fisica nucleare e subnucleare i corso di … · fisica nucleare e subnucleare i corso di laurea...

72
1 st * *

Upload: duongmien

Post on 29-Aug-2018

227 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

FISICA NUCLEARE E SUBNUCLEARE ICorso di laurea Fisica

Lecture 8(1st part )

Simonetta Gentile∗

∗ Università Sapienza,Roma,Italia.

June 22, 2014

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 1 / 51

Page 2: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Preliminaries

Simonetta Gentileterzo piano Dipartimento di Fisica Gugliemo Marconi

Tel. 0649914270e-mail: [email protected] web: http://www.roma1.infn.it/people/gentile/simo.html

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 2 / 51

Page 3: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Bibliography

♠ Carlo Dionisi ed Egidio Longo, Dispense del corso di Fisica Nucleare

e Subnucleare

http://www.roma1.infn.it/people/longo/fnsn/testo.html, (CDEL)

♠ Other bibliography:

R.H. Cahn e G. Goldhaber, The experimental Foundations of ParticlePhysics

Cambridge University Press,UK, 2nd Edition,2011,(CG))

D. Gri�ths, Introduction to Elementary Particles

Wiley-VCH,Weinheim, 2nd Edition(2008),(DG)

A.Das and T.Ferbel, Introduction to Nuclear Particle Physics

World Scienti�c,Singapore, 2nd Edition(2009)(DF).

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 3 / 51

Page 4: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

♠ More advanced bibliography:

J. Beringer et al. (Particle Data Group), The Review of Particle

Physics,Phys. Rev. D86, 010001 (2012)(PDG)

D.H. Perkins,Introduction to High Energy Physics

Cambridge University Press, UK, 2nd Edition(2000).

B.Povh et al., Particles and Nuclei

Springer Verlag, DE, 2nd Edition(2004).(BP)

Y.Kirsh & Y. Ne'eman, The Particle HuntersCambridge University Press, UK, 2nd Edition(1996).(KN)

F. Halzen and A. Martin, Quarks and Leptons: An introductory course

in Modern Particle Physics

Wiley and Sons, USA, Edition(1984).

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 4 / 51

Page 5: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Sylvie Braibant · Giorgio Giacomelli Maurizio Spurio Particles and

Fundamental Interactions An Introduction to Particle Physics,Springer (2012)

♠ Particle Detectors bibliography:

William R. Leo Techniques for Nuclear and Particle Physics

Experiments,Springer Verlag (1994)(LEO)

C. Grupen, B. Shawartz Particle Detectors,Cambridge University Press (2008)(CS)

The Particle Detector Brief Book,(BB)http://physics.web.cern.ch/Physics/ParticleDetector/Briefbook/

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 5 / 51

Page 6: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Lecture Contents - 1 part

1. The subatomic physics: radioactivity and the discovery of electron(Lecture Ch. 1 and 2)

2. Scattering experiments. Cross section (CDEL Sec. 3.1-3.6)

3. The discovery of the atomic nucleus, the discovery of the proton andthe neutron (CDEL Ch. 3.7-3.10)

4. The passage of radiation in matter (CDEL Sec. 4.1-4.9)

5. Particle detectors (CDEL chap. 4.10)

6. Interactions and particles (CDEL Sec. 5.1-5.3)

7. Strong interactions and Yukawa's hypothesis (CDEL Sec. 5.4-5.7)

8. Decay laws. Breit and Wigner formula (CDEL Ch. 5.8-5.10)

9. Cosmic rays and the discovery of the positron (CDEL Sec. 6.1-6.2)

10. Pions and muons (CDEL Sec. 6.3-6.4)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 6 / 51

Page 7: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Lecture Contents - 2 part

11. Strange particles (CDEL chap. 6.5)

12. Particle accelerators (CDEL chap. 6.6)

13. The discovery of the antiproton (CDEL chap. 6.7)

14. Neutrinos (CDEL chap. 6.8)

15. The parity. Symmetries C and T (CDEL Sec. 7.1-7.3)

16. Parity violation(CDEL chap. 7.4)

17. Isospin (CDEL chap. 7.5)

18. Hadronic resonances (CDEL chap. 7.6)

19. The quark model (CDEL chap. 7.7)

20. Property of nuclei: the masses and stability (CDEL chap. 8)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 7 / 51

