human domination of the global water cycle absent from ...10.1038... · stephen plont 3,12, jean...

14
ARTICLES https://doi.org/10.1038/s41561-019-0374-y Human domination of the global water cycle absent from depictions and perceptions Benjamin W. Abbott  1 *, Kevin Bishop  2 , Jay P. Zarnetske  3 , Camille Minaudo  4,5 , F. S. Chapin III 6 , Stefan Krause 7 , David M. Hannah  7 , Lafe Conner  8 , David Ellison 9,10 , Sarah E. Godsey 11 , Stephen Plont  3,12 , Jean Marçais 13,14 , Tamara Kolbe 2,15 , Amanda Huebner 1 , Rebecca J. Frei 1 , Tyler Hampton 3,16 , Sen Gu 14 , Madeline Buhman 1 , Sayedeh Sara Sayedi 1 , Ovidiu Ursache 17 , Melissa Chapin 6 , Kathryn D. Henderson 18 and Gilles Pinay 19 1 Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA. 2 Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden. 3 Michigan State University, Department of Earth and Environmental Sciences, East Lansing, MI, USA. 4 Aquatic Physics Laboratory APHYS, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland. 5 E.A. 6293 GeHCO, François Rabelais de Tours University, Tours, France. 6 University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, USA. 7 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK. 8 American Preparatory Academy Salem Campus, Salem, UT, USA. 9 Swedish University of Agricultural Sciences, Department of Forest Resource Management, Umeå, Sweden. 10 Ellison Consulting, Baar, Switzerland. 11 Idaho State University, Department of Geosciences, Pocatello, ID, USA. 12 Virginia Polytechnic Institute and State University, Department of Biological Sciences, Blacksburg, VA, USA. 13 Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France. 14 Univ Rennes, CNRS, Géosciences Rennes, Rennes, France. 15 TU Bergakademie Freiberg, Department of Hydrogeology, Freiberg, Germany. 16 University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario, Canada. 17 UMR SAS, AGROCAMPUS OUEST, INRA, Rennes, France. 18 Water Research Foundation, Denver, CO, USA. 19 Irstea Lyon, RiverLy, University of Lyon, Villeurbanne, France. *e-mail: [email protected] SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. NATURE GEOSCIENCE | www.nature.com/naturegeoscience

Upload: others

Post on 05-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

Articleshttps://doi.org/10.1038/s41561-019-0374-y

Human domination of the global water cycle absent from depictions and perceptionsBenjamin W. Abbott   1*, Kevin Bishop   2, Jay P. Zarnetske   3, Camille Minaudo   4,5, F. S. Chapin III6, Stefan Krause7, David M. Hannah   7, Lafe Conner   8, David Ellison9,10, Sarah E. Godsey11, Stephen Plont   3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton3,16, Sen Gu14, Madeline Buhman1, Sayedeh Sara Sayedi1, Ovidiu Ursache17, Melissa Chapin6, Kathryn D. Henderson18 and Gilles Pinay19

1Brigham Young University, Department of Plant and Wildlife Sciences, Provo, UT, USA. 2Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala, Sweden. 3Michigan State University, Department of Earth and Environmental Sciences, East Lansing, MI, USA. 4Aquatic Physics Laboratory APHYS, Swiss Federal Institute of Technology EPFL, Lausanne, Switzerland. 5E.A. 6293 GeHCO, François Rabelais de Tours University, Tours, France. 6University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK, USA. 7School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK. 8American Preparatory Academy Salem Campus, Salem, UT, USA. 9Swedish University of Agricultural Sciences, Department of Forest Resource Management, Umeå, Sweden. 10Ellison Consulting, Baar, Switzerland. 11Idaho State University, Department of Geosciences, Pocatello, ID, USA. 12Virginia Polytechnic Institute and State University, Department of Biological Sciences, Blacksburg, VA, USA. 13Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France. 14Univ Rennes, CNRS, Géosciences Rennes, Rennes, France. 15TU Bergakademie Freiberg, Department of Hydrogeology, Freiberg, Germany. 16University of Waterloo, Department of Earth and Environmental Sciences, Waterloo, Ontario, Canada. 17UMR SAS, AGROCAMPUS OUEST, INRA, Rennes, France. 18Water Research Foundation, Denver, CO, USA. 19Irstea Lyon, RiverLy, University of Lyon, Villeurbanne, France. *e-mail: [email protected]

