[A] is a symmetric positive matrix kiikikikik bBfffBfbbB ,,, kiikikikik cCfffCfccC ,,,

[B] and [C] are symmetric matrices iii fgfbbb

N,,

Page 20: Finite Elements in Electromagnetics 1. Introduction

Finite element discretization

Page 21: Finite Elements in Electromagnetics 1. Introduction

Nodal finite elements (1)

12

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

1920

nodes.other allin 0, nodein 1

)(i

N i r i = 1, 2, ..., nn

Shape functions:

Page 22: Finite Elements in Electromagnetics 1. Introduction

Nodal finite elements (2)Shape functions

Corner node Midside node

Page 23: Finite Elements in Electromagnetics 1. Introduction

Nodal finite elements (3)

Basis functions for scalar quantities (e.g. V): Shape functions

Number of nodes: nn, number of nodes on D: nDn,Dnn nnn nodes on D: n+1, n+2, ..., nn

n

kkk

n NtVVtV1

)( )()(),( rr

Page 24: Finite Elements in Electromagnetics 1. Introduction

Nodal finite elements (4)Linear independence of nodal shape functions

11

nn

iiN

Taking the gradient:

01

nn

iiNgrad

The number of linearly independent gradients of the shape functions is nn-1 (tree edges)

Page 25: Finite Elements in Electromagnetics 1. Introduction

Edge finite elements (1)

12

3

4

56

7

8

9

10

11

12

13

14

15

16

1718

19

20

22

23

24

25

26

27

28

29

30 31

32

33 34

35

36

21

Edge basis functions:

. if , 0, if , 1

)(jiji

djEdgei lrN i = 1, 2, ..., ne

Page 26: Finite Elements in Electromagnetics 1. Introduction

Edge finite elements (2)Basis functions

Side edge Across edge

Page 27: Finite Elements in Electromagnetics 1. Introduction

Edge finite elements (3)

Basis functions for vector intensities (e.g. A): Edge basis functions

Number of edges: ne, number of edges on D: nDe,Dee nnn edges on D: n+1, n+2, ..., ne

n

kkk

n tat1

)( )()(),( rNArA

Page 28: Finite Elements in Electromagnetics 1. Introduction

Edge finite elements (4)Linear independence of edge basis functions

Taking the curl:

The number of linearly independent curls of the edge basis functions is ne-(nn-1) (co-tree edges)

;1

en

kkiki cgradN N 0

1

2

en

kikc i=1,2,...,nn-1.

,1

0N

en

kkikcurlc i=1,2,...,nn-1.