Page 8: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Contents

1 Symmetries and invariances

2 Discrete SymmetriesParityCharge ConiugationTime Reversal

3 Parity Violation

4 CP,CPT and CP ViolationCPT theorem

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 8 / 51

Page 9: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Symmetries and invariances

Symmetries play an important role in particle physics. Themathematical description of symmetries uses group theory.Symmetry: if a set of transformations, when applied to a system, leavessystem unchanged

Symmetries connected with Conservation Laws Noether's Theorem(1917)

Every continuous symmetry of nature yields a ConservationLaw

Converse is also true: every conservation law re�ects anunderlying symmetry

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 9 / 51

Page 10: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Symmetries connected and Conservation Laws

Figure: Invariance of a systemunder a transformation and thecorresponding conserved quantity Figure: A.Noether(1882-1935)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 10 / 51

Page 11: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Symmetries connected and Conservation Laws:Reminder

In quantum mechanics,any observable quantity corresponds to theexpectation value of a Operator, in a in a given quantum state and itstime evolution, if the operator does not depend explicitely on time isgiven by1:

d

dt< Q > =

1

i~< [Q,H] > =

1

i~< (QH − HQ) >

< Q >=< ψ|Q|ψ > expectation value of operartor Q in the state |ψ>

An observable quantity, non depending explicitly on time, will beconserved, if and only, if the corresponding quantum operatorcommutes with the Hamiltonian.

d

dt< Q > = 0 if and only if [Q,H] = 0.

1see bibliography:CDEL,DF,more complete DGS. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 11 / 51

Page 12: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Symmetries connected and Quantum numbers:Reminder

In quantum mechanics, when two operators commute, they can bediagonalized simultaneusly,=⇒ a complete set of commoneigenfunctions.

If the Hamiltonian has an underlying symmetry de�ned bygenerator Q, the energy eigenstates are also eigenfunctions ofoperator Q, labelled with quantum numbers corresponding to theeigenvalue of Q.

Quantum numbers are conserved in any physical process

where the interaction Hamiltonian for some transition

(e.g. decay or reaction) is invariant under symmetry

transformation.

For transition, in which interaction Hamiltonians are not invariantunder symmetry transformations, the corresponding quantumnumbers do not have to be conserved.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 12 / 51

Page 13: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Symmetries

Categories:1 Continuous symmetries .Symmetry transformatios identi�edwith continuous transformations,depend on a continuous set ofparameters.

2 Discrete symmetries corrispond to some kind of re�ectionsidenti�ed with discrete transformations.

♠ Example: continous symmetries: space translations If P (momentum)is the generator of the operator D of space translations. IF H isinvariant under transations [D,H] = 0 hence:

[P,H] = 0

The following three statements are equivalent:

Momentum is conserved for an isolated system.

The hamiltonian is invariant under space translations.

The momentum operator commutes with the hamiltonian.S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 13 / 51

Page 14: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Forces

e.m.

Weakcharged

Weakneutral

strong

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 14 / 51

Page 15: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Conservation laws

Strong E.M. Weak

Energy/Momentum√ √ √

Electric Charge√ √ √

Baryon Number√ √ √

Lepton Number√ √ √

Isospin(I)√

× ×Strangeness(S)

√ √×

Charm(C)√ √

×Parity(P)

√ √×

Charge Conjugation(C)√ √

×CP (or T)

√ √×

CPT√ √ √

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 15 / 51

Page 16: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Contents

1 Symmetries and invariances

2 Discrete SymmetriesParityCharge ConiugationTime Reversal

3 Parity Violation

4 CP,CPT and CP ViolationCPT theorem

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 16 / 51

Page 17: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Discrete Symmetries

• The parity, P, or space inversion, is a transformation that takes afunction from a right handed coordinate frame to a left handed one, orviceversa. A space-time four vector changes:

ctxyz

P−→

ct−x−y−z

The parity operation is distinct from spatial rotations because a lefthanded coordinate system cannot be obtained from a right handed onethrough any combination of rotations. The operation of spatialinversion of coordinates is produced by the parity operator P:

Pψ(~r) = ψ(−~r)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 17 / 51

Page 18: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity

Repetition of this operation implies P 2 = 1 so that P is a unitaryoperator.

