handout cmos power consumption

21
CMOS Inverter Power Dissipation

Upload: nadendlanet

Post on 03-Jun-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 1/21

CMOS Inverter Power

Dissipation

Page 2: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 2/21

Why worry about power? -- Power 

Dissipation

P6Pentium ® 

486

386

2868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000

 Year 

   P  o

  w  e  r   (   W  a   t   t  s   )

Lead microprocessors power continues to increaseLead microprocessors power continues to increase

Power delivery and dissipation will be prohibitivePower delivery and dissipation will be prohibitive

ource: Borkar, De Intel 

Page 3: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 3/21

Why worry about power? -- Chip

Power Density

40048008

8080

8085

8086

286386

486Pentium® 

P6

1

10

100

1000

10000

1970 1980 1990 2000 2010

 Year 

   P  o  w  e  r   D  e  n  s   i   t  y   (   W   /  c  m   2   )

Hot Plate

Nuclear 

Reactor 

Rocket

Nozzle

Sun’s

Surface

…chips might become

Source: Borkar, De Intel 

Page 4: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 4/21

CMOS inverter power 

Power has three components – Static power : when input isn’t switching

 – Dynamic capacitive power : due to charging and

discharging of load capacitance

 – Dynamic short-circuit power : direct current

from VDD to Gnd when both transistors are on

Page 5: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 5/21

CMOS inverter static power 

• Static power consumption: –  Static current: in CMOS there is no static current as long as Vin <

VTN or Vin > VDD+VTP

 –  Leakage current: determined by “off” transistor 

 –  Influenced by transistor width, supply voltage, transistor threshold

voltages

VDD

VI<VTN

Ileak,n

Vcc VDD

Ileak,p

Vo(low)

VDD

Page 6: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 6/21

Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

 All increase exponentially with temperature!

VDD Ileakage

Vout

Drain junction

leakage

Sub-threshold currentGate leakage

Page 7: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 7/21

Dynamic Power Consumption

Vin Vout

CL

Vdd

Page 8: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 8/21

Dynamic Capacitive Power and energy stored in the

PMOS deviceCase I: When the input is at logic 0: Under this

condition the PMOS is conducting and NMOS is in

cutoff mode and the load capacitor must be

charged through the PMOS device.

Power dissipation in the PMOS transistor is given by,

PP=iLVSD= iL(VDD-VO)

The current and output voltages are related by,

iL=CLdvO/dt

Similarly the energy dissipation in the PMOS device

can be written as the output switches from low to

high ,

Above equation showed the energy stored in the

capacitor CL when the output is high.

2

2

0

2

0

0000

2

1

)02

()0(,2

,)(

 DD L P 

 DD L DD DD L P 

O L

O DD L P 

O

O L

O DD L P O

O DD L P  P 

V C E 

V C V V C  E C V C E 

d C d V C  E dt dt 

d V C dt  P E 

 DD

 DD

 DD DD

    

  

  

      

  

  

Page 9: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 9/21

Power Dissipation and Total Energy Stored in the

CMOS DeviceCase II: when the input is high and out put is

low:

During switching all the energy stored in the load

capacitor is dissipated in the NMOS device because NMOS is conducting and PMOS is in

cutoff mode. The energy dissipated in the NMOS

inverter can be written as,

The total energy dissipated during one switching

cycle is,

The power dissipated in terms of frequency can be

written as

2

2

1 DD L N    V C  E   

222

2

1

2

1 DD L DD L DD L N  P T    V C V C V C  E  E  E   

2

 DD LT T 

T    V  fC  fE  P t 

 E  P t  P  E   

This implied that the power dissipation in the CMOS inverter is directly

proportional to switching frequency and V DD

Page 10: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 10/21

Dynamic capacitive power 

• Formula for dynamic power:

• Observations

 –  Does not (directly) depend on device sizes

 –  Does not depend on switching delay

 –  Applies to general CMOS gate in which:• Switched capacitances are lumped into CL

• Output swings from Gnd to VDD

• Input signal approximated as step function

• Gate switches with frequency f 

 f  V C  P   DD Ldyn

2

Not a function of transistor sizes!