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NATURE GEOSCIENCE | www.nature.com/naturegeoscience

Page 2: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

1

CONTENTS

Supplementary Tables

Table S1. Estimates of global water pools and fluxes (p. 2)

Table S2. Five of the most widespread water cycle diagrams (p. 7)

Table S3. Similarity of diagrams from different scientific disciplines (p. 8)

Supplementary Figures

Fig. S1. Examples of the four most common formats used in diagrams of the water cycle (p. 9)

Fig. S2. Accuracy of the representation of five key variables extracted from diagrams created by

different scientific disciplines or for the public (p. 10)

Fig. S3. The number of pools and fluxes represented in water cycle diagrams (p. 11)

Fig. S4. Percentage of diagrams from different scientific disciplines representing major pools

and fluxes in the water cycle (p. 12)

Fig. S5. Ratios and percentages of ocean and land precipitation and evapotranspiration and

overall precipitation to evapotranspiration depicted in diagrams (p. 13)

Page 3: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

2

Table S1. Estimates of global water pools and fluxes *To avoid double

counting, we

defined lateral

ocean circulation as

net movement of

water from the

Indian to the

Pacific basin (the

single largest

interbasin flux)

(32) and vertical

ocean circulation as

creation of deep

water with a neutral

density > 28.11 kg

m-3 following

reference (11).

†Previous estimates

of subsurface

runoff did not

separate

groundwater

recharge (defined

here defined

following citation

(16)), which we

have subtracted

from this value.

Pools Volume (103 km3) Range Sources

Total Water on Earth 1,380,000 1,350,000 – 1,386,000 (1–8)

Oceans, Seas, & Bays (total) 1,340,000 1,320,000 – 1,350,000 (1–9)

Deeper water masses 1,206,000 1,100,000 – 1,300,000 (10–12)

Mixed layer 134,000 90,000 – 170,000 (10–12)

Ice caps, Glaciers, & Perennial Snow 25,800 24,064 – 29,200 (1–8)

Groundwater (total) 22,600 8,060 – 23,400 (1–8, 13, 14)

Non-renewable groundwater (old or saline) 22,000 11,000 – 44,000 (13–16)

Renewable groundwater (young and mostly fresh) 630 300 - 1,200 (13–16)

Ground Ice & Permafrost 207 22 – 300 (1–4, 8)

Lakes (total) 190 125 – 229 (1–8)

Fresh lakes 108 91 – 125 (1, 7, 17)

Saline lakes 94.7 85.4 – 104 (1, 7, 17)

Soil Moisture 54.1 16.5 – 122 (1–8)

Wetlands 14.1 11 – 17 (1, 2, 8)

Atmosphere (total) 12.9 12.7 – 13 (1–8)

Atmosphere over sea 10 8 – 12 (2, 18)

Atmosphere over land 3.0 2.7 – 3.3 (2, 18)

Artificial reservoirs 10.8 7 – 15 (1–3, 18, 19)

Seasonal snowpack annual maximum (February) 2.9 2.6 – 3.5 (20–25)

Rivers 1.9 1.25 – 2.12 (1–8)

Biological Water 0.94 0.6 – 1.12 (1–8)

Fluxes Flux (103 km3 year-1) Range Sources

Interbasin ocean circulation* 5,000 4,500 – 6,500 (10–12, 26–32)

Vertical ocean circulation* 2,100 1,600 – 2,600 (10–12, 28, 29)

Ocean evaporation 420.5 350 – 510 (1–3, 18, 33, 34)

Ocean precipitation 380.5 320 – 460 (1–3, 18, 33, 34)

Land precipitation (total) 110.6 99 – 120 (1–3, 18, 33)

Land rain 98.5 88.1 – 120 (2, 18)

Land snow 12.5 11 – 13 (2, 18)