Pψ(~r)P−→ ψ(−~r) P−→ ψ(~r)

Therefore if there are parity eigenvalues they must be: P = ±1 .Examples:

P = +1 ψ(x) = cos x→ P → cos(−x) = cosx = ψ(x)

P = −1 ψ(x) = sin x→ P → sin(−x) = − sinx = −ψ(x)

P = ? ψ(x) = sin x + cosx→ P → = − sinx + cosx 6= ±ψ(x)

? unde�ned parity.

States of with P = + 1 are even

States of with P = - 1 are odd

The parity is a multiplicative operator

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 18 / 51

Page 19: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Changing under P

The components of position and momentum vectors change underinversion of coordinate , while magnitudes are preserved:

~rP−→ ~−r vector

~p = md~r

dtP−→ m

d(−~r)dt

= −~p vector

|~r| = (~r · ~r)12P−→

[(−~r) · (−~r)

]= (~r · ~r)

12 = |~r| scalar

same for momenta

There exist scalar and vector quantities that do not transform underparity as those, they transform opposite the normal vector and scalar.

angular momentum

~L = ~r × ~pP−→ (−~r)× (−~p) = ~r × ~p = axial- vector2

volume of parallelepiped

~a · (~b× ~c) P−→ (−~a) · (−~b×−~c) = −~a · (~b× ~c) pseudoscalar2named also pseudovector2named also pseudovectorS. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 19 / 51

Page 20: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity

Quantity Q P(Q) Parity

Scalar s P(s) = s +1Pseudoscalar p P(p) = - p -1Vector ~ν P(~ν) = - ~ν -1Axialvector ~a P(~a) = ~a +1

Parity operator

The parity operation P performs a spatial inversion of coordinatesthrough the origin:

Pψ(~r) = ψ(−~r)

parity eigenvalues are P = ±1

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 20 / 51

Page 21: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity of particles

The eigenstates of Schrödinger equation for a central potential V(r) arethe spherical harmonics Y`m:

ψn`m(~r) = Rn`(r)Y`m(θ, φ)

where n, ` and m are, respectively, the radial, orbital and projectionquantum numbersThe parity transformation inspherical coordinates:

~rP−→ −~r,

θP−→ π − θ, φ

P−→ π + φ

the spherical harmonics behave:

Y`m(θ, φ)P−→ Y`m(π − θ, π + φ)

= (−1)`Y`m(θ, φ)

the spherical harmonics haveparity P = (−1)`.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 21 / 51

Page 22: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity of particles

Parity transform any wave function that is an eigenstate of orbitalangular momentum as

ψn`m(~r)P−→ (−1)`ψn`m(~r)

The parity is a multiplicative operator.

Example: the hydrogen atom (appendix for better understanding)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 22 / 51

Page 23: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Intrinsic parity

A quantum mechanical wave function can have, in addition, anintrinsic parity independent of its spatial transformationproperty and, correspondingly, a general quantum state that isdescribed by eigenfunctions of orbital angular momentum willtransform under parity as:

ψn`m(~r)P−→ ηψ(−1)`ψn`m(~r)

ηψ is the intrinsic parity of quantum state.Of course η2ψ = 1

A total parity of a quantum mechanical state is:

ηTOT = ηψ(−1)`

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 23 / 51

Page 24: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Intrinsic parity

Thus, parity conservation law requires the assignment of anintrinsic parity to each particle.

Protons and neutrons are conventionally assigned positive parity

Pp = Pn = +1

The assignment of an intrinsic parity is meaningful when particlesinteract one another (as in the case of electric charge).

The nucleon intrinsic parity is a matter of convention.

The relative parity of particle and antiparticle is not a matter ofconvention

Fermions and antifermions are created in pairs, whereas this is notthe case for bosons.

Fermions: particle and antiparticle have opposite parity.

