ho6[1].l03 cs small signal

Upload: resizer20

Post on 04-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    1/12

    Lecture 3Common Source Amplifier

    Small-Signal Model

    R. Dutton, B. Murmann

    R. Dutton, B. Murmann 1EE114 (HO #6)

    Stanford University

    Let's Build Our Firs t Ampli fier

    One way to amplify Convert input voltage to current using voltage controlled

    current source (VCCS) Convert back to voltage using a resistor (R)

    "Voltage gain" = Vout /Vin Product of the V-I and I-V conversion factors

    R. Dutton, B. Murmann 2EE114 (HO #6)

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    2/12

    Common Source Amplifier

    MOS device acts as VCCS

    T

    R. Dutton, B. Murmann 3EE114 (HO #6)

    ( )22

    1

    t iox D V V

    L

    W C I = ( ) RV V

    L

    W C V V

    t iox DDo = 2

    2

    1

    Biasing

    Need some sort of "battery" that brings input voltage into usefuloperating region

    Define V =V -V " uiescent oint ate overdrive" V OV=VGS -Vt with no input signal applied

    VoVi

    VO

    Vo

    R. Dutton, B. Murmann 4EE114 (HO #6)

    "Bias"

    "Signal"

    VI

    i

    VOV

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    3/12

    Relationship Between Incremental Voltages

    What is Vo as a function of Vi?

    ( ) +=+ iOV ox DDoO RV V W

    C V V V 1 2

    Note: V gs =Vi=(VI+Vi)

    ( )[ ][ ]

    +=

    +=

    +=

    OV

    ii

    OV

    D

    iiOV ox

    OV iOV oxo

    V V

    V RV

    I

    V V V R LW

    C

    V V V R LW

    C V

    21

    2

    22

    1

    2

    1

    2

    22

    R. Dutton, B. Murmann 5EE114 (HO #6)

    As expected, this is a nonlinear relationship

    Nobody likes nonlinear equations; we need a simpler model Fortunately, a (1 st order) linear approximation to the above

    expression is sufficient for 90% of all analog circuit analysis

    Small Signal Approximation (1)

    +=OV

    ii

    OV

    Do V

    V V R

    V I

    V 2

    12

    Assuming Vi

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    4/12

    Small Signal Approximation (2)

    Graphical illustration:

    Notation:

    VO

    VOV

    dVo/dV i = v o/vi = Av

    R. Dutton, B. Murmann 7EE114 (HO #6)

    I

    The slope of the above tangent is the so called "small-signalvoltage gain" of our amplifier (A v)

    Notation

    Total quantityQuiescentpoint value

    Incrementalchange

    oOo vV V +=

    Total quantityQuiescentpoint value

    Incrementalchange

    Alternatively:(IEEE standard)

    R. Dutton, B. Murmann 8EE114 (HO #6)

    oOO vV v +=

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    5/12

    Small Signal MOS Model

    Fortunately we don't have to repeat this analysis for every singlecircuit we build

    Instead, we derive a linearized circuit model for the MOSrans s or an p ug n o ar rary c rcu s

    R. Dutton, B. Murmann 9EE114 (HO #6)

    Transconductance

    The parameter that relates small signal gate voltage to draincurrent is called transconductance (g m), or y 21 in two-portnomenclature

    The transconductance is found by differentiating the large signalI-V characteristic of the transistor at its operating point

    ( )22

    1t GS ox D V V L

    W C I =

    ( ) OV oxt GS oxGS

    D

    s

    d m V L

    W C V V

    LW

    C V I

    vi

    g ====

    R. Dutton, B. Murmann 10EE114 (HO #6)

    OV

    Dm V

    I g

    2=

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    6/12

    Small-Signal Equivalent of CS Amplif ier

    Use large signal I-V law to compute operating point (I D, VO, g m)

    R. Dutton, B. Murmann 11

    Make sure device operates in proper region; considerdesired signal swing

    Now perform rest of calculations in small-signal land Gain, bandwidth (more later),

    EE114 (HO #6)

    Example (1)

    Given: V I=1.5V, W=20 m, L=1 m, R=5k , VDD=5V Technology parameters: C ox = 50 A/V2, V t=0.5V a cu a e: D, O, g m, v

    I +i

    VO+vo

    VDD

    R

    ( ) AV .V .V A

    I D =

    = 50050511

    2050

    2

    1 22

    V . Ak V V O 5250055 ==

    R. Dutton, B. Murmann 12EE114 (HO #6)

    vi

    VI

    SaturationV V V V V

    V .V V

    t I t GS

    O DS

    ====

    1

    52

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    7/12

    Example (2)

    mS V .V .