Data dependent - a function of switching activity!

Page 11: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 11/21

Lowering Dynamic Power 

Pdyn = CL VDD2 f 

Capacitance:

Function of fan-out,wire length, transistorsizes

Supply Voltage:

Has been droppwith successivegenerations

Clock frequency:Increasing…

Page 12: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 12/21

Short Circuit Power Consumption

Finite slope of the input signal causes a direct

current path between VDD and GND for a short

period of time during switching when both the

NMOS and PMOS transistors are conducting.

Vin Vout

CL

Isc

Page 13: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 13/21

Dynamic short-circuit power 

• Short-circuit current flows from VDD to Gnd when both transistors are

on

• Plot on VTC curve:

VCC

VCCVin

Vout ID

Imax

Imax: depends on

saturation current

of devices

Page 14: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 14/21

Dynamic short-circuit power 

• Approximate short-circuit current as a triangular wave

• Energy per cycle:

 f   I V t t 

 P 

 I V t t t  I 

V t  I 

V  E 

CC 

 f  r 

 sc

CC 

 f  r  f  

CC r 

CC  sc

max

max

maxmax

2

222

Imax

Page 15: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 15/21

Short Circuit Currents Determinates

• Duration and slope of the input signal, tsc

• I peak determined by

 –  the saturation current of the P and N transistors which

depend on their sizes, process technology, temperature,

etc.

 –  strong function of the ratio between input and output

slopes

• a function of CL

Psc = tsc VDD Ipeak f 01

Page 16: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 16/21

Impact of CL on Psc

Vin Vout

CL

Isc  0Vin Vout

CL

Isc  Imax

Large capacitive load

Output fall time significantly

larger than input rise time.

Small capacitive load

Output fall time substantially

smaller than the input rise

time.

Page 17: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 17/21

I peak as a Function of CL

-0.5

0

0.5

1

1.5

2

2.5

0 2 4 6

     I     p     e     a      k

    (    A    )

time (sec)

x 10-10

x 10-4

CL = 20 fF

CL = 100 fF

CL = 500 fF

500 psec input slope

Short circuit dissipatio

is minimized by

matching the rise/fall

times of the input and

output signals - slope

engineering.

When load capacitan

is small, Ipeak is large.

Page 18: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 18/21

Inverter power consumption

• Total power consumption

leak CC 

 f  r 

CC CC  Ltot 

 stat  scdyntot 

 I V  f  

t t 

 I V  f  V C  P 

 P  P  P  P 

 

 

 

   

2max

2

Page 19: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 19/21

Power reduction• Reducing dynamic capacitive power :

 – Lower the voltage (Vdd)!

• Quadratic effect on dynamic power 

 – Reduce capacitance

• Short interconnect lengths

• Drive small gate load (small gates, small fan-out)

 – Reduce frequency

• Lower clock frequency -

• Lower signal activity

 fV C  P   DD Ldyn

2

Page 20: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 20/21

Power reduction

• Reducing short-circuit current:

 – Fast rise/fall times on input signal

 – Reduce input capacitance

 – Insert small buffers to “clean up” slow input

signals before sending to large gate

• Reducing leakage current: – Small transistors (leakage proportional to

width)

 – Lower voltage

Page 21: Handout CMOS Power Consumption

8/12/2019 Handout CMOS Power Consumption

http://slidepdf.com/reader/full/handout-cmos-power-consumption 21/21

Retrospect on Design Trade-offs

• Design trade-offs dancearound the triangle, but

still important

• Fundamental improvemen

that shrinks the triangle:

 –  Scaling in technology

(lithographyimprovement)

 –  New functionality

 –  New architecture

 –  New algorithms

Good

Fast Cheap

(Lower-power and Robust)

(Short Delay) (Small Layout)