Bosons: particle and antiparticle have equal parity.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 24 / 51

Page 25: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Example: Intrinsic parity of fermions and photon

The intrinsic parity of fermions is P = even

The intrinsic parity of antifermions is P = odd

Parity is a multiplicative quantum number, so the parity of a manyparticle system is equal to the product of the intrinsic parities ofthe particles times the parity of the spatial wavefunction which is(−1)L . As an example, positronium is an e+e− system with:

P (e+e−) = Pe−Pe+(−1)L = (−1)L+1

where L is the relative orbital angular momentum between the e+

and e− .

The photon γ is represented by the vector potential Aµ, a vectorthen its parity is Pγ = -1.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 25 / 51

Page 26: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity Conservation

Parity Conservation and violation

Parity is conserved in strong and electromagnetic interactions,whereas it is violated in weak interactions.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 26 / 51

Page 27: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Charge Coniugation

• Charge Conjugation,C, is a discrete symmetry that reverses all theadditive quantum numbers as the electrical charge, baryon and leptonnumbers and the �avor charges, but it does not change the mass, linearmomentum or spin of a particle.

Like the parity operator it satis�es C2 = 1, and has possibleeigenvalues C = ±1. Electromagnetism is C invariant, sinceMaxwell's equations apply equally to + and - charges.

qC−→ −q ~j

C−→ −~j ~EC−→ − ~E ~H

C−→ − ~HHowever the electromagnetic �elds change sign under C=⇒ Cγ = −1.The classi�cation of the electron as particle and positron asantiparticle is arbitrary.The de�nition of positive and negativeelectric charge, positive and negative strangeness, the assignmentof baryon number, etc., are all a matter of convention.Once a choice is made, however, we can measure the quantumnumbers of other particles relative to the de�ned assignments.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 27 / 51

Page 28: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Charge Coniugation

The charge conjugation operation inverts all internal quantum numbersof states, and thereby relates particles to their antiparticles.

particle ⇐⇒ antiparticle

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 28 / 51

Page 29: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Charge Coniugation

A state can be an eigenstate of the charge conjugation operartorC,if, at least, is electrically neutral. γ,π0 can be C eigenstate.

Not all charge-neutral states are eigenstates of C, since they maycarry other internal quantum number. This are not C eigenstate

|n > C−→ |n̄ > |K0 >C−→ |K̄0 >

For fermions charge conjugation changes a particle into anantiparticle, so fermions themselves are not eigenstates of C .Combinations of fermions can be eigenstates of C .

Charge Coniugation

Charge Conjugation is a discrete symmetry that reverses all theadditive quantum numbers as the electrical charge, baryon and leptonnumbers and the �avor chargesCharge Coniugation eigenvalues are C = ±1

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 29 / 51

Page 30: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Charge Conjugation Conservation

Since electric charge is the source of electric and magnetic �elds:

~EC−→ − ~E

~BC−→ − ~B

Both ~E, ~B are linear in electric charge. Maxwell equations areinvariant under C transformation.The γ, the quantum of electromagnetic �eld, must have ηc(γ) = 1.If the charge conjugation is symmetry of theory [H,C]= 0 =⇒ Ccharge parity must be conserved.Determination of the charge parity of π0:

π0 → γ + γ

ηc(π0) = ηc(γ) × ηc(γ) = (−1)2 = 1

→ π0 must be even under C. .S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 30 / 51

Page 31: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Charge Conjugation Conservation

Charge conjugation Conservation and violation

Charge conjugation C is conserved in strong and

electromagnetic interactions, but not in weak interactions.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 31 / 51

Page 32: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Time Reversal

• Time reversal T (t) = (-t), is another discrete symmetry operatorwith T 2 = 1, and possible eigenvalues T = ±1. The solutions of theDirac equation describe antifermion states as equivalent to fermionstates with the time and space coordinates reversed.

tT−→ −t

~rT−→ ~r

~p = md~r

dtT−→ m

d(~r)

d− t= −~p

~L = ~r × ~pT−→ ~r ×−~p = −~L

The spin changes as angular momentum.• The Schrödinger equation under T see Appendix3