Land evapotranspiration (total) 68.9 62 – 75 (1–3, 18, 33, 35–45)

Transpiration 39.4 34 – 52 (37–42, 44)

Evaporation (soil, water surface, and interception) 29.5 22 – 34 (37–42)

Atmospheric sea to land transport 46 35 – 50 (2, 18, 33)

River discharge to ocean (total) 46 36 – 56 (33, 34, 46–48)

Subsurface flow† 22 21 – 24 (2, 16, 18)

Surface runoff 14 12 – 15 (2, 3, 18)

Groundwater recharge 13 12 – 25 (13, 16, 49)

Groundwater discharge to ocean 4.5 0.1 – 6.5 (2, 6, 7, 13, 50–52)

Land ice discharge 3.1 1.9 – 4.5 (53–56)

Human appropriation of freshwater (total) 24.4 21 – 25 (45, 57–69)

Green water use (total) 19 15 – 22 (44, 59, 66, 70–75)

Grazing 10 8.2 – 14 (44, 45, 58, 76)

Croplands 7.6 6.4 – 7.8 (58, 71, 76)

Forestry 0.96 0.8 – 1.2 (45, 66, 77)

Blue water use (total) 4.0 3.8 – 6.0 (2, 44, 58, 75, 76, 78)

Agriculture 2.5 0.95 – 3.2 (2, 71, 76)

Industry 0.77 0.63 – 0.89 (2, 76)

Domestic 0.31 0.18 – 0.38 (2, 76)

Gray water use (total) 1.4 1.0 – 2.0 (58, 59, 79–82)

Agriculture 0.74 0.5 – 1.0 (58, 59, 79–82)

Industry 0.36 0.21 – 0.5 (58, 59, 79–82)

Domestic 0.28 0.2 – 0.3 (58, 59, 79–82)

River discharge to endorheic basins 0.8 0.6 – 1.1 (83, 84)

Page 4: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

3

REFERENCES 1. P. H. Gleick, Water in crisis: a guide to the worlds fresh water resources. (Oxford University

Press, New York, 1993). 2. T. Oki, S. Kanae, Global Hydrological Cycles and World Water Resources. Science. 313, 1068–

1072 (2006). 3. K. E. Trenberth, L. Smith, T. Qian, A. Dai, J. Fasullo, Estimates of the Global Water Budget and

Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 8, 758–769 (2007). 4. W. H. Schlesinger, E. S. Bernhardt, in Biogeochemistry (Third Edition) (Academic Press, Boston,

2013; http://www.sciencedirect.com/science/article/pii/B9780123858740000108), pp. 399–417.

5. A. Baumgartner, E. Reichel, The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Run-Off (Elsevier Scientific Publishing Company, 1975).

6. J. P. Peixóto, A. H. Oort, The Atmospheric Branch Of The Hydrological Cycle And Climate (1983). 7. F. van der Leeden, The Water Encyclopedia, Second Edition (CRC Press, 1990). 8. K. A. Browning, Global Energy and Water Cycles (Cambridge University Press, 1999). 9. M. Charette, W. Smith, The Volume of Earth’s Ocean. Oceanography. 23, 112–114 (2010). 10. de Boyer Montégut Clément, Madec Gurvan, Fischer Albert S., Lazar Alban, Iudicone Daniele,

Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology. J. Geophys. Res. Oceans. 109 (2004), doi:10.1029/2004JC002378.

11. A. Ganachaud, C. Wunsch, Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature. 408, 453–457 (2000).

12. Kara A. Birol, Rochford Peter A., Hurlburt Harley E., Mixed layer depth variability over the global ocean. J. Geophys. Res. Oceans. 108 (2003), doi:10.1029/2000JC000736.

13. T. Gleeson, K. M. Befus, S. Jasechko, E. Luijendijk, M. B. Cardenas, The global volume and distribution of modern groundwater. Nat. Geosci. 9, 161–167 (2016).