    AV I

    gOV

    Dm

    15051

    50022=

    ==

    551 === k mS Rg A mv

    R. Dutton, B. Murmann 13EE114 (HO #6)

    Getting Started with HSpice

    The above circuit was easy to analyze

    In general, we want to be able to compute circuit characteristicsboth manually and by using a circuit simulator Both hand calculation and simulation is important; one does

    not replace the other Double book keeping is important in design and analysis to

    detect flaws in assumptions and understanding

    R. Dutton, B. Murmann 14

    Lets see how we can duplicate this result using HSpice

    EE114 (HO #6)

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    8/12

    HSpice Input File (1)

    * Common sour ce ampl i f i er* B. Murmann, Fal l 2008

    ev c e mo e

    . model my_ nmos nmos kp=50u vt o=0. 5

    *** usef ul opt i ons

    . opt i on post bri ef nomod

    vdd vdd 0 5

    R. Dutton, B. Murmann 15

    *** i nput vol t age

    vi vi 0 dc 1. 5 *** val ue f or . op anal ysi s

    + ac 0. 1 *** ampl i t ude f or . ac anal ysi s+ si n 1. 5 0.1 1k *** si newave f or . t r an: V_I =1. 5V, v_i =0.1V, f =1kHz

    EE114 (HO #6)

    HSpice Input File (2)

    *** d g s b

    mn1 vo vi 0 0 my_ nmos w=20u l =1u

    R vdd vo 5k

    *** cal cul ate operati ng poi nt

    . op

    *** l arge si gnal anal ysi s ( sweep Vi )

    . dc vi 0 5 0. 01

    *** smal l si gnal anal ysi s ( sweep fr equency)

    R. Dutton, B. Murmann 16

    . ac ec

    *** t r ansi ent anal ysi s ( sweep t i me)

    . t r an 1u 5m

    . end

    EE114 (HO #6)

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    9/12

    .op Output

    ** ** mosf etsel ement 0: mn1

    model 0: nmos114_

    r e i on Satu r at i

    i d 500. 0000u

    vgs 1. 5000

    vds 2. 5000

    vbs 0.

    vt h 500. 0000m

    vdsat 1. 0000

    vod 1. 0000

    R. Dutton, B. Murmann 17

    e a . m

    gam ef f 527. 6252m

    gm 1. 0000m

    gds 0.

    EE114 (HO #6)

    .dc Output

    5

    5.5

    1.5

    2

    2.5

    3

    3.5

    4

    .

    V o

    [ V ]

    R. Dutton, B. Murmann 18EE114 (HO #6)

    0 1 2 3 4 50

    0.51

    Vi [V]

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    10/12

    1

    [ V ]

    .ac Output

    102

    103

    0

    .

    f [Hz]

    | v o

    |

    300

    v o ) [ V ]

    Av = v o/vi

    = -0.5V/0.1V

    = -5

    R. Dutton, B. Murmann 19

    102

    103

    0

    100

    f [Hz]

    p h a s e

    (

    EE114 (HO #6)

    .tran Output

    3

    3.5

    1

    1.5

    2

    2.5

    [ V ]

    R. Dutton, B. Murmann 20EE114 (HO #6)

    0 0.5 1 1.5 2 2.5 3

    x 10-3

    0

    0.5

    t [sec]

    Vi

    Vo

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    11/12

    Another Run

    Now with the following stimulus

    *** i nput vol t age

    vi vi 0 dc 1. 5 *** val ue f or . op anal ysi s

    + ac 1000 *** ampl i t ude f or . ac anal ysi s

    + si n 1. 5 1000 1k ** * si newave f or . t ran: V_I =1.5V, v_i =0. 1V, f =1kHz

    1000V input amplitude applied to the circuit!

    R. Dutton, B. Murmann 21EE114 (HO #6)

    .tran Output

    5

    6

    1

    2

    3

    4

    [ V ]

    R. Dutton, B. Murmann 22EE114 (HO #6)

    0 0.5 1 1.5 2 2.5 3

    x 10-3

    -1

    0

    t [sec]

    Vi

    Vo

  • 8/13/2019 Ho6[1].l03 Cs Small Signal

    12/12

    9000

    10000

    .ac Output

    3000

    4000

    5000

    6000

    7000

    8000

    | v o

    | [ V ]

    5000V output!

    R. Dutton, B. Murmann 23

    102

    103

    0

    1000

    2000

    f [Hz]

    EE114 (HO #6)

    Important to Remember

    Once a small-signal model of the circuit is constructed, all largesignal information is lost The small-signal (.ac) circuit transfer function is linear and

    extends from to + Features such as finite voltage range, signal clipping, etc. are

    lost and completely meaningless in a small-signal analysis (or.ac simulation)

    The input amplitude in the .ac statement is irrelevant and can be

    R. Dutton, B. Murmann 24

    Best to use 1V, in which case the output amplitude

    corresponds to the circuit gain

    EE114 (HO #6)