3see bibliography more complete DGS. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 32 / 51

Page 33: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

CPT actions

Figure: Action of P,C,T operators on fundamential fermions.The action of aoprator twice on the state gives the original state back.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 33 / 51

Page 34: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Summary of Discrete Symetry Transformation

Quantity Notation P C T

Position ~r -1 +1 +1Momentum(Vector) ~p -1 +1 -1Spin(Axial Vector) ~σ = ~r × ~p +1 +1 -1Helicity ~σ = ~σ · ~p -1 +1 +1Electric Field ~E -1 -1 +1Magnetic Field ~B +1 -1 -1Magnetic Dipole Moment ~σ · ~B +1 -1 +1Electric Dipole Moment ~σ · ~E -1 -1 -1Transverse Polarization ~σ · ( ~P1 × ~P2) +1 +1 -1

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 34 / 51

Page 35: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

CP and CPT actions

Figure: Action of CP(top) and CPT(bottom) operators on fundamentialfermions.Equal sign in the bottom plot represents CPT conservation.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 35 / 51

Page 36: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Contents

1 Symmetries and invariances

2 Discrete SymmetriesParityCharge ConiugationTime Reversal

3 Parity Violation

4 CP,CPT and CP ViolationCPT theorem

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 36 / 51

Page 37: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 38: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 39: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 40: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 41: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 42: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

Two decay modes of the charged kaons, (now) K+ → π+ + π0

K+ → π+ + π+ + π− in the 1950's.

The lifetime in both modes τ ∼ 10−8 s → a weak decay.

Di�erence: Parity.

Reasoning: Two- and three-pion �nal states have di�erent parities,if both in s -wave. Therefore either the decaying particle(s) havedi�erent parities or the interaction responsible must violate parity!

T.D.Lee and C.N.Yang postulate (1956):Weak interactions violate parity

i.e. can distinguish between left- and right-handed coordinatesystems. This is not the case for strong or electromagneticinteractions.

The experiment that showed conclusively that parity is violated inweak interactions involved in the β decays of 60Co

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 37 / 51

Page 43: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

β decay of cobalt

First test of this hypothesis: β-decay of cobalt, performed by C.S.Wu(Madame Wu) and E.Ambler in 1956.

Idea: Observe some spatialasymmetry in:

60Co →60 Ni + e− + ν̄e

equivalent to a β decay of aneutron.

Give some reference direction in space, add some magnetic �eld toalign the spin of the cooled cobalt nuclei.

Measure the emission of the electrons against or with the spindirection of the nuclei and construct asymmetry.

Neither spin nor the magnetic �eld change under mirror re�ections(they are axial vectors - like cross products), but momentum does.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 38 / 51

Page 44: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

β decay of cobalt

First test of this hypothesis: β-decay of cobalt, performed by C.S.Wu(Madame Wu) and E.Ambler in 1956.

Idea: Observe some spatialasymmetry in:

60Co →60 Ni + e− + ν̄e

equivalent to a β decay of aneutron.

Give some reference direction in space, add some magnetic �eld toalign the spin of the cooled cobalt nuclei.

Measure the emission of the electrons against or with the spindirection of the nuclei and construct asymmetry.

Neither spin nor the magnetic �eld change under mirror re�ections(they are axial vectors - like cross products), but momentum does.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 38 / 51

Page 45: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

β decay of cobalt

First test of this hypothesis: β-decay of cobalt, performed by C.S.Wu(Madame Wu) and E.Ambler in 1956.

Idea: Observe some spatialasymmetry in:

60Co →60 Ni + e− + ν̄e

equivalent to a β decay of aneutron.

Give some reference direction in space, add some magnetic �eld toalign the spin of the cooled cobalt nuclei.

Measure the emission of the electrons against or with the spindirection of the nuclei and construct asymmetry.

Neither spin nor the magnetic �eld change under mirror re�ections(they are axial vectors - like cross products), but momentum does.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 38 / 51

Page 46: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

β decay of cobalt

First test of this hypothesis: β-decay of cobalt, performed by C.S.Wu(Madame Wu) and E.Ambler in 1956.