14. A. S. Richey et al., Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. Water Resour. Res. 51, 5198–5216 (2015).

15. A. S. Richey et al., Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).

16. P. Döll, K. Fiedler, Global‐scale modeling of groundwater recharge. Hydrol Earth Syst Sci. 12, 863–885 (2008).

17. J.‐F. Crétaux et al., Lake Volume Monitoring from Space. Surv. Geophys. 37, 269–305 (2016). 18. F. S. Chapin, P. A. Matson, P. M. Vitousek, Principles of Terrestrial Ecosystem Ecology (Springer

New York, New York, NY, 2012; http://link.springer.com/10.1007/978‐1‐4419‐9504‐9). 19. B. F. Chao, Y. H. Wu, Y. S. Li, Impact of Artificial Reservoir Water Impoundment on Global Sea

Level. Science. 320, 212–214 (2008). 20. R. Armstrong, Global Monthly EASE‐Grid Snow Water Equivalent Climatology, Version 1

(2005), , doi:10.5067/KJVERY3MIBPS. 21. T. Smith, B. Bookhagen, Changes in seasonal snow water equivalent distribution in High

Mountain Asia (1987 to 2009). Sci. Adv. 4, e1701550 (2018). 22. M. L. Wrzesien et al., Comparison of Methods to Estimate Snow Water Equivalent at the

Mountain Range Scale: A Case Study of the California Sierra Nevada. J. Hydrometeorol. 18, 1101–1119 (2017).

23. S. Hancock, R. Baxter, J. Evans, B. Huntley, Evaluating global snow water equivalent products for testing land surface models. Remote Sens. Environ. 128, 107–117 (2013).

24. P. J. Hancock, Human Impacts on the Stream–Groundwater Exchange Zone. Environ. Manage. 29, 763–781 (2002).

25. D. Clifford, Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int. J. Remote Sens. 31, 3707–3726 (2010).

Page 5: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

4

26. C. H. Lear, Y. Rosenthal, J. D. Wright, The closing of a seaway: ocean water masses and global climate change. Earth Planet. Sci. Lett. 210, 425–436 (2003).

27. W. Schmitz, On the interbasin‐scale thermohaline circulation. Rev. Geophys. 33, 151–173 (1995).

28. F. Primeau, Characterizing Transport between the Surface Mixed Layer and the Ocean Interior with a Forward and Adjoint Global Ocean Transport Model. J. Phys. Oceanogr. 35, 20 (2005).

29. T. Kuhlbrodt et al., On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys. 45 (2007), doi:10.1029/2004RG000166.

30. G. C. Johnson, Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes. J. Geophys. Res. 113 (2008), doi:10.1029/2007JC004477.

31. B. Sinha et al., The accuracy of estimates of the overturning circulation from basin‐wide mooring arrays. Prog. Oceanogr. 160, 101–123 (2018).

32. A. M. Macdonald, C. Wunsch, An estimate of global ocean circulation and heat fluxes. Nature. 382, 436–439 (1996).

33. M. Rodell et al., The Observed State of the Water Cycle in the Early Twenty‐First Century. J. Clim. 28, 8289–8318 (2015).

34. T. H. Syed, J. S. Famiglietti, D. P. Chambers, J. K. Willis, K. Hilburn, Satellite‐based global‐ocean mass balance estimates of interannual variability and emerging trends in continental freshwater discharge. Proc. Natl. Acad. Sci. 107, 17916–17921 (2010).

35. D. Ellison, M. N. Futter, K. Bishop, On the forest cover‐water yield debate: from demand‐ to supply‐side thinking. Glob. Change Biol. 18, 806–820 (2012).

36. L. J. Gordon et al., Human modification of global water vapor flows from the land surface. Proc. Natl. Acad. Sci. U. S. A. 102, 7612–7617 (2005).

37. Y. Zhang et al., Multi‐decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

38. K. Wang, R. E. Dickinson, A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 50 (2012), doi:10.1029/2011RG000373.

39. L. Wang‐Erlandsson, R. J. van der Ent, L. J. Gordon, H. H. G. Savenije, Contrasting roles of interception and transpiration in the hydrological cycle ‐ Part 1: Temporal characteristics over land. Earth Syst. Dyn. Gottingen. 5, 441–469 (2014).

40. S. Jasechko et al., Terrestrial water fluxes dominated by transpiration. Nature. 496, 347–350 (2013).

41. W. H. Schlesinger, S. Jasechko, Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

42. Z. Wei et al., Revisiting the contribution of transpiration to global terrestrial evapotranspiration: Revisiting Global ET Partitioning. Geophys. Res. Lett. 44, 2792–2801 (2017).

43. S. P. Good, D. Noone, G. Bowen, Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science. 349, 175–177 (2015).

44. M. Falkenmark, L. Wang‐Erlandsson, J. Rockström, Understanding of water resilience in the Anthropocene. J. Hydrol. X. 2, 100009 (2019).

45. J. F. Schyns, A. Y. Hoekstra, M. J. Booij, R. J. Hogeboom, M. M. Mekonnen, Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci., 201817380 (2019).

46. D. Gerten, S. Rost, W. von Bloh, W. Lucht, Causes of change in 20th century global river discharge. Geophys. Res. Lett. 35, L20405 (2008).

47. Y. Masaki et al., Intercomparison of global river discharge simulations focusing on dam operation—multiple models analysis in two case‐study river basins, Missouri–Mississippi and Green–Colorado. Environ. Res. Lett. 12, 055002 (2017).

Page 6: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

5

48. C. Miao, J. Ni, A. G. L. Borthwick, L. Yang, A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Glob. Planet. Change. 76, 196–205 (2011).

49. P. Döll, Vulnerability to the impact of climate change on renewable groundwater resources: a global‐scale assessment. Environ. Res. Lett. 4, 035006 (2009).

50. W. C. Burnett, H. Bokuniewicz, M. Huettel, W. S. Moore, M. Taniguchi, Groundwater and pore water inputs to the coastal zone. Biogeochemistry. 66, 3–33 (2003).

51. A. H. Sawyer, C. H. David, J. S. Famiglietti, Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science, aag1058 (2016).

52. I. S. Zektser, H. A. Loaiciga, Groundwater fluxes in the global hydrologic cycle: past, present and future. J. Hydrol. 144, 405–427 (1993).

53. Bamber J. L. et al., Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results. J. Geophys. Res. Oceans. 0 (2018), doi:10.1002/2017JC013605.

54. A. S. Gardner et al., Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years. The Cryosphere. 12, 521–547 (2018).

55. J. E. Box et al., Global sea‐level contribution from Arctic land ice: 1971–2017. Environ. Res. Lett. 13, 125012 (2018).

56. AMAP, “Snow, water, ice and permafrost in the Arctic (SWIPA): climate change adn the cryosphere” (Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2011), p. 538.

57. A. Y. Hoekstra, M. M. Mekonnen, Global water scarcity: The monthly blue water footprint compared to blue water availability for the world’s major river basins (2011).

58. A. Y. Hoekstra, M. M. Mekonnen, The water footprint of humanity. Proc. Natl. Acad. Sci. 109, 3232–3237 (2012).

59. M. M. Mekonnen, A. Y. Hoekstra, The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci. 15, 1577–1600 (2011).

60. M. Falkenmark, Growing water scarcity in agriculture: future challenge to global water security. Phil Trans R Soc A. 371, 20120410 (2013).

61. J. S. Famiglietti, The global groundwater crisis. Nat. Clim. Change. 4, 945–948 (2014). 62. J. S. Famiglietti, M. Rodell, Water in the Balance. Science. 340, 1300–1301 (2013). 63. J. Rockström, M. Falkenmark, M. Lannerstad, L. Karlberg, The planetary water drama: Dual

task of feeding humanity and curbing climate change. Geophys. Res. Lett. 39, L15401 (2012). 64. S. Rost, D. Gerten, U. Heyder, Human alterations of the terrestrial water cycle through land

management. Adv. Geosci. 18, 43–50 (2008). 65. S. M. Sterling, A. Ducharne, J. Polcher, The impact of global land‐cover change on the terrestrial

water cycle. Nat. Clim. Change. 3, 385–390 (2013). 66. J. F. Schyns, M. J. Booij, A. Y. Hoekstra, The water footprint of wood for lumber, pulp, paper,

fuel and firewood. Adv. Water Resour. 107, 490–501 (2017). 67. S. L. Postel, G. C. Daily, P. R. Ehrlich, Human Appropriation of Renewable Fresh Water. Sci. New