Idea: Observe some spatialasymmetry in:

60Co →60 Ni + e− + ν̄e

equivalent to a β decay of aneutron.

Give some reference direction in space, add some magnetic �eld toalign the spin of the cooled cobalt nuclei.

Measure the emission of the electrons against or with the spindirection of the nuclei and construct asymmetry.

Neither spin nor the magnetic �eld change under mirror re�ections(they are axial vectors - like cross products), but momentum does.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 38 / 51

Page 47: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Cobalto 60 decays

60Co→60 Ni+ e− + ν̄e

60Co(J=5) decays to 60Ni∗(J=4) transition.60Co

n→p+e−ν̄e−−−−−−−→ 60Ni∗

60Co has 33 n and 27 p60Ni∗ has 32n and 28 p

Key points in design ofexperimental set-up:

1 degree of 60Coalignment in external~H determined fromobservation of 60Ni∗

γ-rays.2 ~p momentum of

emitted electronsFigure: 60Co→60 Ni transition .

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 39 / 51

Page 48: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Cobalto 60 decays

60Co→60 Ni+ e− + ν̄e

60Co(J=5) decays to 60Ni∗(J=4) transition.60Co

n→p+e−ν̄e−−−−−−−→ 60Ni∗

60Co has 33 n and 27 p60Ni∗ has 32n and 28 pKey points in design ofexperimental set-up:

1 degree of 60Coalignment in external~H determined fromobservation of 60Ni∗

γ-rays.

2 ~p momentum of

emitted electronsFigure: 60Co→60 Ni transition .

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 39 / 51

Page 49: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Cobalto 60 decays

60Co→60 Ni+ e− + ν̄e

60Co(J=5) decays to 60Ni∗(J=4) transition.60Co

n→p+e−ν̄e−−−−−−−→ 60Ni∗

60Co has 33 n and 27 p60Ni∗ has 32n and 28 pKey points in design ofexperimental set-up:

1 degree of 60Coalignment in external~H determined fromobservation of 60Ni∗

γ-rays.2 ~p momentum of

emitted electronsFigure: 60Co→60 Ni transition .

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 39 / 51

Page 50: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Basic ideas

Cobalto 60 experiment

J

60CoP

ele

Number

Parity

J

J

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 40 / 51

Page 51: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Basic ideas

Cobalto 60 experiment

J

60CoP

ele

Number

Parity

J

J

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 40 / 51

Page 52: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

Figure: Schematic drawing of thecryostat and magnet.

A sample of 60Co at 0.01 Kinside a solenoid. At thistemperature a high portionof 60Co nuclei are alignedby applying a strongexternal �eld.

The degree of 60Coalignment could bedetermined fromobservation of angulardistribution of γ-rays from60Ni

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 41 / 51

Page 53: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

Figure: Schematic drawing of thecryostat and magnet.

A sample of 60Co at 0.01 Kinside a solenoid. At thistemperature a high portionof 60Co nuclei are alignedby applying a strongexternal �eld.

The degree of 60Coalignment could bedetermined fromobservation of angulardistribution of γ-rays from60Ni

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 41 / 51

Page 54: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

Figure: Schematic drawing of thecryostat and magnet.

A sample of 60Co at 0.01 Kinside a solenoid. At thistemperature a high portionof 60Co nuclei are alignedby applying a strongexternal �eld.

The degree of 60Coalignment could bedetermined fromobservation of angulardistribution of γ-rays from60Ni

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 41 / 51

Page 55: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

• Beta particles from 60Co decay were detected by a thin anthracenecrystal (scintillator) placed above the 60Co source. Scintillations weretransmitted to the photomultiplier tube (PMT) on top of the cryostat

photon

photon

electron

H

Figure: Schematic drawing of thelower part of the cryostat.

The angular distribution ofemitted electrons< θ > wasmeasured relative to the ~Hdirection.

The electrons wereemitted preferentially in adirection opposite of ~H ,therefore opposite tospin( ~J) of60Co nuclei.