Ser. 271, 785–788 (1996). 68. M. Rodell et al., Emerging trends in global freshwater availability. Nature. 557, 651 (2018). 69. S. Lattemann, M. D. Kennedy, J. C. Schippers, G. Amy, in Sustainability Science and Engineering,

I. C. Escobar, A. I. Schäfer, Eds. (Elsevier, 2010; http://www.sciencedirect.com/science/article/pii/S1871271109002025), vol. 2 of Sustainable Water for the Future: Water Recycling versus Desalination, pp. 7–39.

70. M. Falkenmark, J. Rockström, The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plan. Manag., 129–132 (2006).

71. J. Liu, H. Yang, in Rethinking water and food security. Fourth Botin Foundation Water Workshop (2010), pp. 23–32.

Page 7: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

6

72. S. Rost et al., Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).

73. A. Zhao, X. Zhu, X. Liu, Y. Pan, D. Zuo, Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA. 137, 318–327 (2016).

74. M. van Noordwijk, S. Namirembe, D. Catacutan, D. Williamson, A. Gebrekirstos, Pricing rainbow, green, blue and grey water: tree cover and geopolitics of climatic teleconnections. Curr. Opin. Environ. Sustain. 6, 41–47 (2014).

75. I. Haddeland et al., Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. 111, 3251–3256 (2014).

76. N. Hanasaki, T. Inuzuka, S. Kanae, T. Oki, An estimation of global virtual water flow and sources of water withdrawal for major crops and livestock products using a global hydrological model. J. Hydrol. 384, 232–244 (2010).

77. S. Launiainen et al., Is the Water Footprint an Appropriate Tool for Forestry and Forest Products: The Fennoscandian Case. Ambio. 43, 244–256 (2014).

78. R. J. Hogeboom, L. Knook, A. Y. Hoekstra, The blue water footprint of the world’s artificial reservoirs for hydroelectricity, irrigation, residential and industrial water supply, flood protection, fishing and recreation. Adv. Water Resour. 113, 285–294 (2018).

79. A. K. Chapagain, A. Y. Hoekstra, The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 70, 749–758 (2011).

80. M. Mekonnen, A. Y. Hoekstra, The green, blue and grey water footprint of animals and animal products (2010) (available at https://research.utwente.nl/en/publications/the‐green‐blue‐and‐grey‐water‐footprint‐of‐animals‐and‐animal‐pro).

81. M. M. Mekonnen, A. Y. Hoekstra, Global Gray Water Footprint and Water Pollution Levels Related to Anthropogenic Nitrogen Loads to Fresh Water. Environ. Sci. Technol. 49, 12860–12868 (2015).

82. M. M. Mekonnen, A. Y. Hoekstra, Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High‐Resolution Global Study. Water Resour. Res. 54, 345–358 (2018).

83. M. I. Lʹvovich, World Water Resources and Their Future (American Geophysical Union, 1979). 84. C. J. Vörösmarty, B. M. Fekete, M. Meybeck, R. B. Lammers, Global system of rivers: Its role in

organizing continental land mass and defining land‐to‐ocean linkages. Glob. Biogeochem. Cycles. 14, 599–621 (2000).

Page 8: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

7

Table S2. Five of the most widespread water cycle diagrams

Creator of Diagram # of appearances

Countries Ranking in web search*

Link

United States Geological Survey

15 Tunisia South Africa

Russia Romania

Mexico India

Germany France China Brazil

Australia U.S.A.

2, 19, 26 2 1 1, 2 2 17 2 1 46 2 2 1

https://water.usgs.gov/edu/watercycle.ht ml

U.S. Global Change Research Program (2003)

7 South Africa Romania

India France

Australia Tunisia U.S.A.

27 16 29 17 26 10 2

http://www.globalchange.gov/browse/multimedia/water-cycle

Max Planck Institute

7

Germany China USA

4, 9, 12, 15, 19 39 54

https://www.mpimet.mpg.de/en/communication/multimedia/figures/water

cycle/

United States Geological Survey

6

U.S.A. South Africa

Romania France

Australia India

10 6 11 27 10 5

https://water.usgs.gov/edu/watercycle.html

British Broadcasting Corporation

5 South Africa Australia

U.S.A.

13, 23 17, 30 11

https://www.bbc.com/bitesize/guides/z4bk7ty/revision/1

*Diagrams with multiple rankings showed up multiple times in the image search.

Page 9: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

8

Table S3. Similarity of diagrams from difference scientific disciplines*

Geography Hydrology Land management Meteorology

Natural sciences

Pools Geography Hydrology 0.91

Land Management 0.90 0.91 Meteorology 0.81 0.84 0.92

Natural Sciences 0.89 0.87 0.95 0.91 Oceanography 0.80 0.88 0.87 0.85 0.85

Fluxes Geography Hydrology 0.90

Land Management 0.93 0.80 Meteorology 0.91 0.86 0.88

Natural Sciences 0.85 0.89 0.82 0.76 Oceanography 0.89 0.79 0.78 0.89 0.65

*Pearson product-moment correlation coefficients between the number of pools and fluxes included in

diagrams from different disciplines. Because of limited sample sizes in some individual disciplines,

“Natural Sciences” includes data from ecosystem ecology, biogeochemistry, aquatic ecology, and

geology. Similarly, “Land Management” includes data from agronomy, forestry, and soil science.

Page 10: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

9

Fig. S1. Examples of the four most common formats used in diagrams of the water cycle. (a)

Catchment format diagrams are large-scale and three dimensional. (b) Hillslope diagrams are

small scale and two dimensional. (c) Site diagrams integrate aspects of catchment and hillslope

diagrams. (d) Schematic diagrams are the most abstract representations, typically consisting of

boxes and arrows. Panels (a) and (d) are from: https://water.usgs.gov/edu/watercycle.html.

Panels (b) and (c) are from: https://pubs.usgs.gov/gip/gw_ruralhomeowner/.

a)

c) d)

b)

Page 11: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

10

Fig. S2. Accuracy of the representation

of five key variables extracted from

diagrams created by different scientific

disciplines or for the public. (a) The

percentage of the diagram occupied by

the ocean, (b) percentage of depicted

precipitation occurring over land, (c)

percentage of depicted

evapotranspiration occurring from

land, (d) ratio of total

evapotranspiration to precipitation, and

e) ratio of terrestrial evapotranspiration

to atmospheric flux from ocean to land

(the evapotranspiration multiplier). The

gray bars show current best estimates

of annual values based on values in

Table S1 and box plots represent

median, quartiles, 1.5 times the

interquartile range (IQR), and points

beyond 1.5 times the IQR.

Page 12: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

11

Fig. S3. The number of pools and fluxes

represented in water cycle diagrams

grouped by: (a) producer, (b) research

discipline, (c) diagram format, and (d)

time period and whether numerical

estimates of pools and fluxes were

provided. Box plots represent median,

95% confidence intervals of the median

(notches), quartiles, 1.5 times the

interquartile range (IQR), and points

beyond 1.5 times the IQR. For detailed

description of groupings refer to methods

section. See Figure S4 for sample sizes.

Page 13: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

12

Fig. S4. Percentage of diagrams from different scientific disciplines representing major (a) pools

and (b) fluxes in the water cycle. Because of limited sample size for some disciplines, we

grouped agronomy, forestry, and soil science into a land management category, and ecosystem

ecology, biogeochemistry, aquatic ecology, and geology into a natural sciences category. See

figure S5 for sample sizes for each discipline.

Page 14: Human domination of the global water cycle absent from ...10.1038... · Stephen Plont 3,12, Jean Marçais13,14, Tamara Kolbe2,15, Amanda Huebner1, Rebecca J. Frei1, Tyler Hampton

13

Fig. S5. Ratios and percentages of ocean and land precipitation and evapotranspiration and

overall precipitation to evapotranspiration depicted in diagrams grouped as in Figure S3. The

gray bars show current best estimates of these values based on Table S1.