To perform the measure atdi�erent < θ > the two ~Horientations used

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 42 / 51

Page 56: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

• Beta particles from 60Co decay were detected by a thin anthracenecrystal (scintillator) placed above the 60Co source. Scintillations weretransmitted to the photomultiplier tube (PMT) on top of the cryostat

photon

photon

electron

H

Figure: Schematic drawing of thelower part of the cryostat.

The angular distribution ofemitted electrons< θ > wasmeasured relative to the ~Hdirection.

The electrons wereemitted preferentially in adirection opposite of ~H ,therefore opposite tospin( ~J) of60Co nuclei.

To perform the measure atdi�erent < θ > the two ~Horientations used

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 42 / 51

Page 57: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

• Beta particles from 60Co decay were detected by a thin anthracenecrystal (scintillator) placed above the 60Co source. Scintillations weretransmitted to the photomultiplier tube (PMT) on top of the cryostat

photon

photon

electron

H

Figure: Schematic drawing of thelower part of the cryostat.

The angular distribution ofemitted electrons< θ > wasmeasured relative to the ~Hdirection.

The electrons wereemitted preferentially in adirection opposite of ~H ,therefore opposite tospin( ~J) of60Co nuclei.

To perform the measure atdi�erent < θ > the two ~Horientations used

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 42 / 51

Page 58: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

• Beta particles from 60Co decay were detected by a thin anthracenecrystal (scintillator) placed above the 60Co source. Scintillations weretransmitted to the photomultiplier tube (PMT) on top of the cryostat

photon

photon

electron

H

Figure: Schematic drawing of thelower part of the cryostat.

The angular distribution ofemitted electrons< θ > wasmeasured relative to the ~Hdirection.

The electrons wereemitted preferentially in adirection opposite of ~H ,therefore opposite tospin( ~J) of60Co nuclei.

To perform the measure atdi�erent < θ > the two ~Horientations used

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 42 / 51

Page 59: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

• Beta particles from 60Co decay were detected by a thin anthracenecrystal (scintillator) placed above the 60Co source. Scintillations weretransmitted to the photomultiplier tube (PMT) on top of the cryostat

photon

photon

electron

H

Figure: Schematic drawing of thelower part of the cryostat.

The angular distribution ofemitted electrons< θ > wasmeasured relative to the ~Hdirection.

The electrons wereemitted preferentially in adirection opposite of ~H ,therefore opposite tospin( ~J) of60Co nuclei.

To perform the measure atdi�erent < θ > the two ~Horientations used

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 42 / 51

Page 60: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Detector

Figure: Kinematics

If parity is conserved:

< cos θ >∝< ~J · ~p > = 0

• equal probability for the

electrons to be emitted

cos < 0 and for cos > 0.

~J = spin of 60Co nucleus

~p = electron momentum

cos < θ >,expectation valuewas �nite and negative

< cos θ > = <~J · ~p| ~J ||~p|

>

=P−→<

~J · −~p| ~J ||~p|

> =

= − <~J · ~p| ~J ||~p|

>

= − < cos θ >

if right and left coordinateare physically equivalentthe observed value in twoframes should be identical.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 43 / 51

Page 61: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

If parity is conserved:

< cos θ > = − < cos θ >

♠Electrons must be emitted with an equal probability in both

directions.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 44 / 51

Page 62: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Parity violation

If parity is conserved:

< cos θ > = − < cos θ >

♠Electrons must be emitted with an equal probability in both

directions.S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 44 / 51

Page 63: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Results

Graphs:top -γ anisotropy,counting rate , control ofpolarisation;

bottom - asymmetry -counting rate in theanthracene crystalrelative the rate withoutpolarisation (after theset up was warmed up)for two orientations ofmagnetic �eld.

A

B

H

H

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 45 / 51

Page 64: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Results

Graphs:top -γ anisotropy,counting rate , control ofpolarisation;bottom - asymmetry -counting rate in theanthracene crystalrelative the rate withoutpolarisation (after theset up was warmed up)for two orientations ofmagnetic �eld.

A

B

H

H

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 45 / 51

Page 65: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Results

Similar behaviour of gamma anisotropy and beta

asymmetry.

Rate was di�erent for the two magnetic �eld orientations.

Asymmetry disappeared when the crystal was warmed up (themagnetic �eld was still present): connection of beta asymmetrywith spin orientation (not with magnetic �eld).

Beta asymmetry - Parity not conserved

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 46 / 51

Page 66: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Results

Similar behaviour of gamma anisotropy and beta

asymmetry.

Rate was di�erent for the two magnetic �eld orientations.

Asymmetry disappeared when the crystal was warmed up (themagnetic �eld was still present): connection of beta asymmetrywith spin orientation (not with magnetic �eld).

Beta asymmetry - Parity not conserved

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 46 / 51

Page 67: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Results

Similar behaviour of gamma anisotropy and beta

asymmetry.

Rate was di�erent for the two magnetic �eld orientations.

Asymmetry disappeared when the crystal was warmed up (themagnetic �eld was still present): connection of beta asymmetrywith spin orientation (not with magnetic �eld).

Beta asymmetry - Parity not conserved

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 46 / 51

Page 68: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Contents

1 Symmetries and invariances

2 Discrete SymmetriesParityCharge ConiugationTime Reversal

3 Parity Violation

4 CP,CPT and CP ViolationCPT theorem

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 47 / 51

Page 69: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

CPT theorem

The discrete symmetries,P,T and C appear violated in someprocesses.The CP T theorem requires that all interactions that are describedby localized Lorentz invariant gauge theories must be invariantunder the combined operation of C , P and T in any order. Theproof of the CP T theorem is based on very general �eld theoreticassumptions. It can be thought of as a statement about theinvariance of Feynman diagrams under particle/antiparticleinterchange, and interchange of the initial and �nal states.The CP T theorem also means that the transformation propertiesof gauge theories under the discrete symmetries C , P and T arerelated to each other:

CP ⇐⇒ T CT ⇐⇒ P PT ⇐⇒ C

The �rst of these establishes that time reversal invariance isequivalent to CP invariance.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 48 / 51

Page 70: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

CPT theorem consequences

1 Bose-Eistein particles(integer-spin), Fermi-Dirac(half-integer spin).An operator with integer spin is quantized using commutationrelations, and an operator with half-integer spin is quantized usinganticommutationrelation.

2 Particle and anti-particles have identical masses and same totallifetimes

3 All the internal quantum numbers of antiparticles are opposite tothose of their partner particles.

The CPT theorem is consitent with all known observations and CPTappeard to be a true symmetry of all interactions.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 49 / 51

Page 71: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Appendix: Parity

Example: The hydrogen atom

Example of Parity:

ψ(r, θ, φ) = χ(r)Y`(θ, φ)P `m(cos θ)eimφ

ψ(r, θ, φ) = χ(r)

√(2` + 1)(` − m)!

4π(` + m)!P `m(cos θ)eimφ

~rP−→ −~r, θ P−→ π − θ, φ

P−→ π + φ

eimφP−→ eim(φ + π) = (−1)meimφ

P `m(cos θ)P−→ (−1)(` + m)P `m(cos θ)

Y`m(θ, φ)P−→ Y`m(π − θ, π + φ)

= (−1)`Y`m(θ, φ)

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 50 / 51

Page 72: FISICA NUCLEARE E SUBNUCLEARE I Corso di … · FISICA NUCLEARE E SUBNUCLEARE I Corso di laurea Fisica Lecture 8 ... (−~b×−~c) = −~a·(~b×~c) pseudoscalar 2 named also pseudovector

Appendix: Time reversal

Note on The Schrödinger equation.• The Schrödinger equation i~∂φ∂t = Hψ,is a �rst-order equation in thetime derivative, it cannot be invariant under T as symple:

ψ(~r, t)T−→ ψ(~r,−t)

if require that the wave function to transform under time reversal:

ψ(~r, t)T−→ ψ∗(~r,−t) If H is real for the complex cojugate i~∂φ∂t = Hψ

then t→ −t i~∂φ∗∂t = Hψ∗.• The Schrödinger equation can be invariant under T if φ and ψ∗ obbeyto same equation.

S. Gentile (Sapienza) FISICA NUCLEARE E SUBNUCLEARE I June 22, 2014 51 / 51